
Rocky Enterprise Linux 9.2 Manual Pages on command 'rsyslog.conf.5'

$ man rsyslog.conf.5

RSYSLOG.CONF(5) Linux System Administration RSYSLOG.CONF(5)

NAME

 rsyslog.conf - rsyslogd(8) configuration file

DESCRIPTION

 The rsyslog.conf file is the main configuration file for the rsyslogd(8) which logs system

 messages on *nix systems. This file specifies rules for logging. For special features

 see the rsyslogd(8) manpage. Rsyslog.conf is backward-compatible with sysklogd's sys?

 log.conf file. So if you migrate from sysklogd you can rename it and it should work.

 Note that this version of rsyslog ships with extensive documentation in HTML format. This

 is provided in the ./doc subdirectory and probably in a separate package if you installed

 rsyslog via a packaging system. To use rsyslog's advanced features, you need to look at

 the HTML documentation, because the man pages only cover basic aspects of operation.

MODULES

 Rsyslog has a modular design. Consequently, there is a growing number of modules. See the

 HTML documentation for their full description.

 omsnmp SNMP trap output module

 omgssapi

 Output module for GSS-enabled syslog

 ommysql

 Output module for MySQL

 omrelp Output module for the reliable RELP protocol (prevents message loss). For details,

 see below at imrelp and the HTML documentation. It can be used like this:

 . :omrelp:server:port Page 1/15

 . :omrelp:192.168.0.1:2514 # actual sample

 ompgsql

 Output module for PostgreSQL

 omlibdbi

 Generic database output module (Firebird/Interbase, MS SQL, Sybase, SQLite, Ingres,

 Oracle, mSQL)

 imfile Input module for text files

 imudp Input plugin for UDP syslog. Replaces the deprecated -r option. Can be used like

 this:

 $ModLoad imudp

 $UDPServerRun 514

 imtcp Input plugin for plain TCP syslog. Replaces the deprecated -t option. Can be used

 like this:

 $ModLoad imtcp

 $InputTCPServerRun 514

 imrelp Input plugin for the RELP protocol. RELP can be used instead of UDP or plain TCP

 syslog to provide reliable delivery of syslog messages. Please note that plain TCP

 syslog does NOT provide truly reliable delivery, with it messages may be lost when

 there is a connection problem or the server shuts down. RELP prevents message loss

 in those cases. It can be used like this:

 $ModLoad imrelp

 $InputRELPServerRun 2514

 imgssapi

 Input plugin for plain TCP and GSS-enable syslog

 immark Support for mark messages

 imklog Kernel logging. To include kernel log messages, you need to do

 $ModLoad imklog

 Please note that the klogd daemon is no longer necessary and consequently no longer

 provided by the rsyslog package.

 imuxsock

 Unix sockets, including the system log socket. You need to specify

 $ModLoad imuxsock

 in order to receive log messages from local system processes. This config directive Page 2/15

 should only left out if you know exactly what you are doing.

BASIC STRUCTURE

 Lines starting with a hash mark ('#') and empty lines are ignored. Rsyslog.conf should

 contain following sections (sorted by recommended order in file):

 Global directives

 Global directives set some global properties of whole rsyslog daemon, for example

 size of main message queue ($MainMessageQueueSize), loading external modules ($Mod?

 Load) and so on. All global directives need to be specified on a line by their own

 and must start with a dollar-sign. The complete list of global directives can be

 found in HTML documentation in doc directory or online on web pages.

 Templates

 Templates allow you to specify format of the logged message. They are also used for

 dynamic file name generation. They have to be defined before they are used in

 rules. For more info about templates see TEMPLATES section of this manpage.

 Output channels

 Output channels provide an umbrella for any type of output that the user might

 want. They have to be defined before they are used in rules. For more info about

 output channels see OUTPUT CHANNELS section of this manpage.

 Rules (selector + action)

 Every rule line consists of two fields, a selector field and an action field. These

 two fields are separated by one or more spaces or tabs. The selector field speci?

 fies a pattern of facilities and priorities belonging to the specified action.

SELECTORS

 The selector field itself again consists of two parts, a facility and a priority, sepa?

 rated by a period ('.'). Both parts are case insensitive and can also be specified as dec?

 imal numbers, but don't do that, you have been warned. Both facilities and priorities are

 described in syslog(3). The names mentioned below correspond to the similar LOG_-values in

 /usr/include/syslog.h.

 The facility is one of the following keywords: auth, authpriv, cron, daemon, kern, lpr,

 mail, mark, news, security (same as auth), syslog, user, uucp and local0 through local7.

 The keyword security should not be used anymore and mark is only for internal use and

 therefore should not be used in applications. Anyway, you may want to specify and redi?

 rect these messages here. The facility specifies the subsystem that produced the message, Page 3/15

 i.e. all mail programs log with the mail facility (LOG_MAIL) if they log using syslog.

 The priority is one of the following keywords, in ascending order: debug, info, notice,

 warning, warn (same as warning), err, error (same as err), crit, alert, emerg, panic (same

 as emerg). The keywords error, warn and panic are deprecated and should not be used any?

 more. The priority defines the severity of the message.

 The behavior of the original BSD syslogd is that all messages of the specified priority

 and higher are logged according to the given action. Rsyslogd behaves the same, but has

 some extensions.

 In addition to the above mentioned names the rsyslogd(8) understands the following exten?

 sions: An asterisk ('*') stands for all facilities or all priorities, depending on where

 it is used (before or after the period). The keyword none stands for no priority of the

 given facility.

 You can specify multiple facilities with the same priority pattern in one statement using

 the comma (',') operator. You may specify as much facilities as you want. Remember that

 only the facility part from such a statement is taken, a priority part would be skipped.

 Multiple selectors may be specified for a single action using the semicolon (';') separa?

 tor. Remember that each selector in the selector field is capable to overwrite the preced?

 ing ones. Using this behavior you can exclude some priorities from the pattern.

 Rsyslogd has a syntax extension to the original BSD source, that makes its use more intu?

 itively. You may precede every priority with an equals sign ('=') to specify only this

 single priority and not any of the above. You may also (both is valid, too) precede the

 priority with an exclamation mark ('!') to ignore all that priorities, either exact this

 one or this and any higher priority. If you use both extensions then the exclamation mark

 must occur before the equals sign, just use it intuitively.

ACTIONS

 The action field of a rule describes what to do with the message. In general, message con?

 tent is written to a kind of "logfile". But also other actions might be done, like writing

 to a database table or forwarding to another host.

 Regular file

 Typically messages are logged to real files. The file has to be specified with full path?

 name, beginning with a slash ('/').

 Example:

 . /var/log/traditionalfile.log;RSYSLOG_TraditionalFileFormat # log to a Page 4/15

 file in the traditional format

 Note: if you would like to use high-precision timestamps in your log files, just remove

 the ";RSYSLOG_TraditionalFormat". That will select the default template, which, if not

 changed, uses RFC 3339 timestamps.

 Example:

 . /var/log/file.log # log to a file with RFC3339 timestamps

 By default, files are not synced after each write. To enable syncing of log files glob?

 ally, use either the "$ActionFileEnableSync" directive or the "sync" parameter to omfile.

 Enabling this option degrades performance and it is advised not to enable syncing unless

 you know what you are doing. To selectively disable syncing for certain files, you may

 prefix the file path with a minus sign ("-").

 Named pipes

 This version of rsyslogd(8) has support for logging output to named pipes (fifos). A fifo

 or named pipe can be used as a destination for log messages by prepending a pipe symbol

 ('|') to the name of the file. This is handy for debugging. Note that the fifo must be

 created with the mkfifo(1) command before rsyslogd(8) is started.

 Terminal and console

 If the file you specified is a tty, special tty-handling is done, same with /dev/console.

 Remote machine

 There are three ways to forward message: the traditional UDP transport, which is extremely

 lossy but standard, the plain TCP based transport which loses messages only during certain

 situations but is widely available and the RELP transport which does not lose messages but

 is currently available only as part of rsyslogd 3.15.0 and above.

 To forward messages to another host via UDP, prepend the hostname with the at sign ("@").

 To forward it via plain tcp, prepend two at signs ("@@"). To forward via RELP, prepend the

 string ":omrelp:" in front of the hostname.

 Example:

 . @192.168.0.1

 In the example above, messages are forwarded via UDP to the machine 192.168.0.1, the des?

 tination port defaults to 514. Due to the nature of UDP, you will probably lose some mes?

 sages in transit. If you expect high traffic volume, you can expect to lose a quite no?

 ticeable number of messages (the higher the traffic, the more likely and severe is message

 loss). Page 5/15

 Sockets for forwarded messages can be bound to a specific device using the "device" option

 for the omfwd module.

 Example:

 action(type="omfwd" Target="192.168.0.1" Device="eth0" Port=514 Protocol="udp")

 In the example above, messages are forwarded via UDP to the machine 192.168.0.1 at port

 514 over the device eth0. TCP can be used by setting Protocol to "tcp" in the above exam?

 ple.

 For Linux with VRF support, the device option is used to specify the VRF to send messages.

 If you would like to prevent message loss, use RELP:

 . :omrelp:192.168.0.1:2514

 Note that a port number was given as there is no standard port for relp.

 Keep in mind that you need to load the correct input and output plugins (see "Modules"

 above).

 Please note that rsyslogd offers a variety of options in regarding to remote forwarding.

 For full details, please see the HTML documentation.

 List of users

 Usually critical messages are also directed to ``root'' on that machine. You can specify a

 list of users that shall get the message by simply writing ":omusrmsg:" followed by the

 login name. You may specify more than one user by separating them with commas (','). If

 they're logged in they get the message (for example: ":omusrmsg:root,user1,user2").

 Everyone logged on

 Emergency messages often go to all users currently online to notify them that something

 strange is happening with the system. To specify this wall(1)-feature use an ":omus?

 rmsg:*".

 Database table

 This allows logging of the message to a database table. By default, a MonitorWare-compat?

 ible schema is required for this to work. You can create that schema with the createDB.SQL

 file that came with the rsyslog package. You can also use any other schema of your liking

 - you just need to define a proper template and assign this template to the action.

 See the HTML documentation for further details on database logging.

 Discard

 If the discard action is carried out, the received message is immediately discarded. Dis?

 card can be highly effective if you want to filter out some annoying messages that other? Page 6/15

 wise would fill your log files. To do that, place the discard actions early in your log

 files. This often plays well with property-based filters, giving you great freedom in

 specifying what you do not want.

 Discard is just the single 'stop' command with no further parameters.

 Example:

 . stop # discards everything.

 Output channel

 Binds an output channel definition (see there for details) to this action. Output channel

 actions must start with a $-sign, e.g. if you would like to bind your output channel defi?

 nition "mychannel" to the action, use "$mychannel". Output channels support template defi?

 nitions like all all other actions.

 Shell execute

 This executes a program in a subshell. The program is passed the template-generated mes?

 sage as the only command line parameter. Rsyslog waits until the program terminates and

 only then continues to run.

 Example:

 ^program-to-execute;template

 The program-to-execute can be any valid executable. It receives the template string as a

 single parameter (argv[1]).

FILTER CONDITIONS

 Rsyslog offers three different types "filter conditions":

 * "traditional" severity and facility based selectors

 * property-based filters

 * expression-based filters

 Selectors

 Selectors are the traditional way of filtering syslog messages. They have been kept in

 rsyslog with their original syntax, because it is well-known, highly effective and also

 needed for compatibility with stock syslogd configuration files. If you just need to fil?

 ter based on priority and facility, you should do this with selector lines. They are not

 second-class citizens in rsyslog and offer the best performance for this job.

 Property-Based Filters

 Property-based filters are unique to rsyslogd. They allow to filter on any property, like

 HOSTNAME, syslogtag and msg. Page 7/15

 A property-based filter must start with a colon in column 0. This tells rsyslogd that it

 is the new filter type. The colon must be followed by the property name, a comma, the name

 of the compare operation to carry out, another comma and then the value to compare

 against. This value must be quoted. There can be spaces and tabs between the commas.

 Property names and compare operations are case-sensitive, so "msg" works, while "MSG" is

 an invalid property name. In brief, the syntax is as follows:

 :property, [!]compare-operation, "value"

 The following compare-operations are currently supported:

 contains

 Checks if the string provided in value is contained in the property

 isequal

 Compares the "value" string provided and the property contents. These two

 values must be exactly equal to match.

 startswith

 Checks if the value is found exactly at the beginning of the property value

 regex

 Compares the property against the provided regular expression.

 Expression-Based Filters

 See the HTML documentation for this feature.

TEMPLATES

 Every output in rsyslog uses templates - this holds true for files, user messages and so

 on. Templates compatible with the stock syslogd formats are hardcoded into rsyslogd. If no

 template is specified, we use one of these hardcoded templates. Search for "template_" in

 syslogd.c and you will find the hardcoded ones.

 A template consists of a template directive, a name, the actual template text and optional

 options. A sample is:

 $template MyTemplateName,"\7Text %property% some more text\n",<options>

 The "$template" is the template directive. It tells rsyslog that this line contains a tem?

 plate. The backslash is an escape character. For example, \7 rings the bell (this is an

 ASCII value), \n is a new line. The set in rsyslog is a bit restricted currently.

 All text in the template is used literally, except for things within percent signs. These

 are properties and allow you access to the contents of the syslog message. Properties are

 accessed via the property replacer and it can for example pick a substring or do date-spe? Page 8/15

 cific formatting. More on this is the PROPERTY REPLACER section of this manpage.

 To escape:

 % = \%

 \ = \\ --> '\' is used to escape (as in C)

 $template TraditionalFormat,"%timegenerated% %HOSTNAME% %syslogtag%%msg%\n"

 Properties can be accessed by the property replacer (see there for details).

 Please note that templates can also by used to generate selector lines with dynamic file

 names. For example, if you would like to split syslog messages from different hosts to

 different files (one per host), you can define the following template:

 $template DynFile,"/var/log/system-%HOSTNAME%.log"

 This template can then be used when defining an output selector line. It will result in

 something like "/var/log/system-localhost.log"

 Template options

 The <options> part is optional. It carries options influencing the template as whole. See

 details below. Be sure NOT to mistake template options with property options - the later

 ones are processed by the property replacer and apply to a SINGLE property, only (and not

 the whole template).

 Template options are case-insensitive. Currently defined are:

 sql format the string suitable for a SQL statement in MySQL format. This will

 replace single quotes ("'") and the backslash character by their backslash-

 escaped counterpart ("?" and "\") inside each field. Please note that in

 MySQL configuration, the NO_BACKSLASH_ESCAPES mode must be turned off for

 this format to work (this is the default).

 stdsql format the string suitable for a SQL statement that is to be sent to a stan?

 dards-compliant sql server. This will replace single quotes ("'") by two

 single quotes ("''") inside each field. You must use stdsql together with

 MySQL if in MySQL configuration the NO_BACKSLASH_ESCAPES is turned on.

 Either the sql or stdsql option MUST be specified when a template is used for writing to a

 database, otherwise injection might occur. Please note that due to the unfortunate fact

 that several vendors have violated the sql standard and introduced their own escape meth?

 ods, it is impossible to have a single option doing all the work. So you yourself must

 make sure you are using the right format. If you choose the wrong one, you are still vul?

 nerable to sql injection. Page 9/15

 Please note that the database writer *checks* that the sql option is present in the tem?

 plate. If it is not present, the write database action is disabled. This is to guard you

 against accidental forgetting it and then becoming vulnerable to SQL injection. The sql

 option can also be useful with files - especially if you want to import them into a data?

 base on another machine for performance reasons. However, do NOT use it if you do not have

 a real need for it - among others, it takes some toll on the processing time. Not much,

 but on a really busy system you might notice it ;)

 The default template for the write to database action has the sql option set.

 Template examples

 Please note that the samples are split across multiple lines. A template MUST NOT actually

 be split across multiple lines.

 A template that resembles traditional syslogd file output:

 $template TraditionalFormat,"%timegenerated% %HOSTNAME%

 %syslogtag%%msg:::drop-last-lf%\n"

 A template that tells you a little more about the message:

 $template precise,"%syslogpriority%,%syslogfacility%,%timegenerated%,%HOSTNAME%,

 %syslogtag%,%msg%\n"

 A template for RFC 3164 format:

 $template RFC3164fmt,"<%PRI%>%TIMESTAMP% %HOSTNAME% %syslogtag%%msg%"

 A template for the format traditionally used for user messages:

 $template usermsg," XXXX%syslogtag%%msg%\n\r"

 And a template with the traditional wall-message format:

 $template wallmsg,"\r\n\7Message from syslogd@%HOSTNAME% at %timegenerated%"

 A template that can be used for writing to a database (please note the SQL template op?

 tion)

 $template MySQLInsert,"insert iut, message, receivedat values ('%iut%', '%msg:::UP?

 PERCASE%', '%timegenerated:::date-mysql%') into systemevents\r\n", SQL

 NOTE 1: This template is embedded into core application under name StdDBFmt , so

 you don't need to define it.

 NOTE 2: You have to have MySQL module installed to use this template.

OUTPUT CHANNELS

 Output Channels are a new concept first introduced in rsyslog 0.9.0. As of this writing,

 it is most likely that they will be replaced by something different in the future. So if Page 10/15

 you use them, be prepared to change you configuration file syntax when you upgrade to a

 later release.

 Output channels are defined via an $outchannel directive. It's syntax is as follows:

 $outchannel name,file-name,max-size,action-on-max-size

 name is the name of the output channel (not the file), file-name is the file name to be

 written to, max-size the maximum allowed size and action-on-max-size a command to be is?

 sued when the max size is reached. This command always has exactly one parameter. The bi?

 nary is that part of action-on-max-size before the first space, its parameter is every?

 thing behind that space.

 Keep in mind that $outchannel just defines a channel with "name". It does not activate it.

 To do so, you must use a selector line (see below). That selector line includes the chan?

 nel name plus ":omfile:$" in front of it. A sample might be:

 . :omfile:$mychannel

PROPERTY REPLACER

 The property replacer is a core component in rsyslogd's output system. A syslog message

 has a number of well-defined properties (see below). Each of this properties can be ac?

 cessed and manipulated by the property replacer. With it, it is easy to use only part of a

 property value or manipulate the value, e.g. by converting all characters to lower case.

 Accessing Properties

 Syslog message properties are used inside templates. They are accessed by putting them be?

 tween percent signs. Properties can be modified by the property replacer. The full syntax

 is as follows:

 %propname:fromChar:toChar:options%

 propname is the name of the property to access. It is case-sensitive.

 Available Properties

 msg the MSG part of the message (aka "the message" ;))

 rawmsg the message exactly as it was received from the socket. Should be useful for debug?

 ging.

 HOSTNAME

 hostname from the message

 FROMHOST

 hostname of the system the message was received from (in a relay chain, this is the

 system immediately in front of us and not necessarily the original sender) Page 11/15

 syslogtag

 TAG from the message

 programname

 the "static" part of the tag, as defined by BSD syslogd. For example, when TAG is

 "named[12345]", programname is "named".

 PRI PRI part of the message - undecoded (single value)

 PRI-text

 the PRI part of the message in a textual form (e.g. "syslog.info")

 IUT the monitorware InfoUnitType - used when talking to a MonitorWare backend (also for

 phpLogCon)

 syslogfacility

 the facility from the message - in numerical form

 syslogfacility-text

 the facility from the message - in text form

 syslogseverity

 severity from the message - in numerical form

 syslogseverity-text

 severity from the message - in text form

 timegenerated

 timestamp when the message was RECEIVED. Always in high resolution

 timereported

 timestamp from the message. Resolution depends on what was provided in the message

 (in most cases, only seconds)

 TIMESTAMP

 alias for timereported

 PROTOCOL-VERSION

 The contents of the PROTOCOL-VERSION field from IETF draft draft-ietf-syslog-proto?

 col

 STRUCTURED-DATA

 The contents of the STRUCTURED-DATA field from IETF draft draft-ietf-syslog-proto?

 col

 APP-NAME

 The contents of the APP-NAME field from IETF draft draft-ietf-syslog-protocol Page 12/15

 PROCID The contents of the PROCID field from IETF draft draft-ietf-syslog-protocol

 MSGID The contents of the MSGID field from IETF draft draft-ietf-syslog-protocol

 $NOW The current date stamp in the format YYYY-MM-DD

 $YEAR The current year (4-digit)

 $MONTH The current month (2-digit)

 $DAY The current day of the month (2-digit)

 $HOUR The current hour in military (24 hour) time (2-digit)

 $MINUTE

 The current minute (2-digit)

 Properties starting with a $-sign are so-called system properties. These do NOT stem from

 the message but are rather internally-generated.

 Character Positions

 FromChar and toChar are used to build substrings. They specify the offset within the

 string that should be copied. Offset counting starts at 1, so if you need to obtain the

 first 2 characters of the message text, you can use this syntax: "%msg:1:2%". If you do

 not wish to specify from and to, but you want to specify options, you still need to in?

 clude the colons. For example, if you would like to convert the full message text to lower

 case, use "%msg:::lowercase%". If you would like to extract from a position until the end

 of the string, you can place a dollar-sign ("$") in toChar (e.g. %msg:10:$%, which will

 extract from position 10 to the end of the string).

 There is also support for regular expressions. To use them, you need to place a "R" into

 FromChar. This tells rsyslog that a regular expression instead of position-based extrac?

 tion is desired. The actual regular expression must then be provided in toChar. The regu?

 lar expression must be followed by the string "--end". It denotes the end of the regular

 expression and will not become part of it. If you are using regular expressions, the

 property replacer will return the part of the property text that matches the regular ex?

 pression. An example for a property replacer sequence with a regular expression is:

 "%msg:R:.*Sev:. \(.*\) \[.*--end%"

 Also, extraction can be done based on so-called "fields". To do so, place a "F" into From?

 Char. A field in its current definition is anything that is delimited by a delimiter char?

 acter. The delimiter by default is TAB (US-ASCII value 9). However, if can be changed to

 any other US-ASCII character by specifying a comma and the decimal US-ASCII value of the

 delimiter immediately after the "F". For example, to use comma (",") as a delimiter, use Page 13/15

 this field specifier: "F,44". If your syslog data is delimited, this is a quicker way to

 extract than via regular expressions (actually, a *much* quicker way). Field counting

 starts at 1. Field zero is accepted, but will always lead to a "field not found" error.

 The same happens if a field number higher than the number of fields in the property is re?

 quested. The field number must be placed in the "ToChar" parameter. An example where the

 3rd field (delimited by TAB) from the msg property is extracted is as follows:

 "%msg:F:3%". The same example with semicolon as delimiter is "%msg:F,59:3%".

 Please note that the special characters "F" and "R" are case-sensitive. Only upper case

 works, lower case will return an error. There are no white spaces permitted inside the se?

 quence (that will lead to error messages and will NOT provide the intended result).

 Property Options

 Property options are case-insensitive. Currently, the following options are defined:

 uppercase

 convert property to lowercase only

 lowercase

 convert property text to uppercase only

 drop-last-lf

 The last LF in the message (if any), is dropped. Especially useful for PIX.

 date-mysql

 format as mysql date

 date-rfc3164

 format as RFC 3164 date

 date-rfc3339

 format as RFC 3339 date

 escape-cc

 replace control characters (ASCII value 127 and values less then 32) with an escape

 sequence. The sequence is "#<charval>" where charval is the 3-digit decimal value

 of the control character. For example, a tabulator would be replaced by "#009".

 space-cc

 replace control characters by spaces

 drop-cc

 drop control characters - the resulting string will neither contain control charac?

 ters, escape sequences nor any other replacement character like space. Page 14/15

QUEUED OPERATIONS

 Rsyslogd supports queued operations to handle offline outputs (like remote syslogd's or

 database servers being down). When running in queued mode, rsyslogd buffers messages to

 memory and optionally to disk (on an as-needed basis). Queues survive rsyslogd restarts.

 It is highly suggested to use remote forwarding and database writing in queued mode, only.

 To learn more about queued operations, see the HTML documentation.

FILES

 /etc/rsyslog.conf

 Configuration file for rsyslogd

SEE ALSO

 rsyslogd(8), logger(1), syslog(3)

 The complete documentation can be found in the doc folder of the rsyslog distribution or

 online at

 https://www.rsyslog.com/doc/

 Please note that the man page reflects only a subset of the configuration options. Be sure

 to read the HTML documentation for all features and details. This is especially vital if

 you plan to set up a more-then-extremely-simple system.

AUTHORS

 rsyslogd is taken from sysklogd sources, which have been heavily modified by Rainer Ger?

 hards (rgerhards@adiscon.com) and others.

Version 7.2.0 22 October 2012 RSYSLOG.CONF(5)

Page 15/15

