
Linux Ubuntu 22.4.5 Manual Pages on command 'rmid.1'

$ man rmid.1

rmid(1) Remote Method Invocation (RMI) Tools rmid(1)

NAME

 rmid - Starts the activation system daemon that enables objects to be registered

 and activated in a Java Virtual Machine (JVM).

SYNOPSIS

 rmid [options]

 options

 The command-line options. See Options.

DESCRIPTION

 The rmid command starts the activation system daemon. The activation system daemon

 must be started before activatable objects can be either registered with the

 activation system or activated in a JVM. For details on how to write programs that

 use activatable objects, the Using Activation tutorial at

 http://docs.oracle.com/javase/8/docs/technotes/guides/rmi/activation/overview.html

 Start the daemon by executing the rmid command and specifying a security policy

 file, as follows:

 rmid -J-Djava.security.policy=rmid.policy

 When you run Oracle?s implementation of the rmid command, by default you must

 specify a security policy file so that the rmid command can verify whether or not

 the information in each ActivationGroupDesc is allowed to be used to start a JVM

 for an activation group. Specifically, the command and options specified by the

 CommandEnvironment and any properties passed to an ActivationGroupDesc constructor
Page 1/7

 must now be explicitly allowed in the security policy file for the rmid command.

 The value of the sun.rmi.activation.execPolicy property dictates the policy that

 the rmid command uses to determine whether or not the information in an

 ActivationGroupDesc can be used to start a JVM for an activation group. For more

 information see the description of the -J-Dsun.rmi.activation.execPolicy=policy

 option.

 Executing the rmid command starts the Activator and an internal registry on the

 default port1098 and binds an ActivationSystem to the name

 java.rmi.activation.ActivationSystem in this internal registry.

 To specify an alternate port for the registry, you must specify the -port option

 when you execute the rmid command. For example, the following command starts the

 activation system daemon and a registry on the registry's default port, 1099.

 rmid -J-Djava.security.policy=rmid.policy -port 1099

START RMID ON DEMAND

 An alternative to starting rmid from the command line is to configure inetd (Oracle

 Solaris) or xinetd (Linux) to start rmid on demand.

 When RMID starts, it attempts to obtain an inherited channel (inherited from

 inetd/xinetd) by calling the System.inheritedChannel method. If the inherited

 channel is null or not an instance of java.nio.channels.ServerSocketChannel, then

 RMID assumes that it was not started by inetd/xinetd, and it starts as previously

 described.

 If the inherited channel is a ServerSocketChannel instance, then RMID uses the

 java.net.ServerSocket obtained from the ServerSocketChannel as the server socket

 that accepts requests for the remote objects it exports: The registry in which the

 java.rmi.activation.ActivationSystem is bound and the java.rmi.activation.Activator

 remote object. In this mode, RMID behaves the same as when it is started from the

 command line, except in the following cases:

 ? Output printed to System.err is redirected to a file. This file is located in the

 directory specified by the java.io.tmpdir system property (typically /var/tmp or

 /tmp) with the prefix rmid-err and the suffix tmp.

 ? The -port option is not allowed. If this option is specified, then RMID exits

 with an error message.

 ? The -log option is required. If this option is not specified, then RMID exits Page 2/7

 with an error message

 See the man pages for inetd (Oracle Solaris) or xinetd (Linux) for details on how

 to configure services to be started on demand.

OPTIONS

 -Coption

 Specifies an option that is passed as a command-line argument to each child

 process (activation group) of the rmid command when that process is created.

 For example, you could pass a property to each virtual machine spawned by

 the activation system daemon:

 rmid -C-Dsome.property=value

 This ability to pass command-line arguments to child processes can be useful

 for debugging. For example, the following command enables server-call

 logging in all child JVMs.

 rmid -C-Djava.rmi.server.logCalls=true

 -Joption

 Specifies an option that is passed to the Java interpreter running RMID. For

 example, to specify that the rmid command use a policy file named

 rmid.policy, the -J option can be used to define the java.security.policy

 property on the rmid command line, for example:

 rmid -J-Djava.security.policy-rmid.policy

 -J-Dsun.rmi.activation.execPolicy=policy

 Specifies the policy that RMID employs to check commands and command-line

 options used to start the JVM in which an activation group runs. Please note

 that this option exists only in Oracle's implementation of the Java RMI

 activation daemon. If this property is not specified on the command line,

 then the result is the same as though -J-

 Dsun.rmi.activation.execPolicy=default were specified. The possible values

 of policy can be default, policyClassName, or none.

 ? default

 The default or unspecified value execPolicy allows the rmid command to

 execute commands with specific command-line options only when the rmid

 command was granted permission to execute those commands and options in

 the security policy file that the rmid command uses. Only the default Page 3/7

 activation group implementation can be used with the default execution

 policy.

 The rmid command starts a JVM for an activation group with the information

 in the group's registered activation group descriptor, an

 ActivationGroupDesc. The group descriptor specifies an optional

 ActivationGroupDesc.CommandEnvironment that includes the command to

 execute to start the activation group and any command-line options to be

 added to the command line. By default, the rmid command uses the java

 command found in java.home. The group descriptor also contains properties

 overrides that are added to the command line as options defined as:

 -D<property>=<value>.The com.sun.rmi.rmid.ExecPermission permission grants

 the rmid command permission to execute a command that is specified in the

 group descriptor's CommandEnvironment to start an activation group. The

 com.sun.rmi.rmid.ExecOptionPermission permission enables the rmid command

 to use command-line options, specified as properties overrides in the

 group descriptor or as options in the CommandEnvironment when starting the

 activation group.When granting the rmid command permission to execute

 various commands and options, the permissions ExecPermission and

 ExecOptionPermission must be granted to all code sources.

 ExecPermission

 The ExecPermission class represents permission for the rmid command to

 execute a specific command to start an activation group.

 Syntax: The name of an ExecPermission is the path name of a command to

 grant the rmid command permission to execute. A path name that ends in a

 slash (/) and an asterisk (*) indicates that all of the files contained in

 that directory where slash is the file-separator character,

 File.separatorChar. A path name that ends in a slash (/) and a minus sign

 (-) indicates all files and subdirectories contained in that directory

 (recursively). A path name that consists of the special token <<ALL

 FILES>> matches any file.

 A path name that consists of an asterisk (*) indicates all the files in

 the current directory. A path name that consists of a minus sign (-)

 indicates all the files in the current directory and (recursively) all Page 4/7

 files and subdirectories contained in the current directory.

 ExecOptionPermission

 The ExecOptionPermission class represents permission for the rmid command

 to use a specific command-line option when starting an activation group.

 The name of an ExecOptionPermission is the value of a command-line option.

 Syntax: Options support a limited wild card scheme. An asterisk signifies

 a wild card match, and it can appear as the option name itself (matches

 any option), or an asterisk (*) can appear at the end of the option name

 only when the asterisk (*) follows a dot (.) or an equals sign (=).

 For example: * or -Dmydir.* or -Da.b.c=* is valid, but *mydir or -Da*b or

 ab* is not.

 Policy file for rmid

 When you grant the rmid command permission to execute various commands and

 options, the permissions ExecPermission and ExecOptionPermission must be

 granted to all code sources (universally). It is safe to grant these

 permissions universally because only the rmid command checks these

 permissions.

 An example policy file that grants various execute permissions to the rmid

 command is:

 grant {

 permission com.sun.rmi.rmid.ExecPermission

 "/files/apps/java/jdk1.7.0/solaris/bin/java";

 permission com.sun.rmi.rmid.ExecPermission

 "/files/apps/rmidcmds/*";

 permission com.sun.rmi.rmid.ExecOptionPermission

 "-Djava.security.policy=/files/policies/group.policy";

 permission com.sun.rmi.rmid.ExecOptionPermission

 "-Djava.security.debug=*";

 permission com.sun.rmi.rmid.ExecOptionPermission

 "-Dsun.rmi.*";

 };

 The first permission granted allows the rmid tcommand o execute the 1.7.0

 release of the java command, specified by its explicit path name. By Page 5/7

 default, the version of the java command found in java.home is used (the

 same one that the rmid command uses), and does not need to be specified in

 the policy file. The second permission allows the rmid command to execute

 any command in the directory /files/apps/rmidcmds.

 The third permission granted, an ExecOptionPermission, allows the rmid

 command to start an activation group that defines the security policy file

 to be /files/policies/group.policy. The next permission allows the

 java.security.debug property to be used by an activation group. The last

 permission allows any property in the sun.rmi property name hierarchy to

 be used by activation groups.

 To start the rmid command with a policy file, the java.security.policy

 property needs to be specified on the rmid command line, for example:

 rmid -J-Djava.security.policy=rmid.policy.

 ? <policyClassName>

 If the default behavior is not flexible enough, then an administrator can

 provide, when starting the rmid command, the name of a class whose

 checkExecCommand method is executed to check commands to be executed by

 the rmid command.

 The policyClassName specifies a public class with a public, no-argument

 constructor and an implementation of the following checkExecCommand

 method:

 public void checkExecCommand(ActivationGroupDesc desc, String[] command)

 throws SecurityException;

 Before starting an activation group, the rmid command calls the policy's

 checkExecCommand method and passes to it the activation group descriptor

 and an array that contains the complete command to start the activation

 group. If the checkExecCommand throws a SecurityException, then the rmid

 command does not start the activation group and an ActivationException is

 thrown to the caller attempting to activate the object.

 ? none

 If the sun.rmi.activation.execPolicy property value is none, then the rmid

 command does not perform any validation of commands to start activation

 groups. Page 6/7

 -log dir

 Specifies the name of the directory the activation system daemon uses to

 write its database and associated information. The log directory defaults to

 creating a log, in the directory in which the rmid command was executed.

 -port port

 Specifies the port the registry uses. The activation system daemon binds the

 ActivationSystem, with the name java.rmi.activation.ActivationSystem, in

 this registry. The ActivationSystem on the local machine can be obtained

 using the following Naming.lookup method call:

 import java.rmi.*;

 import java.rmi.activation.*;

 ActivationSystem system; system = (ActivationSystem)

 Naming.lookup("//:port/java.rmi.activation.ActivationSystem");

 -stop

 Stops the current invocation of the rmid command for a port specified by the

 -port option. If no port is specified, then this option stops the rmid

 invocation running on port 1098.

ENVIRONMENT VARIABLES

 CLASSPATH

 Used to provide the system a path to user-defined classes. Directories are

 separated by colons, for example: .:/usr/local/java/classes.

SEE ALSO

 ? java(1)

 ? Setting the Class Path

JDK 8 21 November 2013 rmid(1)

Page 7/7

