
Rocky Enterprise Linux 9.2 Manual Pages on command 'rtc.4'

$ man rtc.4

RTC(4) Linux Programmer's Manual RTC(4)

NAME

 rtc - real-time clock

SYNOPSIS

 #include <linux/rtc.h>

 int ioctl(fd, RTC_request, param);

DESCRIPTION

 This is the interface to drivers for real-time clocks (RTCs).

 Most computers have one or more hardware clocks which record the current "wall clock"

 time. These are called "Real Time Clocks" (RTCs). One of these usually has battery

 backup power so that it tracks the time even while the computer is turned off. RTCs often

 provide alarms and other interrupts.

 All i386 PCs, and ACPI-based systems, have an RTC that is compatible with the Motorola

 MC146818 chip on the original PC/AT. Today such an RTC is usually integrated into the

 mainboard's chipset (south bridge), and uses a replaceable coin-sized backup battery.

 Non-PC systems, such as embedded systems built around system-on-chip processors, use other

 implementations. They usually won't offer the same functionality as the RTC from a PC/AT.

 RTC vs system clock

 RTCs should not be confused with the system clock, which is a software clock maintained by

 the kernel and used to implement gettimeofday(2) and time(2), as well as setting time?

 stamps on files, and so on. The system clock reports seconds and microseconds since a

 start point, defined to be the POSIX Epoch: 1970-01-01 00:00:00 +0000 (UTC). (One common

 implementation counts timer interrupts, once per "jiffy", at a frequency of 100, 250, or Page 1/5

 1000 Hz.) That is, it is supposed to report wall clock time, which RTCs also do.

 A key difference between an RTC and the system clock is that RTCs run even when the system

 is in a low power state (including "off"), and the system clock can't. Until it is ini?

 tialized, the system clock can only report time since system boot ... not since the POSIX

 Epoch. So at boot time, and after resuming from a system low power state, the system

 clock will often be set to the current wall clock time using an RTC. Systems without an

 RTC need to set the system clock using another clock, maybe across the network or by en?

 tering that data manually.

 RTC functionality

 RTCs can be read and written with hwclock(8), or directly with the ioctl(2) requests

 listed below.

 Besides tracking the date and time, many RTCs can also generate interrupts

 * on every clock update (i.e., once per second);

 * at periodic intervals with a frequency that can be set to any power-of-2 multiple in

 the range 2 Hz to 8192 Hz;

 * on reaching a previously specified alarm time.

 Each of those interrupt sources can be enabled or disabled separately. On many systems,

 the alarm interrupt can be configured as a system wakeup event, which can resume the sys?

 tem from a low power state such as Suspend-to-RAM (STR, called S3 in ACPI systems), Hiber?

 nation (called S4 in ACPI systems), or even "off" (called S5 in ACPI systems). On some

 systems, the battery backed RTC can't issue interrupts, but another one can.

 The /dev/rtc (or /dev/rtc0, /dev/rtc1, etc.) device can be opened only once (until it is

 closed) and it is read-only. On read(2) and select(2) the calling process is blocked un?

 til the next interrupt from that RTC is received. Following the interrupt, the process

 can read a long integer, of which the least significant byte contains a bit mask encoding

 the types of interrupt that occurred, while the remaining 3 bytes contain the number of

 interrupts since the last read(2).

 ioctl(2) interface

 The following ioctl(2) requests are defined on file descriptors connected to RTC devices:

 RTC_RD_TIME

 Returns this RTC's time in the following structure:

 struct rtc_time {

 int tm_sec; Page 2/5

 int tm_min;

 int tm_hour;

 int tm_mday;

 int tm_mon;

 int tm_year;

 int tm_wday; /* unused */

 int tm_yday; /* unused */

 int tm_isdst; /* unused */

 };

 The fields in this structure have the same meaning and ranges as for the tm struc?

 ture described in gmtime(3). A pointer to this structure should be passed as the

 third ioctl(2) argument.

 RTC_SET_TIME

 Sets this RTC's time to the time specified by the rtc_time structure pointed to by

 the third ioctl(2) argument. To set the RTC's time the process must be privileged

 (i.e., have the CAP_SYS_TIME capability).

 RTC_ALM_READ, RTC_ALM_SET

 Read and set the alarm time, for RTCs that support alarms. The alarm interrupt

 must be separately enabled or disabled using the RTC_AIE_ON, RTC_AIE_OFF requests.

 The third ioctl(2) argument is a pointer to an rtc_time structure. Only the

 tm_sec, tm_min, and tm_hour fields of this structure are used.

 RTC_IRQP_READ, RTC_IRQP_SET

 Read and set the frequency for periodic interrupts, for RTCs that support periodic

 interrupts. The periodic interrupt must be separately enabled or disabled using

 the RTC_PIE_ON, RTC_PIE_OFF requests. The third ioctl(2) argument is an unsigned

 long * or an unsigned long, respectively. The value is the frequency in interrupts

 per second. The set of allowable frequencies is the multiples of two in the range

 2 to 8192. Only a privileged process (i.e., one having the CAP_SYS_RESOURCE capa?

 bility) can set frequencies above the value specified in /proc/sys/dev/rtc/max-

 user-freq. (This file contains the value 64 by default.)

 RTC_AIE_ON, RTC_AIE_OFF

 Enable or disable the alarm interrupt, for RTCs that support alarms. The third

 ioctl(2) argument is ignored. Page 3/5

 RTC_UIE_ON, RTC_UIE_OFF

 Enable or disable the interrupt on every clock update, for RTCs that support this

 once-per-second interrupt. The third ioctl(2) argument is ignored.

 RTC_PIE_ON, RTC_PIE_OFF

 Enable or disable the periodic interrupt, for RTCs that support these periodic in?

 terrupts. The third ioctl(2) argument is ignored. Only a privileged process

 (i.e., one having the CAP_SYS_RESOURCE capability) can enable the periodic inter?

 rupt if the frequency is currently set above the value specified in

 /proc/sys/dev/rtc/max-user-freq.

 RTC_EPOCH_READ, RTC_EPOCH_SET

 Many RTCs encode the year in an 8-bit register which is either interpreted as an

 8-bit binary number or as a BCD number. In both cases, the number is interpreted

 relative to this RTC's Epoch. The RTC's Epoch is initialized to 1900 on most sys?

 tems but on Alpha and MIPS it might also be initialized to 1952, 1980, or 2000, de?

 pending on the value of an RTC register for the year. With some RTCs, these opera?

 tions can be used to read or to set the RTC's Epoch, respectively. The third

 ioctl(2) argument is an unsigned long * or an unsigned long, respectively, and the

 value returned (or assigned) is the Epoch. To set the RTC's Epoch the process must

 be privileged (i.e., have the CAP_SYS_TIME capability).

 RTC_WKALM_RD, RTC_WKALM_SET

 Some RTCs support a more powerful alarm interface, using these ioctls to read or

 write the RTC's alarm time (respectively) with this structure:

 struct rtc_wkalrm {

 unsigned char enabled;

 unsigned char pending;

 struct rtc_time time;

 };

 The enabled flag is used to enable or disable the alarm interrupt, or to read its

 current status; when using these calls, RTC_AIE_ON and RTC_AIE_OFF are not used.

 The pending flag is used by RTC_WKALM_RD to report a pending interrupt (so it's

 mostly useless on Linux, except when talking to the RTC managed by EFI firmware).

 The time field is as used with RTC_ALM_READ and RTC_ALM_SET except that the

 tm_mday, tm_mon, and tm_year fields are also valid. A pointer to this structure Page 4/5

 should be passed as the third ioctl(2) argument.

FILES

 /dev/rtc, /dev/rtc0, /dev/rtc1, etc.

 RTC special character device files.

 /proc/driver/rtc

 status of the (first) RTC.

NOTES

 When the kernel's system time is synchronized with an external reference using adjtimex(2)

 it will update a designated RTC periodically every 11 minutes. To do so, the kernel has

 to briefly turn off periodic interrupts; this might affect programs using that RTC.

 An RTC's Epoch has nothing to do with the POSIX Epoch which is used only for the system

 clock.

 If the year according to the RTC's Epoch and the year register is less than 1970 it is as?

 sumed to be 100 years later, that is, between 2000 and 2069.

 Some RTCs support "wildcard" values in alarm fields, to support scenarios like periodic

 alarms at fifteen minutes after every hour, or on the first day of each month. Such usage

 is nonportable; portable user-space code expects only a single alarm interrupt, and will

 either disable or reinitialize the alarm after receiving it.

 Some RTCs support periodic interrupts with periods that are multiples of a second rather

 than fractions of a second; multiple alarms; programmable output clock signals; non?

 volatile memory; and other hardware capabilities that are not currently exposed by this

 API.

SEE ALSO

 date(1), adjtimex(2), gettimeofday(2), settimeofday(2), stime(2), time(2), gmtime(3),

 time(7), hwclock(8)

 Documentation/rtc.txt in the Linux kernel source tree

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 RTC(4)

Page 5/5

