
Rocky Enterprise Linux 9.2 Manual Pages on command 'rksh.1'

$ man rksh.1

KSH(1) General Commands Manual KSH(1)

NAME

 ksh, rksh - KornShell, a standard/restricted command and programming language

SYNOPSIS

 ksh [?abcefhiklmnprstuvxBCDEGH] [?o option] ... [-] [arg ...]

 rksh [?abcefhiklmnpstuvxBCDEGH] [?o option] ... [-] [arg ...]

DESCRIPTION

 Ksh is a command and programming language that executes commands read from a terminal or a

 file. Rksh is a restricted version of the command interpreter ksh; it is used to set up

 login names and execution environments whose capabilities are more controlled than those

 of the standard shell. See Invocation below for the meaning of arguments to the shell.

 Definitions.

 A metacharacter is one of the following characters:

 ; & () | < > new-line space tab

 A blank is a tab or a space. An identifier is a sequence of letters, digits, or under?

 scores starting with a letter or underscore. Identifiers are used as components of vari?

 able names. A vname is a sequence of one or more identifiers separated by a . and option?

 ally preceded by a .. Vnames are used as function and variable names. A word is a se?

 quence of characters from the character set defined by the current locale, excluding non-

 quoted metacharacters.

 A command is a sequence of characters in the syntax of the shell language. The shell

 reads each command and carries out the desired action either directly or by invoking sepa?

 rate utilities. A built-in command is a command that is carried out by the shell itself Page 1/81

 without creating a separate process. Some commands are built-in purely for convenience

 and are not documented here. Built-ins that cause side effects in the shell environment

 and built-ins that are found before performing a path search (see Execution below) are

 documented here. For historical reasons, some of these built-ins behave differently than

 other built-ins and are called special built-ins.

 Commands.

 A simple-command is a list of variable assignments (see Variable Assignments below) or a

 sequence of blank separated words which may be preceded by a list of variable assignments

 (see Environment below). The first word specifies the name of the command to be executed.

 Except as specified below, the remaining words are passed as arguments to the invoked com?

 mand. The command name is passed as argument 0 (see exec(2)). The value of a simple-com?

 mand is its exit status; 0-255 if it terminates normally; 256+signum if it terminates ab?

 normally (the name of the signal corresponding to the exit status can be obtained via the

 -l option of the kill built-in utility).

 A pipeline is a sequence of one or more commands separated by |. The standard output of

 each command but the last is connected by a pipe(2) to the standard input of the next com?

 mand. Each command, except possibly the last, is run as a separate process; the shell

 waits for the last command to terminate. The exit status of a pipeline is the exit status

 of the last command unless the pipefail option is enabled. Each pipeline can be preceded

 by the reserved word ! which causes the exit status of the pipeline to become 0 if the

 exit status of the last command is non-zero, and 1 if the exit status of the last command

 is 0.

 A list is a sequence of one or more pipelines separated by ;, &, |&, &&, or ||, and op?

 tionally terminated by ;, &, or |&. Of these five symbols, ;, &, and |& have equal prece?

 dence, which is lower than that of && and ||. The symbols && and || also have equal

 precedence. A semicolon (;) causes sequential execution of the preceding pipeline; an am?

 persand (&) causes asynchronous execution of the preceding pipeline (i.e., the shell does

 not wait for that pipeline to finish). The symbol |& causes asynchronous execution of the

 preceding pipeline with a two-way pipe established to the parent shell; the standard input

 and output of the spawned pipeline can be written to and read from by the parent shell by

 applying the redirection operators <& and >& with arg p to commands and by using -p option

 of the built-in commands read and print described later. The symbol && (||) causes the

 list following it to be executed only if the preceding pipeline returns a zero (non-zero) Page 2/81

 value. One or more new-lines may appear in a list instead of a semicolon, to delimit a

 command. The first item of the first pipeline of a list that is a simple command not be?

 ginning with a redirection, and not occurring within a while, until, or if list, can be

 preceded by a semicolon. This semicolon is ignored unless the showme option is enabled as

 described with the set built-in below.

 A command is either a simple-command or one of the following. Unless otherwise stated,

 the value returned by a command is that of the last simple-command executed in the com?

 mand.

 for vname [in word ...] ;do list ;done

 Each time a for command is executed, vname is set to the next word taken from the

 in word list. If in word ... is omitted, then the for command executes the do

 list once for each positional parameter that is set starting from 1 (see Parameter

 Expansion below). Execution ends when there are no more words in the list.

 for (([expr1] ; [expr2] ; [expr3])) ;do list ;done

 The arithmetic expression expr1 is evaluated first (see Arithmetic Evaluation be?

 low). The arithmetic expression expr2 is repeatedly evaluated until it evaluates

 to zero and when non-zero, list is executed and the arithmetic expression expr3

 evaluated. If any expression is omitted, then it behaves as if it evaluated to 1.

 select vname [in word ...] ;do list ;done

 A select command prints on standard error (file descriptor 2) the set of words,

 each preceded by a number. If in word ... is omitted, then the positional parame?

 ters starting from 1 are used instead (see Parameter Expansion below). The PS3

 prompt is printed and a line is read from the standard input. If this line con?

 sists of the number of one of the listed words, then the value of the variable

 vname is set to the word corresponding to this number. If this line is empty, the

 selection list is printed again. Otherwise the value of the variable vname is set

 to null. The contents of the line read from standard input is saved in the vari?

 able REPLY. The list is executed for each selection until a break or end-of-file

 is encountered. If the REPLY variable is set to null by the execution of list,

 then the selection list is printed before displaying the PS3 prompt for the next

 selection.

 case word in [[(]pattern [| pattern] ...) list ;;] ... esac

 A case command executes the list associated with the first pattern that matches Page 3/81

 word. The form of the patterns is the same as that used for pathname expansion

 (see Pathname Expansion below). The ;; operator causes execution of case to termi?

 nate. If ;& is used in place of ;; the next subsequent list, if any, is executed.

 if list ;then list [;elif list ;then list] ... [;else list] ;fi

 The list following if is executed and, if it returns a zero exit status, the list

 following the first then is executed. Otherwise, the list following elif is exe?

 cuted and, if its value is zero, the list following the next then is executed.

 Failing each successive elif list, the else list is executed. If the if list has

 non-zero exit status and there is no else list, then the if command returns a zero

 exit status.

 while list ;do list ;done

 until list ;do list ;done

 A while command repeatedly executes the while list and, if the exit status of the

 last command in the list is zero, executes the do list; otherwise the loop termi?

 nates. If no commands in the do list are executed, then the while command returns

 a zero exit status; until may be used in place of while to negate the loop termina?

 tion test.

 ((expression))

 The expression is evaluated using the rules for arithmetic evaluation described be?

 low. If the value of the arithmetic expression is non-zero, the exit status is 0,

 otherwise the exit status is 1.

 (list)

 Execute list in a separate environment. Note, that if two adjacent open parenthe?

 ses are needed for nesting, a space must be inserted to avoid evaluation as an

 arithmetic command as described above.

 { list;}

 list is simply executed. Note that unlike the metacharacters (and), { and } are

 reserved words and must occur at the beginning of a line or after a ; in order to

 be recognized.

 [[expression]]

 Evaluates expression and returns a zero exit status when expression is true. See

 Conditional Expressions below, for a description of expression.

 function varname { list ;} Page 4/81

 varname () { list ;}

 Define a function which is referenced by varname. A function whose varname con?

 tains a . is called a discipline function and the portion of the varname preceding

 the last . must refer to an existing variable. The body of the function is the

 list of commands between { and }. A function defined with the function varname

 syntax can also be used as an argument to the . special built-in command to get

 the equivalent behavior as if the varname() syntax were used to define it. (See

 Functions below.)

 namespace identifier { list ;}

 Defines or uses the name space identifier and runs the commands in list in this

 name space. (See Name Spaces below.)

 & [name [arg...]]

 Causes subsequent list commands terminated by & to be placed in the background job

 pool name. If name is omitted a default unnamed pool is used. Commands in a named

 background pool may be executed remotely.

 time [pipeline]

 If pipeline is omitted the user and system time for the current shell and completed

 child processes is printed on standard error. Otherwise, pipeline is executed and

 the elapsed time as well as the user and system time are printed on standard error.

 The TIMEFORMAT variable may be set to a format string that specifies how the timing

 information should be displayed. See Shell Variables below for a description of

 the TIMEFORMAT variable.

 The following reserved words are recognized as reserved only when they are the first word

 of a command and are not quoted:

 if then else elif fi case esac for while until do done { } function select time [[]] !

 Variable Assignments.

 One or more variable assignments can start a simple command or can be arguments to the

 typeset, enum, export, or readonly special built-in commands as well as to other declara?

 tion commands created as types. The syntax for an assignment is of the form:

 varname=word

 varname[word]=word

 No space is permitted between varname and the = or between = and word.

 varname=(assign_list) Page 5/81

 No space is permitted between varname and the =. The variable varname is unset be?

 fore the assignment. An assign_list can be one of the following:

 word ...

 Indexed array assignment.

 [word]=word ...

 Associative array assignment. If preceded by typeset -a this will

 create an indexed array instead.

 assignment ...

 Compound variable assignment. This creates a compound variable var?

 name with subvariables of the form varname.name, where name is the

 name portion of assignment. The value of varname will contain all

 the assignment elements. Additional assignments made to subvari?

 ables of varname will also be displayed as part of the value of var?

 name. If no assignments are specified, varname will be a compound

 variable allowing subsequence child elements to be defined.

 typeset [options] assignment ...

 Nested variable assignment. Multiple assignments can be specified

 by separating each of them with a ;. The previous value is unset

 before the assignment. Other declaration commands such as readonly,

 enum, and other declaration commands can be used in place of type?

 set.

 . filename

 Include the assignment commands contained in filename.

 In addition, a += can be used in place of the = to signify adding to or appending to the

 previous value. When += is applied to an arithmetic type, word is evaluated as an arith?

 metic expression and added to the current value. When applied to a string variable, the

 value defined by word is appended to the value. For compound assignments, the previous

 value is not unset and the new values are appended to the current ones provided that the

 types are compatible.

 The right hand side of a variable assignment undergoes all the expansion listed below ex?

 cept word splitting, brace expansion, and pathname expansion. When the left hand side is

 an assignment is a compound variable and the right hand is the name of a compound vari?

 able, the compound variable on the right will be copied or appended to the compound vari? Page 6/81

 able on the left.

 Comments.

 A word beginning with # causes that word and all the following characters up to a new-line

 to be ignored.

 Aliasing.

 The first word of each command is replaced by the text of an alias if an alias for this

 word has been defined. An alias name consists of any number of characters excluding

 metacharacters, quoting characters, file expansion characters, parameter expansion and

 command substitution characters, the characters / and =. The replacement string can con?

 tain any valid shell script including the metacharacters listed above. The first word of

 each command in the replaced text, other than any that are in the process of being re?

 placed, will be tested for aliases. If the last character of the alias value is a blank

 then the word following the alias will also be checked for alias substitution. Aliases

 can be used to redefine built-in commands but cannot be used to redefine the reserved

 words listed above. Aliases can be created and listed with the alias command and can be

 removed with the unalias command.

 Aliasing is performed when scripts are read, not while they are executed. Therefore, for

 an alias to take effect, the alias definition command has to be executed before the com?

 mand which references the alias is read.

 The following aliases are automatically preset when the shell is invoked as an interactive

 shell, unless invoked in POSIX compliance mode (see Invocation below). Preset aliases can

 be unset or redefined.

 history=?hist -l?

 r=?hist -s?

 Tilde Expansion.

 After alias substitution is performed, each word is checked to see if it begins with an

 unquoted ?. For tilde expansion, word also refers to the word portion of parameter expan?

 sion (see Parameter Expansion below). If a word is preceded by a tilde, then it is

 checked up to a / to see if it matches a user name in the password database (see getpw?

 name(3)). If a match is found, the ? and the matched login name are replaced by the login

 directory of the matched user. If no match is found, the original text is left unchanged.

 A ? by itself, or in front of a /, is replaced by $HOME, unless the HOME variable is un?

 set, in which case the current user's home directory as configured in the operating system Page 7/81

 is used. A ? followed by a + or - is replaced by $PWD or $OLDPWD respectively.

 In addition, when expanding a variable assignment (see Variable Assignments above), tilde

 expansion is attempted when the value of the assignment begins with a ?, and when a ? ap?

 pears after a :. A : also terminates a user name following a ?.

 The tilde expansion mechanism may be extended or modified by defining one of the disci?

 pline functions .sh.tilde.set or .sh.tilde.get (see Functions and Discipline Functions be?

 low). If either exists, then upon encountering a tilde word to expand, that function is

 called with the tilde word assigned to either .sh.value (for the .sh.tilde.set function)

 or .sh.tilde (for the .sh.tilde.get function). Performing tilde expansion within a disci?

 pline function will not recursively call that function, but default tilde expansion re?

 mains active, so literal tildes should still be quoted where required. Either function

 may assign a replacement string to .sh.value. If this value is non-empty and does not

 start with a ?, it replaces the default tilde expansion when the function terminates.

 Otherwise, the tilde expansion is left unchanged.

 Command Substitution.

 The standard output from a command list enclosed in parentheses preceded by a dollar sign

 ($(list)), or in a brace group preceded by a dollar sign (${ list;}), or in a pair of

 grave accents (``) may be used as part or all of a word; trailing new-lines are removed.

 In the second case, the { and } are treated as a reserved words so that { must be followed

 by a blank and } must appear at the beginning of the line or follow a ;. In the third

 (obsolete) form, the string between the quotes is processed for special quoting characters

 before the command is executed (see Quoting below). The command substitution $(cat file)

 can be replaced by the equivalent but faster $(<file). The command substitution $(n<#)

 will expand to the current byte offset for file descriptor n. Except for the second form,

 the command list is run in a subshell so that no side effects are possible. For the sec?

 ond form, the final } will be recognized as a reserved word after any token.

 Arithmetic Expansion.

 An arithmetic expression enclosed in double parentheses preceded by a dollar sign ($(())

) is replaced by the value of the arithmetic expression within the double parentheses.

 Process Substitution.

 Each command argument of the form <(list) or >(list) will run process list asynchronously

 connected to some file in /dev/fd if this directory exists, or else a fifo a temporary di?

 rectory. The name of this file will become the argument to the command. If the form with Page 8/81

 > is selected then writing on this file will provide input for list. If < is used, then

 the file passed as an argument will contain the output of the list process. For example,

 paste <(cut -f1 file1) <(cut -f3 file2) | tee >(process1) >(process2)

 cuts fields 1 and 3 from the files file1 and file2 respectively, pastes the results to?

 gether, and sends it to the processes process1 and process2, as well as putting it onto

 the standard output. Note that the file, which is passed as an argument to the command,

 is a UNIX pipe(2) so programs that expect to lseek(2) on the file will not work.

 Process substitution of the form <(list) can also be used with the < redirection operator

 which causes the output of list to be standard input or the input for whatever file de?

 scriptor is specified.

 Parameter Expansion.

 A parameter is a variable, one or more digits, or any of the characters *, @, #, ?, -, $,

 and !. A variable is denoted by a vname. To create a variable whose vname contains a .,

 a variable whose vname consists of everything before the last . must already exist. A

 variable has a value and zero or more attributes. Variables can be assigned values and

 attributes by using the typeset special built-in command. The attributes supported by the

 shell are described later with the typeset special built-in command. Exported variables

 pass their attributes to the environment so that a newly invoked ksh that is a child or

 exec'd process of the current shell will automatically import them, unless the posix shell

 option is on.

 The shell supports both indexed and associative arrays. An element of an array variable

 is referenced by a subscript. A subscript for an indexed array is denoted by an arith?

 metic expression (see Arithmetic Evaluation below) between a [and a]. To assign values

 to an indexed array, use vname=(value ...) or set -A vname value The value of all

 non-negative subscripts must be in the range of 0 through 4,194,303. A negative subscript

 is treated as an offset from the maximum current index +1 so that -1 refers to the last

 element. Indexed arrays can be declared with the -a option to typeset. Indexed arrays

 need not be declared. Any reference to a variable with a valid subscript is legal and an

 array will be created if necessary.

 An associative array is created with the -A option to typeset. A subscript for an asso?

 ciative array is denoted by a string enclosed between [and].

 Referencing any array without a subscript is equivalent to referencing the array with sub?

 script 0. Page 9/81

 The value of a variable may be assigned by writing:

 vname=value [vname=value] ...

 or

 vname[subscript]=value [vname[subscript]=value] ...

 Note that no space is allowed before or after the =.

 Attributes assigned by the typeset special built-in command apply to all elements of the

 array. An array element can be a simple variable, a compound variable or an array vari?

 able. An element of an indexed array can be either an indexed array or an associative ar?

 ray. An element of an associative array can also be either. To refer to an array element

 that is part of an array element, concatenate the subscript in brackets. For example, to

 refer to the foobar element of an associative array that is defined as the third element

 of the indexed array, use ${vname[3][foobar]}

 A nameref is a variable that is a reference to another variable. A nameref is created

 with the -n attribute of typeset. The value of the variable at the time of the typeset

 command becomes the variable that will be referenced whenever the nameref variable is

 used. The name of a nameref cannot contain a .. When a variable or function name con?

 tains a ., and the portion of the name up to the first . matches the name of a nameref,

 the variable referred to is obtained by replacing the nameref portion with the name of the

 variable referenced by the nameref. If a nameref is used as the index of a for loop, a

 name reference is established for each item in the list. A nameref provides a convenient

 way to refer to the variable inside a function whose name is passed as an argument to a

 function. For example, if the name of a variable is passed as the first argument to a

 function, the command

 typeset -n var=$1

 inside the function causes references and assignments to var to be references and assign?

 ments to the variable whose name has been passed to the function.

 If any of the floating point attributes, -E, -F, or -X, or the integer attribute, -i, is

 set for vname, then the value is subject to arithmetic evaluation as described below.

 Positional parameters, parameters denoted by a number, may be assigned values with the set

 special built-in command. Parameter $0 is set from argument zero when the shell is in?

 voked.

 The character $ is used to introduce substitutable parameters.

 ${parameter} Page 10/81

 The shell reads all the characters from ${ to the matching } as part of the same

 word even if it contains braces or metacharacters. The value, if any, of the pa?

 rameter is substituted. The braces are required when parameter is followed by a

 letter, digit, or underscore that is not to be interpreted as part of its name,

 when the variable name contains a .. The braces are also required when a variable

 is subscripted unless it is part of an Arithmetic Expression or a Conditional Ex?

 pression. If parameter is one or more digits then it is a positional parameter. A

 positional parameter of more than one digit must be enclosed in braces. If parame?

 ter is * or @, then all the positional parameters, starting with $1, are substi?

 tuted (separated by a field separator character). If an array vname with last sub?

 script * @, or for indexed arrays of the form sub1 .. sub2. is used, then the

 value for each of the elements between sub1 and sub2 inclusive (or all elements for

 * and @) is substituted, separated by the first character of the value of IFS.

 ${#parameter}

 If parameter is * or @, the number of positional parameters is substituted. Other?

 wise, the length of the value of the parameter is substituted.

 ${#vname[*]}

 ${#vname[@]}

 The number of elements in the array vname is substituted.

 ${@vname}

 Expands to the type name (See Type Variables below) or attributes of the variable

 referred to by vname.

 ${!vname}

 Expands to the name of the variable referred to by vname. This will be vname ex?

 cept when vname is a name reference.

 ${!vname[subscript]}

 Expands to name of the subscript unless subscript is *, @. or of the form sub1 ..

 sub2. When subscript is *, the list of array subscripts for vname is generated.

 For a variable that is not an array, the value is 0 if the variable is set. Other?

 wise it is null. When subscript is @, same as above, except that when used in dou?

 ble quotes, each array subscript yields a separate argument. When subscript is of

 the form sub1 .. sub2 it expands to the list of subscripts between sub1 and sub2

 inclusive using the same quoting rules as @. Page 11/81

 ${!prefix@}

 ${!prefix*}

 These both expand to the names of the variables whose names begin with prefix. The

 expansions otherwise work like $@ and $*, respectively (see under Quoting below).

 ${parameter:-word}

 If parameter is set and is non-null then substitute its value; otherwise substitute

 word.

 ${parameter:=word}

 If parameter is not set or is null then set it to word; the value of the parameter

 is then substituted. Positional parameters may not be assigned to in this way.

 ${parameter:?word}

 If parameter is set and is non-null then substitute its value; otherwise, print

 word and exit from the shell (if not interactive). If word is omitted then a stan?

 dard message is printed.

 ${parameter:+word}

 If parameter is set and is non-null then substitute word; otherwise substitute

 nothing.

 In the above, word is not evaluated unless it is to be used as the substituted string, so

 that, in the following example, pwd is executed only if d is not set or is null:

 print ${d:-$(pwd)}

 If the colon (:) is omitted from the above expressions, then the shell only checks

 whether parameter is set or not.

 ${parameter:offset:length}

 ${parameter:offset}

 Expands to the portion of the value of parameter starting at the character (count?

 ing from 0) determined by expanding offset as an arithmetic expression and consist?

 ing of the number of characters determined by the arithmetic expression defined by

 length. In the second form, the remainder of the value is used. If A negative

 offset counts backwards from the end of parameter. Note that one or more blanks is

 required in front of a minus sign to prevent the shell from interpreting the opera?

 tor as :-. If parameter is * or @, or is an array name indexed by * or @, then

 offset and length refer to the array index and number of elements respectively. A

 negative offset is taken relative to one greater than the highest subscript for in? Page 12/81

 dexed arrays. The order for associative arrays is unspecified.

 ${parameter#pattern}

 ${parameter##pattern}

 If the shell pattern matches the beginning of the value of parameter, then the

 value of this expansion is the value of the parameter with the matched portion

 deleted; otherwise the value of this parameter is substituted. In the first form

 the smallest matching pattern is deleted and in the second form the largest match?

 ing pattern is deleted. When parameter is @, *, or an array variable with sub?

 script @ or *, the substring operation is applied to each element in turn.

 ${parameter%pattern}

 ${parameter%%pattern}

 If the shell pattern matches the end of the value of parameter, then the value of

 this expansion is the value of the parameter with the matched part deleted; other?

 wise substitute the value of parameter. In the first form the smallest matching

 pattern is deleted and in the second form the largest matching pattern is deleted.

 When parameter is @, *, or an array variable with subscript @ or *, the substring

 operation is applied to each element in turn.

 ${parameter/pattern/string}

 ${parameter//pattern/string}

 ${parameter/#pattern/string}

 ${parameter/%pattern/string}

 Expands parameter and replaces the longest match of pattern with the given string.

 Each occurrence of \n in string is replaced by the portion of parameter that

 matches the n-th subpattern. In the first form, only the first occurrence of pat?

 tern is replaced. In the second form, each match for pattern is replaced by the

 given string. The third form restricts the pattern match to the beginning of the

 string while the fourth form restricts the pattern match to the end of the string.

 When string is null, the pattern will be deleted and the / in front of string may

 be omitted. When parameter is @, *, or an array variable with subscript @ or *,

 the substitution operation is applied to each element in turn. In this case, the

 string portion of word will be re-evaluated for each element.

 Shell Variables.

 The following parameters are automatically set by the shell: Page 13/81

 # The number of positional parameters in decimal.

 - Options supplied to the shell on invocation or by the set command.

 ? The exit status returned by the last executed command. Its meaning depends

 on the command or function that defines it, but there are conventions that

 other commands often depend on: zero typically means 'success' or 'true',

 one typically means 'non-success' or 'false', and a value greater than one

 typically indicates some kind of error. Only the 8 least significant bits of

 $? (values 0 to 255) are preserved when the exit status is passed on to a

 parent process, but within the same (sub)shell environment, it is a signed

 integer value with a range of possible values as shown by the commands get?

 conf INT_MIN and getconf INT_MAX. Shell functions that run in the current

 environment may return status values in this range.

 $ The process ID of the main shell process. Note that this value will not

 change in a subshell, even if the subshell runs in a different process. See

 also .sh.pid.

 _ Initially, the value of _ is an absolute pathname of the shell or script be?

 ing executed as passed in the environment. Subsequently it is assigned the

 last argument of the previous command. This parameter is not set for com?

 mands which are asynchronous. This parameter is also used to hold the name

 of the matching MAIL file when checking for mail. While defining a compound

 variable or a type, _ is initialized as a reference to the compound variable

 or type. When a discipline function is invoked, _ is initialized as a ref?

 erence to the variable associated with the call to this function. Finally

 when _ is used as the name of the first variable of a type definition, the

 new type is derived from the type of the first variable. (See Type Variables

 below.)

 ! The process id or the pool name and job number of the last background com?

 mand invoked or the most recent job put in the background with the bg built-

 in command. Background jobs started in a named pool will be in the form

 pool.number where pool is the pool name and number is the job number within

 that pool.

 .sh.command

 When processing a DEBUG trap, this variable contains the current command Page 14/81

 line that is about to run. The value is in the same format as the output

 generated by the xtrace option (minus the preceding PS4 prompt).

 .sh.edchar

 This variable contains the value of the keyboard character (or sequence of

 characters if the first character is an ESC, ASCII 033) that has been en?

 tered when processing a KEYBD trap (see Key Bindings below). If the value

 is changed as part of the trap action, then the new value replaces the key

 (or key sequence) that caused the trap.

 .sh.edcol

 The character position of the cursor at the time of the most recent KEYBD

 trap.

 .sh.edmode

 The value is set to ESC when processing a KEYBD trap while in vi insert

 mode. (See Vi Editing Mode below.) Otherwise, .sh.edmode is null when

 processing a KEYBD trap.

 .sh.edtext

 The characters in the input buffer at the time of the most recent KEYBD

 trap. The value is null when not processing a KEYBD trap.

 .sh.file

 The pathname of the file that contains the current command.

 .sh.fun

 The name of the current function that is being executed.

 .sh.level

 Set to the current function depth. This can be changed inside a DEBUG trap

 and will set the context to the specified level.

 .sh.lineno

 Set during a DEBUG trap to the line number for the caller of each function.

 .sh.match

 An indexed array which stores the most recent match and subpattern matches

 after conditional pattern matches that match and after variables expansions

 using the operators #, %, or /. The 0-th element stores the complete match

 and the i-th. element stores the i-th submatch. The .sh.match variable be?

 comes unset when the variable that has expanded is assigned a new value. Page 15/81

 .sh.math

 Used for defining arithmetic functions (see Arithmetic Evaluation below) and

 stores the list of user defined arithmetic functions.

 .sh.name

 Set to the name of the variable at the time that a discipline function is

 invoked.

 .sh.subscript

 Set to the name subscript of the variable at the time that a discipline

 function is invoked.

 .sh.subshell

 The current depth for subshells and command substitution.

 .sh.pid

 Set to the process ID of the current shell. This is distinct from $$ as in

 forked subshells this is set to the process ID of the subshell instead of

 the parent shell's process ID. In virtual subshells .sh.pid retains its

 previous value.

 .sh.value

 Set to the value of the variable at the time that the set or append disci?

 pline function is invoked. When a user defined arithmetic function is in?

 voked, the value of .sh.value is saved and .sh.value is set to long double

 precision floating point. .sh.value is restored when the function returns.

 .sh.version

 Set to a value that identifies the version of this shell.

 KSH_VERSION

 A name reference to .sh.version.

 LINENO The current line number within the script or function being executed.

 OLDPWD The previous working directory set by the cd command.

 OPTARG The value of the last option argument processed by the getopts built-in com?

 mand.

 OPTIND The index of the last option argument processed by the getopts built-in com?

 mand.

 PPID The process id of the parent of the shell.

 PWD The present working directory set by the cd command. Page 16/81

 RANDOM Each time this variable is referenced, a random integer, uniformly distrib?

 uted between 0 and 32767, is generated. The sequence of random numbers can

 be initialized by assigning a numeric value to RANDOM.

 REPLY This variable is set by the select statement and by the read built-in com?

 mand when no arguments are supplied.

 SECONDS

 Each time this variable is referenced, the number of seconds since shell in?

 vocation is returned. If this variable is assigned a value, then the value

 returned upon reference will be the value that was assigned plus the number

 of seconds since the assignment.

 SHLVL An integer variable that is incremented and exported each time the shell is

 invoked. If SHLVL is not in the environment when the shell is invoked, it

 is set to 1.

 The following variables are used by the shell:

 CDPATH The search path for the cd command.

 COLUMNS

 If this variable is set, the value is used to define the width of the edit

 window for the shell edit modes and for printing select lists.

 EDITOR If the VISUAL variable is not set, the value of this variable will be

 checked for the patterns as described with VISUAL below and the correspond?

 ing editing option (see Special Command set below) will be turned on.

 ENV If this variable is set, then parameter expansion, command substitution, and

 arithmetic expansion are performed on the value to generate the pathname of

 the script that will be executed when the shell is invoked interactively

 (see Invocation below). This file is typically used for alias and function

 definitions. The default value is $HOME/.kshrc. On systems that support a

 system wide /etc/ksh.kshrc initialization file, if the filename generated

 by the expansion of ENV begins with /./ or ././ the system wide initializa?

 tion file will not be executed.

 FCEDIT Obsolete name for the default editor name for the hist command. FCEDIT is

 not used when HISTEDIT is set.

 FIGNORE

 A pattern that defines the set of filenames that will be ignored when per? Page 17/81

 forming filename matching.

 FPATH The search path for function definitions. The directories in this path are

 searched for a file with the same name as the function or command when a

 function with the -u attribute is referenced and when a command is not

 found. If an executable file with the name of that command is found, then

 it is read and executed in the current environment. Unlike PATH, the cur?

 rent directory must be represented explicitly by . rather than by adjacent

 : characters or a beginning or ending :.

 HISTCMD

 Number of the current command in the history file.

 HISTEDIT

 Name for the default editor name for the hist command.

 HISTFILE

 If this variable is set when the shell is invoked, then the value is the

 pathname of the file that will be used to store the command history (see

 Command Re-entry below).

 HISTSIZE

 If this variable is set when the shell is invoked, then the number of previ?

 ously entered commands that are accessible by this shell will be greater

 than or equal to this number. The default is 512.

 HOME The default argument (home directory) for the cd command.

 IFS Internal field separators, normally space, tab, and new-line that are used

 to separate the results of command substitution or parameter expansion and

 to separate fields with the built-in command read. The first character of

 the IFS variable is used to separate arguments for the "$*" expansion (see

 Quoting below). Each single occurrence of an IFS character in the string to

 be split, that is not in the isspace character class, and any adjacent char?

 acters in IFS that are in the isspace character class, delimit a field. One

 or more characters in IFS that belong to the isspace character class, de?

 limit a field. In addition, if the same isspace character appears consecu?

 tively inside IFS, this character is treated as if it were not in the iss?

 pace class, so that if IFS consists of two tab characters, then two adjacent

 tab characters delimit a null field. Page 18/81

 JOBMAX This variable defines the maximum number running background jobs that can

 run at a time. When this limit is reached, the shell will wait for a job to

 complete before starting a new job.

 LANG This variable determines the locale category for any category not specifi?

 cally selected with a variable starting with LC_ or LANG.

 LC_ALL This variable overrides the value of the LANG variable and any other LC_

 variable.

 LC_COLLATE

 This variable determines the locale category for character collation infor?

 mation.

 LC_CTYPE

 This variable determines the locale category for character handling func?

 tions. It determines the character classes for pattern matching (see Path?

 name Expansion below).

 LC_NUMERIC

 This variable determines the locale category for the decimal point charac?

 ter.

 LINES If this variable is set, the value is used to determine the column length

 for printing select lists. Select lists will print vertically until about

 two-thirds of LINES lines are filled.

 MAIL If this variable is set to the name of a mail file and the MAILPATH variable

 is not set, then the shell informs the user of arrival of mail in the speci?

 fied file.

 MAILCHECK

 This variable specifies how often (in seconds) the shell will check for

 changes in the modification time of any of the files specified by the MAIL?

 PATH or MAIL variables. The default value is 600 seconds. When the time

 has elapsed the shell will check before issuing the next prompt.

 MAILPATH

 A colon (:) separated list of file names. If this variable is set, then

 the shell informs the user of any modifications to the specified files that

 have occurred within the last MAILCHECK seconds. Each file name can be fol?

 lowed by a ? and a message that will be printed. The message will undergo Page 19/81

 parameter expansion, command substitution, and arithmetic expansion with the

 variable $_ defined as the name of the file that has changed. The default

 message is you have mail in $_.

 PATH The search path for commands (see Execution below). The user may not change

 PATH if executing under rksh (except in .profile).

 PS1 Every time a new command line is started on an interactive shell, the value

 of this variable is expanded to resolve backslash escaping, parameter expan?

 sion, command substitution, and arithmetic expansion. The result defines

 the primary prompt string for that command line. The default is ``$ ''.

 The character ! in the primary prompt string is replaced by the command

 number (see Command Re-entry below). Two successive occurrences of ! will

 produce a single ! when the prompt string is printed. Note that any termi?

 nal escape sequences used in the PS1 prompt thus need every instance of !

 in them to be changed to !!.

 PS2 Secondary prompt string, by default ``> ''.

 PS3 Selection prompt string used within a select loop, by default ``#? ''.

 PS4 The value of this variable is expanded for parameter evaluation, command

 substitution, and arithmetic expansion and precedes each line of an execu?

 tion trace. By default, PS4 is ``+ ''. In addition when PS4 is unset, the

 execution trace prompt is also ``+ ''.

 SHELL The pathname of the shell is kept in the environment. At invocation, if the

 basename of this variable is rsh, rksh, or krsh, then the shell becomes re?

 stricted.

 TIMEFORMAT

 The value of this parameter is used as a format string specifying how the

 timing information for pipelines prefixed with the time reserved word should

 be displayed. The % character introduces a format sequence that is expanded

 to a time value or other information. The format sequences and their mean?

 ings are as follows.

 %% A literal %.

 %[p][l]R The elapsed time in seconds.

 %[p][l]U The number of CPU seconds spent in user mode.

 %[p][l]S The number of CPU seconds spent in system mode. Page 20/81

 %P The CPU percentage, computed as (U + S) / R.

 The brackets denote optional portions. The optional p is a digit specifying

 the precision, the number of fractional digits after a decimal point. A

 value of 0 causes no decimal point or fraction to be output. At most three

 places after the decimal point can be displayed; values of p greater than 3

 are treated as 3. If p is not specified, the value 3 is used.

 The optional l specifies a longer format, including hours if greater than

 zero, minutes, and seconds of the form HHhMMmSS.FFs. The value of p deter?

 mines whether or not the fraction is included.

 All other characters are output without change and a trailing newline is

 added. If unset, the default value, $'\nreal\t%2lR\nuser\t%2lU\nsys\t%2lS',

 is used. If the value is null, no timing information is displayed.

 TMOUT Terminal read timeout. If set to a value greater than zero, the read built-

 in command and the select compound command time out after TMOUT seconds when

 input is from a terminal. An interactive shell will issue a warning and al?

 low for an extra 60 second timeout grace period before terminating if a line

 is not entered within the prescribed number of seconds while reading from a

 terminal. (Note that the shell can be compiled with a maximum bound for

 this value which cannot be exceeded.)

 VISUAL If the value of this variable matches the pattern *[Vv][Ii]*, then the vi

 option (see Special Command set below) is turned on. If the value matches

 the pattern *gmacs* , the gmacs option is turned on. If the value matches

 the pattern *macs*, then the emacs option will be turned on. The value of

 VISUAL overrides the value of EDITOR.

 The shell gives default values to PATH, PS1, PS2, PS3, PS4, MAILCHECK, FCEDIT, TMOUT and

 IFS, while HOME, SHELL, ENV, and MAIL are not set at all by the shell (although HOME is

 set by login(1)). On some systems MAIL and SHELL are also set by login(1).

 Field Splitting.

 After parameter expansion and command substitution, the results of substitutions are

 scanned for the field separator characters (those found in IFS) and split into distinct

 fields where such characters are found. Explicit null fields ("" or ??) are retained.

 Implicit null fields (those resulting from parameters that have no values or command sub?

 stitutions with no output) are removed. Page 21/81

 Brace Expansion.

 If the braceexpand (-B) option is set then each of the fields resulting from IFS are

 checked to see if they contain one or more of the brace patterns {*,*}, {l1..l2} ,

 {n1..n2} , {n1..n2% fmt} , {n1..n2 ..n3} , or {n1..n2 ..n3%fmt} , where * represents any

 character, l1,l2 are letters and n1,n2,n3 are signed numbers and fmt is a format specified

 as used by printf. In each case, fields are created by prepending the characters before

 the { and appending the characters after the } to each of the strings generated by the

 characters between the { and }. The resulting fields are checked to see if they have any

 brace patterns.

 In the first form, a field is created for each string between { and ,, between , and ,,

 and between , and }. The string represented by * can contain embedded matching { and }

 without quoting. Otherwise, each { and } with * must be quoted.

 In the seconds form, l1 and l2 must both be either upper case or both be lower case char?

 acters in the C locale. In this case a field is created for each character from l1 thru

 l2.

 In the remaining forms, a field is created for each number starting at n1 and continuing

 until it reaches n2 incrementing n1 by n3. The cases where n3 is not specified behave as

 if n3 where 1 if n1<=n2 and -1 otherwise. If forms which specify %fmt any format flags,

 widths and precisions can be specified and fmt can end in any of the specifiers cdiouxX.

 For example, {a,z}{1..5..3%02d}{b..c}x expands to the 8 fields, a01bx, a01cx, a04bx,

 a04cx, z01bx, z01cx, z04bx and z04cx.

 Pathname Expansion.

 This is also known as globbing or sometimes filename generation. Following splitting,

 each field is scanned for the characters *, ?, (, and [unless the -f option has been set.

 If one of these characters appears, then the word is regarded as a pattern. Each file

 name component that contains any pattern character is replaced with a lexicographically

 sorted set of names that matches the pattern from that directory. If no file name is

 found that matches the pattern, then that component of the filename is left unchanged un?

 less the pattern is prefixed with ?(N) in which case it is removed as described below.

 The special traversal names . and .. are never matched. If FIGNORE is set, then each

 file name component that matches the pattern defined by the value of FIGNORE is ignored

 when generating the matching filenames. If FIGNORE is not set, the character . at the

 start of each file name component will be ignored unless the first character of the pat? Page 22/81

 tern corresponding to this component is the character . itself. Note, that for other

 uses of pattern matching the / and . are not treated specially.

 * Matches any string, including the null string. When used for filename ex?

 pansion, if the globstar option is on, an isolated pattern of two adjacent

 *'s will match all files and zero or more directories and subdirectories.

 If followed by a / then only directories and subdirectories will match.

 ? Matches any single character.

 [...] Matches any one of the enclosed characters. A pair of characters separated

 by - matches any character lexically between the pair, inclusive. If the

 first character following the opening [is a ! or ^ then any character not

 enclosed is matched. A - can be included in the character set by putting it

 as the first or last character.

 Within [and], character classes can be specified with the syntax [:class:]

 where class is one of the following classes defined in the ANSI C standard:

 (Note that word is equivalent to alnum plus the character _.)

 alnum alpha blank cntrl digit graph lower print punct space upper word

 xdigit

 Within [and], an equivalence class can be specified with the syntax [=c=]

 which matches all characters with the same primary collation weight (as de?

 fined by the current locale) as the character c. Within [and], [.symbol.]

 matches the collating symbol symbol.

 A pattern-list is a list of one or more patterns separated from each other with a & or |.

 A & signifies that all patterns must be matched whereas | requires that only one pattern

 be matched. Composite patterns can be formed with one or more of the following subpat?

 terns:

 ?(pattern-list)

 Optionally matches any one of the given patterns.

 *(pattern-list)

 Matches zero or more occurrences of the given patterns.

 +(pattern-list)

 Matches one or more occurrences of the given patterns.

 {n}(pattern-list)

 Matches n occurrences of the given patterns. Page 23/81

 {m,n}(pattern-list)

 Matches from m to n occurrences of the given patterns. If m is omitted, 0

 will be used. If n is omitted at least m occurrences will be matched.

 @(pattern-list)

 Matches exactly one of the given patterns.

 !(pattern-list)

 Matches anything except one of the given patterns.

 By default, each pattern, or subpattern will match the longest string possible consistent

 with generating the longest overall match. If more than one match is possible, the one

 starting closest to the beginning of the string will be chosen. However, for each of the

 above compound patterns a - can be inserted in front of the (to cause the shortest match

 to the specified pattern-list to be used.

 When pattern-list is contained within parentheses, the backslash character \ is treated

 specially even when inside a character class. All ANSI C character escapes are recog?

 nized and match the specified character. In addition the following escape sequences are

 recognized:

 \d Matches any character in the digit class.

 \D Matches any character not in the digit class.

 \s Matches any character in the space class.

 \S Matches any character not in the space class.

 \w Matches any character in the word class.

 \W Matches any character not in the word class.

 A pattern of the form %(pattern-pair(s)) is a subpattern that can be used to match nested

 character expressions. Each pattern-pair is a two character sequence which cannot contain

 & or |. The first pattern-pair specifies the starting and ending characters for the

 match. Each subsequent pattern-pair represents the beginning and ending characters of a

 nested group that will be skipped over when counting starting and ending character

 matches. The behavior is unspecified when the first character of a pattern-pair is al?

 phanumeric except for the following:

 D Causes the ending character to terminate the search for this pattern without

 finding a match.

 E Causes the ending character to be interpreted as an escape character.

 L Causes the ending character to be interpreted as a quote character causing Page 24/81

 all characters to be ignored when looking for a match.

 Q Causes the ending character to be interpreted as a quote character causing

 all characters other than any escape character to be ignored when looking

 for a match.

 Thus, %({}Q"E\), matches characters starting at { until the matching } is found not count?

 ing any { or } that is inside a double quoted string or preceded by the escape character

 \. Without the {} this pattern matches any C language string.

 Each subpattern in a composite pattern is numbered, starting at 1, by the location of the

 (within the pattern. The sequence \n, where n is a single digit and \n comes after the

 n-th. subpattern, matches the same string as the subpattern itself.

 Finally a pattern can contain subpatterns of the form ?(options:pattern-list), where ei?

 ther options or :pattern-list can be omitted. Unlike the other compound patterns, these

 subpatterns are not counted in the numbered subpatterns. :pattern-list must be omitted

 for options F, G, N , and V below. If options is present, it can consist of one or more

 of the following:

 + Enable the following options. This is the default.

 - Disable the following options.

 E The remainder of the pattern uses extended regular expression syntax like

 the egrep(1) command.

 F The remainder of the pattern uses fgrep(1) expression syntax.

 G The remainder of the pattern uses basic regular expression syntax like the

 grep(1) command.

 K The remainder of the pattern uses shell pattern syntax. This is the de?

 fault.

 N This is ignored. However, when it is the first letter and is used with

 pathname expansion, and no matches occur, the file pattern expands to the

 empty string.

 X The remainder of the pattern uses augmented regular expression syntax like

 the xgrep(1) command.

 P The remainder of the pattern uses perl(1) regular expression syntax. Not

 all perl regular expression syntax is currently implemented.

 V The remainder of the pattern uses System V regular expression syntax.

 i Always treat the match as case-insensitive, regardless of the globcasedetect Page 25/81

 shell option.

 g File the longest match (greedy). This is the default.

 l Left anchor the pattern. This is the default for K style patterns.

 r Right anchor the pattern. This is the default for K style patterns.

 If both options and :pattern-list are specified, then the options apply only to pattern-

 list. Otherwise, these options remain in effect until they are disabled by a subsequent

 ?(...) or at the end of the subpattern containing ?(...).

 Quoting.

 Each of the metacharacters listed earlier (see Definitions above) has a special meaning to

 the shell and causes termination of a word unless quoted. A character may be quoted

 (i.e., made to stand for itself) by preceding it with a \. The pair \new-line is removed.

 All characters enclosed between a pair of single quote marks (??) that is not preceded by

 a $ are quoted. A single quote cannot appear within the single quotes. A single quoted

 string preceded by an unquoted $ is processed as an ANSI C string except for the follow?

 ing:

 \0 Causes the remainder of the string to be ignored.

 \E Equivalent to the escape character (ASCII 033),

 \e Equivalent to the escape character (ASCII 033),

 \cx Expands to the character control-x.

 \C[.name.]

 Expands to the collating element name.

 Inside double quote marks (""), parameter and command substitution occur and \ quotes the

 characters \, `, ", and $. A $ in front of a double quoted string will be ignored in the

 "C" or "POSIX" locale, and may cause the string to be replaced by a locale specific string

 otherwise. The meaning of $* and $@ is identical when not quoted or when used as a vari?

 able assignment value or as a file name. However, when used as a command argument, "$*"

 is equivalent to "$1d$2d...", where d is the first character of the IFS variable, whereas

 "$@" is equivalent to "$1" "$2" Inside grave quote marks (``), \ quotes the charac?

 ters \, `, and $. If the grave quotes occur within double quotes, then \ also quotes the

 character ".

 The special meaning of reserved words or aliases can be removed by quoting any character

 of the reserved word. The recognition of function names or built-in command names listed

 below cannot be altered by quoting them. Page 26/81

 Arithmetic Evaluation.

 The shell performs arithmetic evaluation for arithmetic expansion, to evaluate an arith?

 metic command, to evaluate an indexed array subscript, and to evaluate arguments to the

 built-in commands shift and let as well as arguments to numeric format specifiers given to

 print -f and printf. Evaluations are performed using double precision floating point

 arithmetic or long double precision floating point for systems that provide this data

 type. Floating point constants follow the ANSI C programming language floating point con?

 ventions. The case-insensitive floating point constants NaN and Inf can be used to repre?

 sent "not a number" and infinity respectively, unless the posix shell option is on. Inte?

 ger constants follow the ANSI C programming language integer constant conventions although

 only single byte character constants are recognized and character casts are not recog?

 nized. In addition constants can be of the form [base#]n where base is a decimal number

 between two and sixty-four representing the arithmetic base and n is a number in that

 base. The digits above 9 are represented by the lower case letters, the upper case let?

 ters, @, and _ respectively. For bases less than or equal to 36, upper and lower case

 characters can be used interchangeably.

 An arithmetic expression uses the same syntax, precedence, and associativity of expression

 as the C language. All the C language operators that apply to floating point quantities

 can be used. In addition, the operator ** can be used for exponentiation. It has higher

 precedence than multiplication and is left associative. In addition, when the value of an

 arithmetic variable or subexpression can be represented as a long integer, all C language

 integer arithmetic operations can be performed. Variables can be referenced by name

 within an arithmetic expression without using the parameter expansion syntax. When a

 variable is referenced, its value is evaluated as an arithmetic expression.

 Any of the following math library functions that are in the C math library can be used

 within an arithmetic expression:

 abs acos acosh asin asinh atan atan2 atanh cbrt ceil copysign cos cosh erf erfc exp exp10

 exp2 expm1 fabs fdim finite float floor fma fmax fmin fmod fpclass fpclassify hypot ilogb

 int isfinite isgreater isgreaterequal isinf isinfinite isless islessequal islessgreater

 isnan isnormal issubnormal isunordered iszero j0 j1 jn ldexp lgamma log log10 log1p log2

 logb nearbyint nextafter nexttoward pow remainder rint round scalb scalbn signbit sin sinh

 sqrt tan tanh tgamma trunc y0 y1 yn

 In addition, arithmetic functions can be defined as shell functions with a variant of the Page 27/81

 function name syntax,

 function .sh.math.name ident ... { list ;}

 where name is the function name used in the arithmetic expression and each identi?

 fier, ident is a name reference to the long double precision floating point argu?

 ment. The value of .sh.value when the function returns is the value of this func?

 tion. User defined functions can take up to 3 arguments and override C math li?

 brary functions.

 An internal representation of a variable as a double precision floating point can be spec?

 ified with the -E [n], -F [n], or -X [n] option of the typeset special built-in command.

 The -E option causes the expansion of the value to be represented using scientific nota?

 tion when it is expanded. The optional option argument n defines the number of signifi?

 cant figures. The -F option causes the expansion to be represented as a floating decimal

 number when it is expanded. The -X option causes the expansion to be represented using

 the %a format defined by ISO C-99. The optional option argument n defines the number of

 places after the decimal (or radix) point in this case.

 An internal integer representation of a variable can be specified with the -i [n] option

 of the typeset special built-in command. The optional option argument n specifies an

 arithmetic base to be used when expanding the variable. If you do not specify an arith?

 metic base, base 10 will be used.

 Arithmetic evaluation is performed on the value of each assignment to a variable with the

 -E, -F, -X, or -i attribute. Assigning a floating point number to a variable whose type

 is an integer causes the fractional part to be truncated.

 Prompting.

 When used interactively, the shell prompts with the value of PS1 after expanding it for

 parameter expansion, command substitution, and arithmetic expansion, before reading a com?

 mand. In addition, each single ! in the prompt is replaced by the command number. A !!

 is required to place ! in the prompt. If at any time a new-line is typed and further in?

 put is needed to complete a command, then the secondary prompt (i.e., the value of PS2) is

 issued.

 Conditional Expressions.

 A conditional expression is used with the [[compound command to test attributes of files

 and to compare strings. Field splitting and pathname expansion are not performed on the

 words between [[and]]. Each expression can be constructed from one or more of the fol? Page 28/81

 lowing unary or binary expressions:

 string True, if string is not null.

 -a file

 Same as -e below. This is obsolete.

 -b file

 True, if file exists and is a block special file.

 -c file

 True, if file exists and is a character special file.

 -d file

 True, if file exists and is a directory.

 -e file

 True, if file exists.

 -f file

 True, if file exists and is an ordinary file.

 -g file

 True, if file exists and it has its setgid bit set.

 -k file

 True, if file exists and it has its sticky bit set.

 -n string

 True, if length of string is non-zero.

 -o ?option

 True, if option named option is a valid option name.

 -o option

 True, if option named option is on.

 -p file

 True, if file exists and is a fifo special file or a pipe.

 -r file

 True, if file exists and is readable by current process.

 -s file

 True, if file exists and has size greater than zero.

 -t fildes

 True, if file descriptor number fildes is open and associated with a terminal de?

 vice. Page 29/81

 -u file

 True, if file exists and it has its setuid bit set.

 -v name

 True, if variable name is a valid variable name and is set.

 -w file

 True, if file exists and is writable by current process.

 -x file

 True, if file exists and is executable by current process. If file exists and is a

 directory, then true if the current process has permission to search in the direc?

 tory.

 -z string

 True, if length of string is zero.

 -L file

 True, if file exists and is a symbolic link.

 -h file

 True, if file exists and is a symbolic link.

 -N file

 True, if file exists and the modification time is greater than the last access

 time.

 -O file

 True, if file exists and is owned by the effective user id of this process.

 -G file

 True, if file exists and its group matches the effective group id of this process.

 -R name

 True if variable name is a name reference.

 -S file

 True, if file exists and is a socket.

 file1 -nt file2

 True, if file1 exists and file2 does not, or file1 is newer than file2.

 file1 -ot file2

 True, if file2 exists and file1 does not, or file1 is older than file2.

 file1 -ef file2

 True, if file1 and file2 exist and refer to the same file. Page 30/81

 string == pattern

 True, if string matches pattern. Any part of pattern can be quoted to cause it to

 be matched as a string. With a successful match to a pattern, the .sh.match array

 variable will contain the match and subpattern matches.

 string = pattern

 Same as == above, but is obsolete.

 string != pattern

 True, if string does not match pattern. When the string matches the pattern the

 .sh.match array variable will contain the match and subpattern matches.

 string =? ere

 True if string matches the pattern ?(E)ere where ere is an extended regular expres?

 sion.

 string1 < string2

 True, if string1 comes before string2 based on ASCII value of their characters.

 string1 > string2

 True, if string1 comes after string2 based on ASCII value of their characters.

 The following obsolete arithmetic comparisons are also permitted:

 exp1 -eq exp2

 True, if exp1 is equal to exp2.

 exp1 -ne exp2

 True, if exp1 is not equal to exp2.

 exp1 -lt exp2

 True, if exp1 is less than exp2.

 exp1 -gt exp2

 True, if exp1 is greater than exp2.

 exp1 -le exp2

 True, if exp1 is less than or equal to exp2.

 exp1 -ge exp2

 True, if exp1 is greater than or equal to exp2.

 In each of the above expressions, if file is of the form /dev/fd/n, where n is an integer,

 then the test is applied to the open file whose descriptor number is n.

 A compound expression can be constructed from these primitives by using any of the follow?

 ing, listed in decreasing order of precedence. Page 31/81

 (expression)

 True, if expression is true. Used to group expressions.

 ! expression

 True if expression is false.

 expression1 && expression2

 True, if expression1 and expression2 are both true.

 expression1 || expression2

 True, if either expression1 or expression2 is true.

 Input/Output.

 Before a command is executed, its input and output may be redirected using a special nota?

 tion interpreted by the shell. The following may appear anywhere in a simple-command or

 may precede or follow a command and are not passed on to the invoked command. Command

 substitution, parameter expansion, and arithmetic expansion occur before word or digit is

 used except as noted below. Pathname expansion occurs only if the shell is interactive

 and the pattern matches a single file. Field splitting is not performed.

 In each of the following redirections, if file is of the form /dev/sctp/host/port,

 /dev/tcp/host/port, or /dev/udp/host/port, where host is a hostname or host address, and

 port is a service given by name or an integer port number, then the redirection attempts

 to make a tcp, sctp or udp connection to the corresponding socket.

 No intervening space is allowed between the characters of redirection operators.

 <word Use file word as standard input (file descriptor 0).

 >word Use file word as standard output (file descriptor 1). If the file does not

 exist then it is created. If the file exists, and the noclobber option is

 on, this causes an error; otherwise, it is truncated to zero length.

 >|word Same as >, except that it overrides the noclobber option.

 >;word Write output to a temporary file. If the command completes successfully re?

 name it to word, otherwise, delete the temporary file. >;word cannot be

 used with the exec and redirect built-ins.

 >>word Use file word as standard output. If the file exists, then output is ap?

 pended to it (by first seeking to the end-of-file); otherwise, the file is

 created.

 <>word Open file word for reading and writing as standard output. If the posix op?

 tion is active, it defaults to standard input instead. Page 32/81

 <>;word The same as <>word except that if the command completes successfully, word

 is truncated to the offset at command completion. <>;word cannot be used

 with the exec and redirect built-ins.

 <<[-]word The shell input is read up to a line that is the same as word after any

 quoting has been removed, or to an end-of-file. No parameter expansion,

 command substitution, arithmetic expansion or pathname expansion is per?

 formed on word. The resulting document, called a here-document, becomes the

 standard input. If any character of word is quoted, then no interpretation

 is placed upon the characters of the document; otherwise, parameter expan?

 sion, command substitution, and arithmetic expansion occur, \new-line is ig?

 nored, and \ must be used to quote the characters \, $, `. If - is appended

 to <<, then all leading tabs are stripped from word and from the document.

 If # is appended to <<, then leading spaces and tabs will be stripped off

 the first line of the document and up to an equivalent indentation will be

 stripped from the remaining lines and from word. A tab stop is assumed to

 occur at every 8 columns for the purposes of determining the indentation.

 <<<word A short form of here document in which word becomes the contents of the

 here-document after any parameter expansion, command substitution, and

 arithmetic expansion occur.

 <&digit The standard input is duplicated from file descriptor digit (see dup(2)).

 >&digit The standard output is duplicated from file descriptor digit.

 <&digit- The file descriptor given by digit is moved to standard input.

 >&digit- The file descriptor given by digit is moved to standard output.

 <&- The standard input is closed.

 >&- The standard output is closed.

 <&p The input from the co-process is moved to standard input.

 >&p The output to the co-process is moved to standard output.

 <#((expr)) Evaluate arithmetic expression expr and position file descriptor 0 to the

 resulting value bytes from the start of the file. The variables CUR and EOF

 evaluate to the current offset and end-of-file offset respectively when

 evaluating expr.

 >#((offset)) The same as <# except applies to file descriptor 1.

 <#pattern Seeks forward to the beginning of the next line containing pattern. Page 33/81

 <##pattern The same as <# except that the portion of the file that is skipped is copied

 to standard output.

 If one of the above is preceded by a digit, with no intervening space, then the file de?

 scriptor number referred to is that specified by the digit (instead of the default 0 or

 1). If one of the above, other than >&- and the ># and <# forms, is preceded by {varname}

 with no intervening space, then a file descriptor number > 9 will be selected by the shell

 and stored in the variable varname, so it can be read from or written to with redirections

 like <& $varname or >& $varname. If >&- or the any of the ># and <# forms is preceded by

 {varname} the value of varname defines the file descriptor to close or position. For ex?

 ample:

 ... 2>&1

 means file descriptor 2 is to be opened for writing as a duplicate of file descriptor 1

 and

 exec {n}<file

 means open file named file for reading and store the file descriptor number in variable n.

 A special shorthand redirection operator &>word is available; it is equivalent to >word

 2>&1. It cannot be preceded by any digit or variable name. This shorthand is disabled if

 the posix shell option is active.

 The order in which redirections are specified is significant. The shell evaluates each

 redirection in terms of the (file descriptor, file) association at the time of evaluation.

 For example:

 ... 1>fname 2>&1

 first associates file descriptor 1 with file fname. It then associates file descriptor 2

 with the file associated with file descriptor 1 (i.e. fname). If the order of redirec?

 tions were reversed, file descriptor 2 would be associated with the terminal (assuming

 file descriptor 1 had been) and then file descriptor 1 would be associated with file

 fname.

 If a command is followed by & and job control is not active, then the default standard in?

 put for the command is the empty file /dev/null. Otherwise, the environment for the exe?

 cution of a command contains the file descriptors of the invoking shell as modified by in?

 put/output specifications.

 Environment.

 The environment (see environ(7)) is a list of name-value pairs that is passed to an exe? Page 34/81

 cuted program in the same way as a normal argument list. The names must be identifiers

 and the values are character strings. The shell interacts with the environment in several

 ways. On invocation, the shell scans the environment and creates a variable for each name

 found, giving it the corresponding value and attributes and marking it export. Executed

 commands inherit the environment. If the user modifies the values of these variables or

 creates new ones, using the export or typeset -x commands, they become part of the envi?

 ronment. The environment seen by any executed command is thus composed of any name-value

 pairs originally inherited by the shell, whose values may be modified by the current

 shell, plus any additions which must be noted in export or typeset -x commands.

 The environment for any simple-command or function may be augmented by prefixing it with

 one or more variable assignments. A variable assignment argument is a word of the form

 identifier=value. Thus:

 TERM=450 cmd args and

 (export TERM; TERM=450; cmd args)

 are equivalent (as far as the above execution of cmd is concerned except for special

 built-in commands listed below - those that are marked with ?).

 If the obsolete -k option is set, all variable assignment arguments are placed in the en?

 vironment, even if they occur after the command name. The following first prints a=b c

 and then c:

 echo a=b c

 set -k

 echo a=b c

 This feature is intended for use with scripts written for early versions of the shell and

 its use in new scripts is strongly discouraged. It is likely to disappear someday.

 Functions.

 For historical reasons, there are two ways to define functions, the name() syntax and the

 function name syntax, described in the Commands section above. Shell functions are read

 in and stored internally. Alias names are resolved when the function is read. Functions

 are executed like commands with the arguments passed as positional parameters. (See Exe?

 cution below.)

 Functions defined by the function name syntax and called by name execute in the same

 process as the caller and share all files and present working directory with the caller.

 Traps caught by the caller are reset to their default action inside the function. A trap Page 35/81

 condition that is not caught or ignored by the function causes the function to terminate

 and the condition to be passed on to the caller. A trap on EXIT set inside a function is

 executed in the environment of the caller after the function completes. Ordinarily, vari?

 ables are shared between the calling program and the function. However, the typeset spe?

 cial built-in command used within a function defines local variables whose scope includes

 the current function. They can be passed to functions that they call in the variable as?

 signment list that precedes the call or as arguments passed as name references. Errors

 within functions return control to the caller.

 Functions defined with the name() syntax and functions defined with the function name syn?

 tax that are invoked with the . special built-in are executed in the caller's environment

 and share all variables and traps with the caller. Errors within these function execu?

 tions cause the script that contains them to abort.

 The special built-in command return is used to return from function calls.

 Function names can be listed with the -f or +f option of the typeset special built-in com?

 mand. The text of functions, when available, will also be listed with -f. Functions can

 be undefined with the -f option of the unset special built-in command.

 Ordinarily, functions are unset when the shell executes a shell script. Functions that

 need to be defined across separate invocations of the shell should be placed in a direc?

 tory and the FPATH variable should contain the name of this directory. They may also be

 specified in the ENV file.

 Discipline Functions.

 Each variable can have zero or more discipline functions associated with it. The shell

 initially understands the discipline names get, set, append, and unset but can be added

 when defining new types. On most systems others can be added at run time via the C pro?

 gramming interface extension provided by the builtin built-in utility. If the get disci?

 pline is defined for a variable, it is invoked whenever the given variable is referenced.

 If the variable .sh.value is assigned a value inside the discipline function, the refer?

 enced variable will evaluate to this value instead. If the set discipline is defined for

 a variable, it is invoked whenever the given variable is assigned a value. If the append

 discipline is defined for a variable, it is invoked whenever a value is appended to the

 given variable. The variable .sh.value is given the value of the variable before invoking

 the discipline, and the variable will be assigned the value of .sh.value after the disci?

 pline completes. If .sh.value is unset inside the discipline, then that value is un? Page 36/81

 changed. If the unset discipline is defined for a variable, it is invoked whenever the

 given variable is unset. The variable will not be unset unless it is unset explicitly

 from within this discipline function.

 The variable .sh.name contains the name of the variable for which the discipline function

 is called, .sh.subscript is the subscript of the variable, and .sh.value will contain the

 value being assigned inside the set discipline function. The variable _ is a reference to

 the variable including the subscript if any. For the set discipline, changing .sh.value

 will change the value that gets assigned. Finally, the expansion ${var.name}, when name

 is the name of a discipline, and there is no variable of this name, is equivalent to the

 command substitution ${ var.name;}.

 Name Spaces.

 Commands and functions that are executed as part of the list of a namespace command that

 modify variables or create new ones, create a new variable whose name is the name of the

 name space as given by identifier preceded by .. When a variable whose name is name is

 referenced, it is first searched for using .identifier.name. Similarly, a function de?

 fined by a command in the namespace list is created using the name space name preceded by

 a ..

 When the list of a namespace command contains a namespace command, the names of variables

 and functions that are created consist of the variable or function name preceded by the

 list of identifiers each preceded by ..

 Outside of a name space, a variable or function created inside a name space can be refer?

 enced by preceding it with the name space name.

 By default, variables starting with .sh are in the sh name space.

 Type Variables.

 Typed variables provide a way to create data structure and objects. A type can be defined

 either by a shared library, by the enum built-in command described below, or by using the

 new -T option of the typeset built-in command. With the -T option of typeset, the type

 name, specified as an option argument to -T, is set with a compound variable assignment

 that defines the type. Function definitions can appear inside the compound variable as?

 signment and these become discipline functions for this type and can be invoked or rede?

 fined by each instance of the type. The function name create is treated specially. It is

 invoked for each instance of the type that is created but is not inherited and cannot be

 redefined for each instance. Page 37/81

 When a type is defined a special built-in command of that name is added. These built-ins

 are declaration commands and follow the same expansion rules as the built-in commands de?

 scribed below that are marked with a ? symbol. These commands can subsequently be used in?

 side further type definitions. The man page for these commands can be generated by using

 the --man option or any of the other -- options described with getopts. The -r, -a, -A,

 -h, and -S options of typeset are permitted with each of these new built-ins.

 An instance of a type is created by invoking the type name followed by one or more in?

 stance names. Each instance of the type is initialized with a copy of the subvariables

 except for subvariables that are defined with the -S option. Variables defined with the

 -S are shared by all instances of the type. Each instance can change the value of any

 subvariable and can also define new discipline functions of the same names as those de?

 fined by the type definition as well as any standard discipline names. No additional sub?

 variables can be defined for any instance.

 When defining a type, if the value of a subvariable is not set and the -r attribute is

 specified, it causes the subvariable to be a required subvariable. Whenever an instance

 of a type is created, all required subvariables must be specified. These subvariables be?

 come read-only in each instance.

 When unset is invoked on a subvariable within a type, and the -r attribute has not been

 specified for this field, the value is reset to the default value associative with the

 type. Invoking unset on a type instance not contained within another type deletes all

 subvariables and the variable itself.

 A type definition can be derived from another type definition by defining the first sub?

 variable name as _ and defining its type as the base type. Any remaining definitions will

 be additions and modifications that apply to the new type. If the new type name is the

 same as that of the base type, the type will be replaced and the original type will no

 longer be accessible.

 The typeset command with the -T and no option argument or operands will write all the type

 definitions to standard output in a form that can be read in to create all they types.

 Jobs.

 If the monitor option of the set command is turned on, an interactive shell associates a

 job with each pipeline. It keeps a table of current jobs, printed by the jobs command,

 and assigns them small integer numbers. When a job is started asynchronously with &, the

 shell prints a line which looks like: Page 38/81

 [1] 1234

 indicating that the job which was started asynchronously was job number 1 and had one

 (top-level) process, whose process id was 1234.

 This paragraph and the next require features that are not in all versions of UNIX and may

 not apply. If you are running a job and wish to do something else you may hit the key ^Z

 (control-Z) which sends a STOP signal to the current job. The shell will then normally

 indicate that the job has been `Stopped', and print another prompt. You can then manipu?

 late the state of this job, putting it in the background with the bg command, or run some

 other commands and then eventually bring the job back into the foreground with the fore?

 ground command fg. A ^Z takes effect immediately and is like an interrupt in that pending

 output and unread input are discarded when it is typed.

 A job being run in the background will stop if it tries to read from the terminal. Back?

 ground jobs are normally allowed to produce output, but this can be disabled by giving the

 command stty tostop. If you set this tty option, then background jobs will stop when they

 try to produce output like they do when they try to read input.

 A job pool is a collection of jobs started with list & associated with a name.

 There are several ways to refer to jobs in the shell. A job can be referred to by the

 process id of any process of the job or by one of the following:

 %number

 The job with the given number.

 pool All the jobs in the job pool named by pool.

 pool.number

 The job number number in the job pool named by pool.

 %string

 Any job whose command line begins with string.

 %?string

 Any job whose command line contains string.

 %% Current job.

 %+ Equivalent to %%.

 %- Previous job. In addition, unless noted otherwise, wherever a job can be speci?

 fied, the name of a background job pool can be used to represent all the jobs in

 that pool.

 The shell learns immediately whenever a process changes state. It normally informs you Page 39/81

 whenever a job becomes blocked so that no further progress is possible, but only just be?

 fore it prints a prompt. This is done so that it does not otherwise disturb your work.

 The notify option of the set command causes the shell to print these job change messages

 as soon as they occur.

 When the monitor option is on, each background job that completes triggers any trap set

 for CHLD.

 When you try to leave the shell while jobs are running or stopped, you will be warned that

 `You have stopped(running) jobs.' You may use the jobs command to see what they are. If

 you immediately try to exit again, the shell will not warn you a second time, and the

 stopped jobs will be terminated. When a login shell receives a HUP signal, it sends a HUP

 signal to each job that has not been disowned with the disown built-in command described

 below.

 Signals.

 The INT and QUIT signals for an invoked command are ignored if the command is followed by

 & and the monitor option is not active. Otherwise, signals have the values inherited by

 the shell from its parent (but see also the trap built-in command below).

 Execution.

 Each time a command is read, the above expansions and substitutions are carried out. If

 the command name matches one of the Special Built-in Commands listed below, it is executed

 within the current shell process. Next, the command name is checked to see if it matches

 a user defined function. If it does, the positional parameters are saved and then reset

 to the arguments of the function call. A function is also executed in the current shell

 process. When the function completes or issues a return, the positional parameter list is

 restored. For functions defined with the function name syntax, any trap set on EXIT

 within the function is executed. The exit value of a function is the value of the last

 command executed. If a command name is not a special built-in command or a user defined

 function, but it is one of the built-in commands listed below, it is executed in the cur?

 rent shell process.

 The shell variables PATH followed by the variable FPATH defines the list of directories to

 search for the command name. Alternative directory names are separated by a colon (:).

 The default path is the value that was output by getconf PATH at the time ksh was com?

 piled. The current directory can be specified by two or more adjacent colons, or by a

 colon at the beginning or end of the path list. If the command name contains a /, then Page 40/81

 the search path is not used. Otherwise, each directory in the list of directories defined

 by PATH and FPATH is checked in order. If the directory being searched is contained in

 FPATH and contains a file whose name matches the command being searched, then this file is

 loaded into the current shell environment as if it were the argument to the . command ex?

 cept that only preset aliases are expanded, and a function of the given name is executed

 as described above.

 If this directory is not in FPATH the shell first determines whether there is a built-in

 version of a command corresponding to a given pathname and if so it is invoked in the cur?

 rent process. If no built-in is found, the shell checks for a file named .paths in this

 directory. If found and there is a line of the form FPATH=path where path names an exist?

 ing directory then that directory is searched immediately after the current directory as

 if it were found in the FPATH variable. If path does not begin with /, it is checked for

 relative to the directory being searched.

 The .paths file is then checked for a line of the form PLUGIN_LIB=libname [: libname]

 Each library named by libname will be searched for as if it were an option argument

 to builtin -f, and if it contains a built-in of the specified name this will be executed

 instead of a command by this name. Any built-in loaded from a library found this way will

 be associated with the directory containing the .paths file so it will only execute if not

 found in an earlier directory.

 Finally, the directory will be checked for a file of the given name. If the file has exe?

 cute permission but is not an a.out file, it is assumed to be a file containing shell com?

 mands. A separate shell is spawned to read it. All non-exported variables are removed in

 this case. If the shell command file doesn't have read permission, or if the setuid

 and/or setgid bits are set on the file, then the shell executes an agent whose job it is

 to set up the permissions and execute the shell with the shell command file passed down as

 an open file. If the .paths contains a line of the form name=value in the first or second

 line, then the environment variable name is modified by prepending the directory specified

 by value to the directory list. If value is not an absolute directory, then it specifies

 a directory relative to the directory that the executable was found. If the environment

 variable name does not already exist it will be added to the environment list for the

 specified command. A parenthesized command is executed in a subshell without removing

 non-exported variables.

 Command Re-entry. Page 41/81

 The text of the last HISTSIZE (default 512) commands entered from a terminal device is

 saved in a history file. The file $HOME/.sh_history is used if the HISTFILE variable is

 not set or if the file it names is not writable. A shell can access the commands of all

 interactive shells which use the same named HISTFILE. The built-in command hist is used

 to list or edit a portion of this file. The portion of the file to be edited or listed

 can be selected by number or by giving the first character or characters of the command.

 A single command or range of commands can be specified. If you do not specify an editor

 program as an argument to hist then the value of the variable HISTEDIT is used. If HISTE?

 DIT is unset, the obsolete variable FCEDIT is used. If FCEDIT is not defined, then

 /bin/ed is used. The edited command(s) is printed and re-executed upon leaving the editor

 unless you quit without writing. The -s option (and in obsolete versions, the editor name

 -) is used to skip the editing phase and to re-execute the command. In this case a sub?

 stitution parameter of the form old=new can be used to modify the command before execu?

 tion. For example, with the preset alias r, which is aliased to ?hist -s?, typing `r

 bad=good c' will re-execute the most recent command which starts with the letter c, re?

 placing the first occurrence of the string bad with the string good.

 In-line Editing Options.

 Normally, each command line entered from a terminal device is simply typed followed by a

 new-line (`RETURN' or `LINE FEED'). If either the emacs, gmacs, or vi option is active,

 the user can edit the command line. To be in either of these edit modes set the corre?

 sponding option. An editing option is automatically selected each time the VISUAL or EDI?

 TOR variable is assigned a value ending in either of these option names.

 The editing features require that the user's terminal accept `RETURN' as carriage return

 without line feed and that a space (` ') must overwrite the current character on the

 screen.

 Unless the multiline option is on, the editing modes implement a concept where the user is

 looking through a window at the current line. The window width is the value of COLUMNS if

 it is defined, otherwise 80. If the window width is too small to display the prompt and

 leave at least 8 columns to enter input, the prompt is truncated from the left. If the

 line is longer than the window width minus two, a mark is displayed at the end of the win?

 dow to notify the user. As the cursor moves and reaches the window boundaries the window

 will be centered about the cursor. The mark is a > (<, *) if the line extends on the

 right (left, both) side(s) of the window. Page 42/81

 The search commands in each edit mode provide access to the history file. Only strings

 are matched, not patterns, although a leading ^ in the string restricts the match to begin

 at the first character in the line.

 Each of the edit modes has an operation to list the files or commands that match a par?

 tially entered word. When applied to the first word on the line, or the first word after

 a ;, |, &, or (, and the word does not begin with ? or contain a /, the list of aliases,

 functions, and executable commands defined by the PATH variable that could match the par?

 tial word is displayed. Otherwise, the list of files that match the given word is dis?

 played. If the partially entered word does not contain any file expansion characters, a *

 is appended before generating these lists. After displaying the generated list, the input

 line is redrawn. These operations are called command name listing and file name listing,

 respectively. There are additional operations, referred to as command name completion and

 file name completion, which compute the list of matching commands or files, but instead of

 printing the list, replace the current word with a complete or partial match. For file

 name completion, if the match is unique, a / is appended if the file is a directory and a

 space is appended if the file is not a directory. Otherwise, the longest common prefix

 for all the matching files replaces the word. For command name completion, only the por?

 tion of the file names after the last / are used to find the longest command prefix. If

 only a single name matches this prefix, then the word is replaced with the command name

 followed by a space. When using a tab for completion that does not yield a unique match,

 a subsequent tab will provide a numbered list of matching alternatives. A specific selec?

 tion can be made by entering the selection number followed by a tab.

 Key Bindings.

 The KEYBD trap can be used to intercept keys as they are typed and change the characters

 that are actually seen by the shell. This trap is executed after each character (or se?

 quence of characters when the first character is ESC) is entered while reading from a ter?

 minal. The variable .sh.edchar contains the character or character sequence which gener?

 ated the trap. Changing the value of .sh.edchar in the trap action causes the shell to

 behave as if the new value were entered from the keyboard rather than the original value.

 The variable .sh.edcol is set to the input column number of the cursor at the time of the

 input. The variable .sh.edmode is set to ESC when in vi insert mode (see below) and is

 null otherwise. By prepending ${.sh.editmode} to a value assigned to .sh.edchar it will

 cause the shell to change to control mode if it is not already in this mode. Page 43/81

 This trap is not invoked for characters entered as arguments to editing directives, or

 while reading input for a character search.

 Emacs Editing Mode.

 This mode is entered by enabling either the emacs or gmacs option. The only difference

 between these two modes is the way they handle ^T. To edit, the user moves the cursor to

 the point needing correction and then inserts or deletes characters or words as needed.

 All the editing commands are control characters or escape sequences. The notation for

 control characters is caret (^) followed by the character. For example, ^F is the nota?

 tion for control F. This is entered by depressing `f' while holding down the `CTRL' (con?

 trol) key. The `SHIFT' key is not depressed. (The notation ^? indicates the DEL

 (delete) key.)

 The notation for escape sequences is M- followed by a character. For example, M-f (pro?

 nounced Meta f) is entered by depressing ESC (ASCII 033) followed by `f'. (M-F would be

 the notation for ESC followed by `SHIFT' (capital) `F'.)

 All edit commands operate from any place on the line (not just at the beginning). Neither

 the `RETURN' nor the `LINE FEED' key is entered after edit commands except when noted.

 The M-[multi-character commands below are DEC VT220 escape sequences generated by special

 keys on standard PC keyboards, such as the arrow keys. You could type them directly but

 they are meant to recognize the keys in question, which are indicated in parentheses.

 ^F Move cursor forward (right) one character.

 M-[C (Right arrow) Same as ^F.

 M-f Move cursor forward one word. (The emacs editor's idea of a word is a string of

 characters consisting of only letters, digits and underscores.)

 ^B Move cursor backward (left) one character.

 M-[D (Left arrow) Same as ^B.

 M-b Move cursor backward one word.

 ^A Move cursor to start of line.

 M-[H (Home) Same as ^A.

 ^E Move cursor to end of line.

 M-[F (End) Same as ^E.

 M-[Y Same as ^E.

 ^]char Move cursor forward to character char on current line.

 M-^]char Move cursor backward to character char on current line. Page 44/81

 ^X^X Interchange the cursor and mark.

 erase (User defined erase character as defined by the stty(1) command, usually ^H .)

 Delete previous character.

 lnext (User defined literal next character as defined by the stty(1) command, or ^V if

 not defined.) Removes the next character's editing features (if any).

 ^D Delete current character.

 M-[3~ (Forward delete) Same as ^D.

 M-d Delete current word.

 M-^H (Meta-backspace) Delete previous word.

 M-h Delete previous word.

 M-^? (Meta-DEL) Delete previous word (if your interrupt character is ^? (DEL, the

 default) then this command will not work).

 ^T Transpose current character with previous character and advance the cursor in

 emacs mode. Transpose two previous characters in gmacs mode.

 ^C Capitalize current character.

 M-c Capitalize current word.

 M-l Change the current word to lower case.

 ^K Delete from the cursor to the end of the line. If preceded by a numerical pa?

 rameter whose value is less than the current cursor position, then delete from

 given position up to the cursor. If preceded by a numerical parameter whose

 value is greater than the current cursor position, then delete from cursor up to

 given cursor position.

 ^W Kill from the cursor to the mark.

 M-p Push the region from the cursor to the mark on the stack.

 kill (User defined kill character as defined by the stty command, usually ^U .) Kill

 the entire current line. If two kill characters are entered in succession, all

 kill characters from then on cause a line feed (useful when using paper termi?

 nals). A subsequent pair of kill characters undoes this change.

 ^Y Restore last item removed from line. (Yank item back to the line.)

 ^L Line feed and print current line.

 M-^L Clear the screen.

 ^@ (Null character) Set mark.

 M-space (Meta space) Set mark. Page 45/81

 ^J (New line) Execute the current line.

 ^M (Return) Execute the current line.

 eof End-of-file character, normally ^D, is processed as an End-of-file only if the

 current line is null.

 ^P Fetch previous command. Each time ^P is entered the previous command back in

 time is accessed. Moves back one line when not on the first line of a multi-

 line command.

 M-[A (Up arrow) If the cursor is at the end of the line, it is equivalent to ^R with

 string set to the contents of the current line. Otherwise, it is equivalent to

 ^P.

 M-< Fetch the least recent (oldest) history line.

 M-> Fetch the most recent (youngest) history line.

 ^N Fetch next command line. Each time ^N is entered the next command line forward

 in time is accessed.

 M-[B (Down arrow) Equivalent to ^N.

 ^Rstring Reverse search history for a previous command line containing string. If a pa?

 rameter of zero is given, the search is forward. String is terminated by a `RE?

 TURN' or `NEW LINE'. If string is preceded by a ^, the matched line must begin

 with string. If string is omitted, then the next command line containing the

 most recent string is accessed. In this case a parameter of zero reverses the

 direction of the search.

 ^O Operate - Execute the current line and fetch the next line relative to current

 line from the history file.

 M-digits (Escape) Define numeric parameter, the digits are taken as a parameter to the

 next command. The commands that accept a parameter are ^F, ^B, erase, ^C, ^D,

 ^K, ^R, ^P, ^N, ^], M-., M-^], M-_, M-=, M-b, M-c, M-d, M-f, M-h, M-l, M-^H, and

 the arrow keys and forward-delete key.

 M-letter Soft-key - Your alias list is searched for an alias by the name _letter and if

 an alias of this name is defined, its value will be inserted on the input queue.

 The letter must not be one of the above meta-functions.

 M-[letter Soft-key - Your alias list is searched for an alias by the name __letter and if

 an alias of this name is defined, its value will be inserted on the input queue.

 This can be used to program function keys on many terminals. Page 46/81

 M-. The last word of the previous command is inserted on the line. If preceded by a

 numeric parameter, the value of this parameter determines which word to insert

 rather than the last word.

 M-_ Same as M-..

 M-* Attempt pathname expansion on the current word. An asterisk is appended if the

 word doesn't match any file or contain any special pattern characters.

 M-ESC Command or file name completion as described above.

 ^I tab Attempts command or file name completion as described above. If a partial com?

 pletion occurs, repeating this will behave as if M-= were entered. If no match

 is found or entered after space, a tab is inserted.

 M-= If not preceded by a numeric parameter, it generates the list of matching com?

 mands or file names as described above. Otherwise, the word under the cursor is

 replaced by the item corresponding to the value of the numeric parameter from

 the most recently generated command or file list. If the cursor is not on a

 word, it is inserted instead.

 ^U Multiply parameter of next command by 4.

 \ If the backslashctrl shell option is on (which is the default setting), this es?

 capes the next character. Editing characters, the user's erase, kill and inter?

 rupt (normally ^C) characters may be entered in a command line or in a search

 string if preceded by a \. The \ removes the next character's editing features

 (if any). See also lnext which is not subject to any shell option.

 M-^V Display version of the shell.

 M-# If the line does not begin with a #, a # is inserted at the beginning of the

 line and after each new-line, and the line is entered. This causes a comment to

 be inserted in the history file. If the line begins with a #, the # is deleted

 and one # after each new-line is also deleted.

 Vi Editing Mode.

 There are two typing modes. Initially, when you enter a command you are in the input

 mode. To edit, the user enters control mode by typing ESC (033) and moves the cursor to

 the point needing correction and then inserts or deletes characters or words as needed.

 Most control commands accept an optional repeat count prior to the command.

 The notation for control characters used below is ^ followed by a character. For instance,

 ^H is entered by holding down the Control key and pressing H. ^[(Control+[) is equiva? Page 47/81

 lent to the ESC key. The notation for escape sequences is ^[followed by one or more

 characters.

 The ^[[(ESC [) multi-character commands below are DEC VT220 escape sequences generated by

 special keys on standard PC keyboards, such as the arrow keys, which are indicated in

 parentheses. When in input mode, these keys will switch you to control mode before per?

 forming the associated action. These sequences can use preceding repeat count parameters,

 but only when the ^[and the subsequent [are entered into the input buffer at the same

 time, such as when pressing one of those keys.

 Input Edit Commands

 By default the editor is in input mode.

 erase (User defined erase character as defined by the stty command, usually ^H

 or #.) Delete previous character.

 ^W Delete the previous blank separated word. On some systems the viraw op?

 tion may be required for this to work.

 eof As the first character of the line causes the shell to terminate unless

 the ignoreeof option is set. Otherwise this character is ignored.

 lnext (User defined literal next character as defined by the stty(1) or ^V if

 not defined.) Removes the next character's editing features (if any).

 On some systems the viraw option may be required for this to work.

 \ If the backslashctrl shell option is on (which is the default setting),

 this escapes the next erase or kill character.

 ^I tab Attempts command or file name completion as described above and returns

 to input mode. If a partial completion occurs, repeating this will be?

 have as if = were entered from control mode. If no match is found or en?

 tered after space, a tab is inserted.

 Motion Edit Commands

 These commands will move the cursor.

 [count]l Cursor forward (right) one character.

 [count]^[[C

 (Right arrow) Same as l.

 [count]w Cursor forward one alphanumeric word.

 [count]W Cursor to the beginning of the next word that follows a blank.

 [count]e Cursor to end of word. Page 48/81

 [count]E Cursor to end of the current blank delimited word.

 [count]h Cursor backward (left) one character.

 [count]^[[D

 (Left arrow) Same as h.

 [count]b Cursor backward one word.

 [count]B Cursor to preceding blank separated word.

 [count]| Cursor to column count.

 [count]fc Find the next character c in the current line.

 [count]Fc Find the previous character c in the current line.

 [count]tc Equivalent to f followed by h.

 [count]Tc Equivalent to F followed by l.

 [count]; Repeats count times, the last single character find command, f, F, t, or

 T.

 [count], Reverses the last single character find command count times.

 0 Cursor to start of line.

 ^[[H (Home) Same as 0.

 ^ Cursor to first non-blank character in line.

 $ Cursor to end of line.

 ^[[F (End) Same as $.

 ^[[Y Same as $.

 % Moves to balancing (,), {, }, [, or]. If cursor is not on one of the

 above characters, the remainder of the line is searched for the first oc?

 currence of one of the above characters first.

 Search Edit Commands

 These commands access your command history.

 [count]k Fetch previous command. Each time k is entered the previous command back

 in time is accessed.

 [count]- Equivalent to k.

 [count]^[[A

 (Up arrow) If cursor is at the end of the line it is equivalent to / with

 string set to the contents of the current line. Otherwise, it is equiva?

 lent to k.

 [count]j Fetch next command. Each time j is entered the next command forward in Page 49/81

 time is accessed.

 [count]+ Equivalent to j.

 [count]^[[B

 (Down arrow) Equivalent to j.

 [count]G The command number count is fetched. The default is the least recent

 history command.

 /string Search backward through history for a previous command containing string.

 String is terminated by a `RETURN' or `NEW LINE'. If string is preceded

 by a ^, the matched line must begin with string. If string is null, the

 previous string will be used.

 ?string Same as / except that search will be in the forward direction.

 n Search for next match of the last pattern to / or ? commands.

 N Search for next match of the last pattern to / or ?, but in reverse di?

 rection.

 Text Modification Edit Commands

 These commands will modify the line.

 a Enter input mode and enter text after the current character.

 A Append text to the end of the line. Equivalent to $a.

 [count]cmotion

 c[count]motion

 Delete current character through the character that motion would move the

 cursor to and enter input mode. If motion is c, the entire line will be

 deleted and input mode entered.

 C Delete the current character through the end of line and enter input

 mode. Equivalent to c$.

 S Equivalent to cc.

 [count]s Replace characters under the cursor in input mode.

 D Delete the current character through the end of line. Equivalent to d$.

 [count]dmotion

 d[count]motion

 Delete current character through the character that motion would move to.

 If motion is d , the entire line will be deleted.

 i Enter input mode and insert text before the current character. Page 50/81

 I Insert text before the beginning of the line. Equivalent to 0i.

 [count]P Place the previous text modification before the cursor.

 [count]p Place the previous text modification after the cursor.

 R Enter input mode and replace characters on the screen with characters you

 type overlay fashion.

 [count]rc Replace the count character(s) starting at the current cursor position

 with c, and advance the cursor.

 [count]x Delete current character.

 [count]^[[3~

 (Forward delete) Same as x.

 [count]X Delete preceding character.

 [count]. Repeat the previous text modification command.

 [count]? Invert the case of the count character(s) starting at the current cursor

 position and advance the cursor.

 [count]_ Causes the count word of the previous command to be appended and input

 mode entered. The last word is used if count is omitted.

 * Causes an * to be appended to the current word and pathname expansion at?

 tempted. If no match is found, it rings the bell. Otherwise, the word

 is replaced by the matching pattern and input mode is entered.

 \ Command or file name completion as described above.

 Other Edit Commands

 Miscellaneous commands.

 [count]ymotion

 y[count]motion

 Yank current character through character that motion would move the cur?

 sor to and puts them into the delete buffer. The text and cursor are un?

 changed.

 yy Yanks the entire line.

 Y Yanks from current position to end of line. Equivalent to y$.

 u Undo the last text modifying command.

 U Undo all the text modifying commands performed on the line.

 [count]v Returns the command hist -e ${VISUAL:-${EDITOR:-vi}} count in the input

 buffer. If count is omitted, then the current line is used. Page 51/81

 ^L Line feed and print current line. Has effect only in control mode.

 ^J (New line) Execute the current line, regardless of mode.

 ^M (Return) Execute the current line, regardless of mode.

 # If the first character of the command is a #, then this command deletes

 this # and each # that follows a newline. Otherwise, sends the line af?

 ter inserting a # in front of each line in the command. Useful for caus?

 ing the current line to be inserted in the history as a comment and un?

 commenting previously commented commands in the history file.

 [count]= If count is not specified, it generates the list of matching commands or

 file names as described above. Otherwise, the word under the cursor is

 replaced by the count item from the most recently generated command or

 file list. If the cursor is not on a word, it is inserted instead.

 @letter Your alias list is searched for an alias by the name _letter and if an

 alias of this name is defined, its value will be inserted on the input

 queue for processing.

 ^V Display version of the shell.

 Built-in Commands.

 The simple-commands listed below are built in to the shell and are executed in the same

 process as the shell. The effects of any added Input/Output redirections are local to the

 command, except for the exec and redirect commands. Unless otherwise indicated, the out?

 put is written on standard output (file descriptor 1) and the exit status, when there is

 no syntax error, is zero. Except for :, true, false, and echo, all built-in commands ac?

 cept -- to indicate end of options, and are self-documenting.

 The self-documenting commands interpret the option --man as a request to display that com?

 mand's own manual page, --help as a request to display the OPTIONS section from their man?

 ual page, and -? as a request to print a brief usage message. All these are processed as

 error messages, so they are written on standard error (file descriptor 2) and to pipe them

 into a pager such as more(1) you need to add a 2>&1 redirection before the |. The display

 of boldface text depends on whether standard error is on a terminal, so is disabled when

 using a pager. Exporting the ERROR_OPTIONS environment variable with a value containing

 emphasis will force this on; a value containing noemphasis forces it off. The test/[com?

 mand needs an additional -- argument to recognize self-documentation options, e.g. test

 --man --. The exec and redirect commands, as they make redirections permanent, should use Page 52/81

 self-documentation options in a subshell when redirecting, for example: (redirect --man)

 2>&1. There are advanced output options as well; see getopts --man for more information.

 Commands that are preceded by a ? symbol below are special built-in commands and are

 treated specially in the following ways:

 1. Variable assignment lists preceding the command remain in effect when the command

 completes.

 2. I/O redirections are processed after variable assignments.

 3. Errors cause a script that contains them to abort.

 4. They are not valid function names.

 Commands that are preceded by a ? symbol below are declaration commands. Any following

 words that are in the format of a variable assignment are expanded with the same rules as

 a variable assignment. This means that tilde expansion is performed after the = sign, ar?

 ray assignments of the form varname=(assign_list) are supported, and field splitting and

 pathname expansion are not performed.

 ? : [arg ...]

 The command only expands parameters.

 ? . name [arg ...]

 If name is a function defined with the function name reserved word syntax, the

 function is executed in the current environment (as if it had been defined with the

 name() syntax). Otherwise if name refers to a file, the file is read in its en?

 tirety and the commands are executed in the current shell environment. The search

 path specified by PATH is used to find the directory containing the file. If any

 arguments arg are given, they become the positional parameters while processing the

 . command and the original positional parameters are restored upon completion.

 Otherwise the positional parameters are unchanged. The exit status is the exit

 status of the last command executed.

 [expression]

 The [command is the same as test, with the exception that an additional closing]

 argument is required. See test below.

 alias [-ptx] [name[=value]] ...

 alias with no arguments prints the list of aliases in the form name=value on stan?

 dard output. The -p option causes the word alias to be inserted before each one.

 When one or more arguments are given, an alias is defined for each name whose value Page 53/81

 is given. A trailing space in value causes the next word to be checked for alias

 substitution. With the -t option, each name is looked up as a command in $PATH and

 its path is added to the hash table as a 'tracked alias'. If no name is given,

 this prints the hash table. See hash. Without the -t option, for each name in the

 argument list for which no value is given, the name and value of the alias is

 printed. The obsolete -x option has no effect. The exit status is non-zero if a

 name is given, but no value, and no alias has been defined for the name.

 autoload name ...

 Marks each name undefined so that the FPATH variable will be searched to find the

 function definition when the function is referenced. The same as typeset -fu.

 bg [job...]

 This command is only on systems that support job control. Puts each specified job

 into the background. The current job is put in the background if job is not speci?

 fied. See Jobs for a description of the format of job.

 ? break [n]

 Exit from the enclosing for, while, until, or select loop, if any. If n is speci?

 fied, then break n levels.

 builtin [-ds] [-f file] [name ...]

 If name is not specified, and no -f option is specified, the built-ins are printed

 on standard output. The -s option prints only the special built-ins. Otherwise,

 each name represents the pathname whose basename is the name of the built-in. The

 entry point function name is determined by prepending b_ to the built-in name. A

 built-in specified by a pathname will only be executed when that pathname would be

 found during the path search. Built-ins found in libraries loaded via the .paths

 file will associate with the pathname of the directory containing the .paths file.

 The ISO C/C++ prototype is b_mycommand(int argc, char *argv[], void *context) for

 the builtin command mycommand where argv is array an of argc elements and context

 is an optional pointer to a Shell_t structure as described in <ast/shell.h>.

 Special built-ins cannot be bound to a pathname or deleted. The -d option deletes

 each of the given built-ins. On systems that support dynamic loading, the -f op?

 tion names a shared library containing the code for built-ins. The shared library

 prefix and/or suffix, which depend on the system, can be omitted. Once a library

 is loaded, its symbols become available for subsequent invocations of builtin. Page 54/81

 Multiple libraries can be specified with separate invocations of the builtin com?

 mand. Libraries are searched in the reverse order in which they are specified.

 When a library is loaded, it looks for a function in the library whose name is

 lib_init() and invokes this function with an argument of 0.

 cd [-L] [-eP] [arg]

 cd [-L] [-eP] old new

 This command can be in either of two forms. In the first form it changes the cur?

 rent directory to arg. If arg is - the directory is changed to the previous direc?

 tory. The shell variable HOME is the default arg. The variable PWD is set to the

 current directory. The shell variable CDPATH defines the search path for the di?

 rectory containing arg. Alternative directory names are separated by a colon (:).

 The default path is <null> (specifying the current directory). Note that the cur?

 rent directory is specified by a null path name, which can appear immediately after

 the equal sign or between the colon delimiters anywhere else in the path list. If

 arg begins with a / then the search path is not used. Otherwise, each directory in

 the path is searched for arg.

 The second form of cd substitutes the string new for the string old in the current

 directory name, PWD, and tries to change to this new directory.

 By default, symbolic link names are treated literally when finding the directory

 name. This is equivalent to the -L option. The -P option causes symbolic links to

 be resolved when determining the directory. The last instance of -L or -P on the

 command line determines which method is used.

 If -e and -P are both in effect and the correct PWD could not be determined after

 successfully changing the directory, cd will return with exit status one and pro?

 duce no output. If any other error occurs while both flags are active, the exit

 status is greater than one.

 The cd command may not be executed by rksh.

 command [-pvxV] name [arg ...]

 With the -v option, command is equivalent to the built-in whence command described

 below. The -V option causes command to act like whence -v.

 Without the -v or -V options, command executes name with the arguments given by

 arg. Functions and aliases will not be searched for when finding name. If name

 refers to a special built-in, as marked with ? in this manual, command disables the Page 55/81

 special properties described above for that mark, executing the command as a regu?

 lar built-in. (For example, using command set -o option-name prevents a script

 from terminating when an invalid option name is given.)

 The -p option causes the operating system's standard utilities path (as output by

 getconf PATH) to be searched rather than the one defined by the value of PATH.

 The -x option runs name as an external command, bypassing built-ins. If the argu?

 ments contain at least one word that expands to multiple arguments, such as "$@" or

 *.txt, then the -x option also allows executing external commands with argument

 lists that are longer than the operating system allows. This functionality is simi?

 lar to xargs(1) but is easier to use. The shell does this by invoking the external

 command multiple times if needed, dividing the expanded argument list over the in?

 vocations. Any arguments that come before the first word that expands to multiple

 arguments, as well as any that follow the last such word, are considered static ar?

 guments and are repeated for each invocation. This allows each invocation to use

 the same command options, as well as the same trailing destination arguments for

 commands like cp(1) or mv(1). When all invocations are completed, command -x exits

 with the status of the invocation that had the highest exit status. (Note that

 command -x may still fail with an "argument list too long" error if a single argu?

 ment exceeds the maximum length of the argument list, or if a long arguments list

 contains no word that expands to multiple arguments.)

 ? compound vname[=value] ...

 Causes each vname to be a compound variable. The same as typeset -C.

 ? continue [n]

 Resume the next iteration of the enclosing for, while, until, or select loop. If n

 is specified, then resume at the n-th enclosing loop.

 disown [job...]

 Causes the shell not to send a HUP signal to each given job, or all active jobs if

 job is omitted, when a login shell terminates.

 echo [arg ...]

 When the first arg does not begin with a -, and none of the arguments contain a \,

 then echo prints each of its arguments separated by a space and terminated by a

 new-line. Otherwise, the behavior of echo is system dependent and print or printf

 described below should be used. See echo(1) for usage and description. Page 56/81

 ? enum [-i] type[=(value ...)]

 Creates a declaration command named type that allows one of the specified values as

 enumeration names. If =(value ...) is omitted, then type must be an indexed array

 variable with at least two elements and the values are taken from this array vari?

 able. If -i is specified the values are case-insensitive. Declaration commands

 are created as special builtins that cannot be removed or overridden by shell func?

 tions. Each created declaration command has a --man option that shows documenta?

 tion on its type's behavior and possible values.

 Within arithmetic expressions (see Arithmetic Evaluation above), enumeration type

 values translate to index numbers between 0 and the number of defined values minus

 1. It is an error for an arithmetic expression to assign a value outside of that

 range. Decimal fractions are ignored.

 ? eval [arg ...]

 The arguments are read as input to the shell and the resulting command(s) executed.

 ? exec [-c] [-a name] [arg ...]

 If arg is given, the command specified by the arguments is executed in place of

 this shell without creating a new process. The value of the SHLVL environment

 variable is decreased by one, unless the shell replaced is a subshell. The -c op?

 tion causes the environment to be cleared before applying variable assignments as?

 sociated with the exec invocation. The -a option causes name rather than the first

 arg, to become argv[0] for the new process. If arg is not given and only I/O redi?

 rections are given, then this command persistently modifies file descriptors as in

 redirect.

 ? exit [n]

 Causes the shell to exit with the exit status specified by n. The value will be

 the least significant 8 bits of n (if specified) or of the exit status of the last

 command executed. An end-of-file will also cause the shell to exit, except for an

 interactive shell that has the ignoreeof option turned on (see set below).

 ?? export [-p] [name[=value]] ...

 If name is not given, the names and values of each variable with the export attri?

 bute are printed with the values quoted in a manner that allows them to be re-in?

 put. The export command is the same as typeset -x except that if you use export

 within a function, no local variable is created. The -p option causes the word ex? Page 57/81

 port to be inserted before each one. Otherwise, the given names are marked for au?

 tomatic export to the environment of subsequently-executed commands.

 false Does nothing, and exits 1. Used with until for infinite loops.

 fc [-e ename] [-N num] [-nlr] [first [last]]

 fc -s [old=new] [command]

 The same as hist.

 fg [job...]

 This command is only on systems that support job control. Each job specified is

 brought to the foreground and waited for in the specified order. Otherwise, the

 current job is brought into the foreground. See Jobs for a description of the for?

 mat of job.

 ? float vname[=value] ...

 Declares each vname to be a long floating point number. The same as typeset -lE.

 functions [-Stux] [name ...]

 Lists functions. The same as typeset -f.

 getconf [name [pathname]]

 Prints the current value of the configuration parameter given by name. The config?

 uration parameters are defined by the IEEE POSIX 1003.1 and IEEE POSIX 1003.2 stan?

 dards. (See pathconf(2) and sysconf(3).) The pathname argument is required for

 parameters whose value depends on the location in the file system. If no arguments

 are given, getconf prints the names and values of the current configuration parame?

 ters. The pathname / is used for each of the parameters that requires pathname.

 getopts [-a name] optstring vname [arg ...]

 Checks arg for legal options. If arg is omitted, the positional parameters are

 used. An option argument begins with a + or a -. An option not beginning with +

 or - or the argument -- ends the options. Options beginning with + are only recog?

 nized when optstring begins with a +. optstring contains the letters that getopts

 recognizes. If a letter is followed by a :, that option is expected to have an ar?

 gument. The options can be separated from the argument by blanks. The option -?

 causes getopts to generate a usage message on standard error. The -a argument can

 be used to specify the name to use for the usage message, which defaults to $0.

 getopts places the next option letter it finds inside variable vname each time it

 is invoked. The option letter will be prepended with a + when arg begins with a +. Page 58/81

 The index of the next arg is stored in OPTIND. The option argument, if any, gets

 stored in OPTARG.

 A leading : in optstring causes getopts to store the letter of an invalid option in

 OPTARG, and to set vname to ? for an unknown option and to : when a required op?

 tion argument is missing. Otherwise, getopts prints an error message. The exit

 status is non-zero when there are no more options.

 There is no way to specify any of the options :, +, -, ?, [, and]. The option #

 can only be specified as the first option.

 hash [-r] [utility]

 hash displays or modifies the hash table with the locations of recently used pro?

 grams. If given no arguments, it lists all command/path associations (a.k.a.

 'tracked aliases') in the hash table. Otherwise, hash performs a PATH search for

 each utility supplied and adds the result to the hash table. The -r option empties

 the hash table. This can also be achieved by resetting PATH.

 hist [-e ename] [-N num] [-nlr] [first [last]]

 hist -s [old=new] [command]

 In the first form, a range of commands from first to last is selected from the last

 HISTSIZE commands that were typed at the terminal. The arguments first and last

 may be specified as a number or as a string. A string is used to locate the most

 recent command starting with the given string. A negative number is used as an

 offset to the current command number. If the -l option is selected, the commands

 are listed on standard output. Otherwise, the editor program ename is invoked on a

 file containing these keyboard commands. If ename is not supplied, then the value

 of the variable HISTEDIT is used. If HISTEDIT is not set, then FCEDIT (default

 /bin/ed) is used as the editor. When editing is complete, the edited command(s) is

 executed if the changes have been saved. If last is not specified, then it will be

 set to first. If first is not specified, the default is the previous command for

 editing and -16 for listing. The option -r reverses the order of the commands and

 the option -n suppresses command numbers when listing. In the second form, command

 is interpreted as first described above and defaults to the last command executed.

 The resulting command is executed after the optional substitution old=new is per?

 formed. The option -N causes hist to start num commands back.

 ? integer vname[=value] ... Page 59/81

 Declares each vname to be a long integer number. The same as typeset -li.

 jobs [-lnp] [job ...]

 Lists information about each given job; or all active jobs if job is omitted. The

 -l option lists process ids in addition to the normal information. The -n option

 only displays jobs that have stopped or exited since last notified. The -p option

 causes only the process group to be listed. See Jobs for a description of the for?

 mat of job.

 kill [-s signame] job ...

 kill [-n signum] job ...

 kill -Ll [sig ...]

 Sends either the TERM (terminate) signal or the specified signal to the specified

 jobs or processes. Signals are either given by number with the -n option or by

 name with the -s option (as given in <signal.h>, stripped of the prefix ``SIG''

 with the exception that SIGCLD is named CHLD). For backward compatibility, the n

 and s can be omitted and the number or name placed immediately after the -. If the

 signal being sent is TERM (terminate) or HUP (hangup), then the job or process will

 be sent a CONT (continue) signal if it is stopped. The argument job can be the

 process id of a process that is not a member of one of the active jobs. See Jobs

 for a description of the format of job. In the third form, kill -l, or kill -L, if

 sig is not specified, the signal names are listed. The -l option list only the

 signal names. -L options lists each signal name and corresponding number. Other?

 wise, for each sig that is a name, the corresponding signal number is listed. For

 each sig that is a number, the signal name corresponding to the least significant 8

 bits of sig is listed.

 let arg ...

 Each arg is a separate arithmetic expression to be evaluated. let only recognizes

 octal numbers starting with 0 when the set option letoctal is on. See Arithmetic

 Evaluation above for a description of arithmetic expression evaluation.

 The exit status is 0 if the value of the last expression is non-zero, and 1 other?

 wise.

 ? nameref vname[=refname] ...

 Declares each vname to be a variable name reference. The same as typeset -n.

 print [-CRenprsv] [-u unit] [-f format] [arg ...] Page 60/81

 With no options or with option - or --, each arg is printed on standard output.

 The -f option causes the arguments to be printed as described by printf. In this

 case, any e, n, r, R options are ignored. Otherwise, unless the -C, -R, -r, or -v

 are specified, the following escape conventions will be applied:

 \a The alert character (ASCII 07).

 \b The backspace character (ASCII 010).

 \c Causes print to end without processing more arguments and not adding a new-

 line.

 \f The formfeed character (ASCII 014).

 \n The newline character (ASCII 012).

 \r The carriage return character (ASCII 015).

 \t The tab character (ASCII 011).

 \v The vertical tab character (ASCII 013).

 \E The escape character (ASCII 033).

 \\ The backslash character \.

 \0x The character defined by the 1, 2, or 3-digit octal string given by x.

 The -R option will print all subsequent arguments and options other than -n. The

 -e causes the above escape conventions to be applied. This is the default behav?

 ior. It reverses the effect of an earlier -r. The -p option causes the arguments

 to be written onto the pipe of the process spawned with |& instead of standard out?

 put. The -v option treats each arg as a variable name and writes the value in the

 printf %B format. The -C option treats each arg as a variable name and writes the

 value in the printf %#B format. The -s option causes the arguments to be written

 onto the history file instead of standard output. The -u option can be used to

 specify a one digit file descriptor unit number unit on which the output will be

 placed. The default is 1. If the option -n is used, no new-line is added to the

 output.

 printf [-v vname] format [arg ...]

 The arguments arg are printed on standard output in accordance with the ANSI C for?

 matting rules associated with the format string format. If the number of arguments

 exceeds the number of format specifications, the format string is reused to format

 remaining arguments. The following extensions can also be used:

 %b A %b format can be used instead of %s to cause escape sequences in the cor? Page 61/81

 responding arg to be expanded as described in print.

 %B A %B option causes each of the arguments to be treated as variable names and

 the binary value of variable will be printed. The alternate flag # causes a

 compound variable to be output on a single line. This is most useful for

 compound variables and variables whose attribute is -b.

 %H A %H format can be used instead of %s to cause characters in arg that are

 special in HTML and XML to be output as their entity name. The alternate

 flag # formats the output for use as a URI.

 %p A %p format will convert the given number to hexadecimal.

 %P A %P format can be used instead of %s to cause arg to be interpreted as an

 extended regular expression and be printed as a shell pattern.

 %q A %q format can be used instead of %s to cause the resulting string to be

 quoted in a manner than can be reinput to the shell. When q is preceded by

 the alternative format specifier, #, the string is quoted in manner suitable

 as a field in a .csv format file.

 %(date-format)T

 A %(date-format)T format can be used to treat an argument as a date/time

 string and to format the date/time according to the date-format.

 %Q A %Q format will convert the given number of seconds to readable time.

 %R A %R format can be used instead of %s to cause arg to be interpreted as a

 shell pattern and to be printed as an extended regular expression.

 %Z A %Z format will output a byte whose value is 0.

 %d The precision field of the %d format can be followed by a . and the output

 base. In this case, the # flag character causes base# to be prepended.

 # The # flag, when used with the %d format without an output base, displays

 the output in powers of 1000 indicated by one of the following suffixes: k M

 G T P E, and when used with the %i format displays the output in powers of

 1024 indicated by one of the following suffixes: Ki Mi Gi Ti Pi Ei.

 = The = flag centers the output within the specified field width.

 L The L flag, when used with the %c or %s formats, treats precision as charac?

 ter width instead of byte count.

 , The , flag, when used with the %d or %f formats, separates groups of digits

 with the grouping delimiter (, on groups of 3 in the C locale). Page 62/81

 The -v option assigns the output directly to a variable instead of

 writing it to standard output. This is faster than capturing the output us?

 ing a command substitution and avoids the latter's stripping of final line?

 feed characters (\n). The vname argument should be a valid variable name,

 optionally with one or more array subscripts in square brackets. Note that

 square brackets should be quoted to avoid pathname expansion.

 pwd [-LP]

 Outputs the value of the current working directory. The -L option is the default;

 it prints the logical name of the current directory. If the -P option is given,

 all symbolic links are resolved from the name. The last instance of -L or -P on

 the command line determines which method is used.

 read [-ACSprsv] [-d delim] [-n n] [[-N n] [-t timeout] [-u unit] [

 vname?prompt] [vname ...]

 The shell input mechanism. One line is read and is broken up into fields using the

 characters in IFS as separators. The escape character, \, is used to remove any

 special meaning for the next character and for line continuation. The -d option

 causes the read to continue to the first character of delim rather than new-line.

 The -n option causes at most n bytes to read rather a full line but will return

 when reading from a slow device as soon as any characters have been read. The -N

 option causes exactly n to be read unless an end-of-file has been encountered or

 the read times out because of the -t option. In raw mode, -r, the \ character is

 not treated specially. The first field is assigned to the first vname, the second

 field to the second vname, etc., with leftover fields assigned to the last vname.

 When vname has the binary attribute and -n or -N is specified, the bytes that are

 read are stored directly into the variable. If the -v is specified, then the value

 of the first vname will be used as a default value when reading from a terminal de?

 vice. The -A option causes the variable vname to be unset and each field that is

 read to be stored in successive elements of the indexed array vname. The -C option

 causes the variable vname to be read as a compound variable. Blanks will be ig?

 nored when finding the beginning open parenthesis. The -S option causes the line

 to be treated like a record in a .csv format file so that double quotes can be used

 to allow the delimiter character and the new-line character to appear within a

 field. The -p option causes the input line to be taken from the input pipe of a Page 63/81

 process spawned by the shell using |&. If the -s option is present, the input will

 be saved as a command in the history file. The option -u can be used to specify a

 one digit file descriptor unit unit to read from. The file descriptor can be

 opened with the exec special built-in command. The default value of unit n is 0.

 The option -t is used to specify a timeout in seconds when reading from a terminal

 or pipe. If vname is omitted, then REPLY is used as the default vname. An end-of-

 file with the -p option causes cleanup for this process so that another can be

 spawned. If the first argument contains a ?, the remainder of this word is used as

 a prompt on standard error when the shell is interactive. The exit status is 0 un?

 less an end-of-file is encountered or read has timed out.

 ?? readonly [-p] [vname[=value]] ...

 If vname is not given, the names and values of each variable with the read-only at?

 tribute is printed with the values quoted in a manner that allows them to be re-in?

 put. The -p option causes the word readonly to be inserted before each one. Oth?

 erwise, the given vnames are marked read-only and these names cannot be changed by

 subsequent assignment. Unlike typeset -r , readonly does not create a function-lo?

 cal scope and the given vnames are marked globally read-only by default. When

 defining a type, if the value of a read-only subvariable is not defined, the value

 is required when creating each instance.

 redirect

 This command only accepts input/output redirections. It can open and close files

 and modify file descriptors from 0 to 9 as specified by the input/output redirect?

 ion list (see the Input/Output section above), with the difference that the effect

 persists past the execution of the redirect command. When invoking another pro?

 gram, file descriptors greater than 2 that were opened with this mechanism are only

 passed on if they are explicitly redirected to themselves as part of the invocation

 (e.g. 4>&4) or if the posix option is set.

 ? return [n]

 Causes a shell function, dot script (see . and source), or profile script to return

 to the invoking shell environment with the exit status specified by n. This status

 value can use the full signed integer range as shown by the commands getconf

 INT_MIN and getconf INT_MAX. A value outside that range will produce a warning and

 an exit status of 128. If n is omitted, then the value of $? is assumed, i.e., the Page 64/81

 exit status of the last command executed is passed on. If return is invoked while

 not in a function, dot script, or profile script, then it behaves the same as exit.

 ? set [?BCGHabefhkmnprstuvx] [?o [option]] ... [?A vname] [arg ...]

 The options for this command have meaning as follows:

 -A Array assignment. Unset the variable vname and assign values sequentially

 from the arg list. If +A is used, the variable vname is not unset first.

 -B Enable brace group expansion. On by default, except if ksh is invoked as sh

 or rsh.

 -C Prevents redirection > from truncating existing files. Files that are cre?

 ated are opened with the O_EXCL mode. Requires >| to truncate a file when

 turned on.

 -G Enables recursive pathname expansion. This adds the double-star pattern **

 to the pathname expansion (see Pathname Expansion above). By itself, it

 matches the recursive contents of the current directory, which is to say,

 all files and directories in the current directory and in all its subdirec?

 tories, sub-subdirectories, and so on. If the pathname pattern ends in

 **/, only directories and subdirectories are matched, including symbolic

 links that point to directories. A prefixed directory name is not included

 in the results unless that directory was itself found by a pattern. For ex?

 ample, dir/** matches the recursive contents of dir but not dir itself,

 whereas di[r]/** matches both dir itself and the recursive contents of dir.

 Symbolic links to non-directories are not followed. Symbolic links to di?

 rectories are followed if they are specified literally or match a pattern

 as described under Pathname Expansion, but not if they result from a dou?

 ble-star pattern.

 -H Enable !-style history expansion similar to csh(1).

 -a All subsequent variables that are defined are automatically exported.

 -b Prints job completion messages as soon as a background job changes state

 rather than waiting for the next prompt.

 -e Unless contained in a || or && command, or the command following an if

 while or until command or in the pipeline following !, if a command has a

 non-zero exit status, execute the ERR trap, if set, and exit. This mode is

 disabled while reading profiles. Page 65/81

 -f Disables pathname expansion.

 -h Each command becomes a tracked alias when first encountered.

 -k (Obsolete). All variable assignment arguments are placed in the environment

 for a command, not just those that precede the command name.

 -m Background jobs will run in a separate process group and a line will print

 upon completion. The exit status of background jobs is reported in a com?

 pletion message. On systems with job control, this option is turned on au?

 tomatically for interactive shells.

 -n Read commands and check them for syntax errors, but do not execute them.

 Ignored for interactive shells.

 -o The following argument can be one of the following option names:

 allexport

 Same as -a.

 backslashctrl

 The backslash character \ escapes the next control character in the

 emacs built-in editor and the next erase or kill character in the

 vi built-in editor. On by default.

 bgnice All background jobs are run at a lower priority. This is the de?

 fault mode.

 braceexpand

 Same as -B.

 emacs Puts you in an emacs style in-line editor for command entry.

 errexit Same as -e.

 globcasedetect

 When this option is turned on, globbing (see Pathname Expansion

 above) and file name listing and completion (see In-line Editing

 Options above) automatically become case-insensitive on file sys?

 tems where the difference between upper- and lowercase is ignored

 for file names. This is transparently determined for each direc?

 tory, so a path pattern that spans multiple file systems can be

 part case-sensitive and part case-insensitive. In more precise

 terms, each slash-separated path name component pattern p is

 treated as ~(i:p) if its parent directory exists on a case-insensi? Page 66/81

 tive file system. This option is only present on operating systems

 that support case-insensitive file systems.

 globstar

 Same as -G.

 gmacs Puts you in a gmacs style in-line editor for command entry.

 histexpand

 Same as -H.

 ignoreeof

 An interactive shell will not exit on end-of-file. The command

 exit must be used.

 keyword Same as -k.

 letoctal

 The let command allows octal numbers starting with 0. On by de?

 fault if ksh is invoked as sh or rsh.

 markdirs

 All directory names resulting from pathname expansion have a trail?

 ing / appended.

 monitor Same as -m.

 multiline

 The built-in editors will use multiple lines on the screen for

 lines that are longer than the width of the screen. This may not

 work for all terminals.

 noclobber

 Same as -C.

 noexec Same as -n.

 noglob Same as -f.

 nolog Obsolete; has no effect.

 notify Same as -b.

 nounset Same as -u.

 pipefail

 A pipeline will not complete until all components of the pipeline

 have completed, and the return value will be the value of the last

 non-zero command to fail or zero if no command has failed. Page 67/81

 posix Enables the POSIX standard mode for maximum compatibility with

 other compliant shells. At the moment that the posix option is

 turned on, it also turns on letoctal and turns off -B/braceexpand;

 the reverse is done when posix is turned back off. (These options

 can still be controlled independently in between.) Furthermore, the

 posix option is automatically turned on upon invocation if ksh is

 invoked as sh or rsh. In that case, or if the option is turned on

 by specifying -o posix on the invocation command line, the invoked

 shell will not set the preset aliases even if interactive, and will

 not import type attributes for variables (such as integer or

 left/right justify) from the environment.

 In addition, while on, the posix option

 ? disables exporting variable type attributes to the environment

 for other ksh processes to import;

 ? causes file descriptors > 2 to be left open when invoking an?

 other program;

 ? disables the &> redirection shorthand;

 ? makes the <> redirection operator default to redirecting stan?

 dard input if no file descriptor number precedes it;

 ? disables the special floating point constants Inf and NaN in

 arithmetic evaluation so that, e.g., $((inf)) and $((nan)) refer

 to the variables by those names;

 ? enables the recognition of a leading zero as introducing an oc?

 tal number in all arithmetic evaluation contexts, except in the

 let built-in while letoctal is off;

 ? stops the . command (but not source) from looking up functions

 defined with the function syntax;

 ? changes the test/[built-in command to make its deprecated expr1

 -a expr2 and expr1 -o expr2 operators work even if expr1 equals

 "!" or "(" (which means the nonstandard unary -a file and -o op?

 tion operators cannot be directly negated using ! or wrapped in

 parentheses); and

 ? disables a hack that makes test -t ([-t]) equivalent to test Page 68/81

 -t 1 ([-t 1]).

 privileged

 Same as -p.

 showme When enabled, simple commands or pipelines preceded by a semicolon

 (;) will be displayed as if the xtrace option were enabled but will

 not be executed. Otherwise, the leading ; will be ignored.

 trackall

 Same as -h.

 verbose Same as -v.

 vi Puts you in insert mode of a vi style in-line editor until you hit

 the escape character 033. This puts you in control mode. A return

 sends the line.

 viraw Each character is processed as it is typed in vi mode. The shell

 may have been compiled to force this option on at all times. Oth?

 erwise, canonical processing (line-by-line input) is initially en?

 abled and the command line will be echoed again if the speed is

 1200 baud or greater and it contains any control characters or less

 than one second has elapsed since the prompt was printed. The ESC

 character terminates canonical processing for the remainder of the

 command and the user can then modify the command line. This scheme

 has the advantages of canonical processing with the type-ahead

 echoing of raw mode. If the viraw option is set, the terminal will

 always have canonical processing disabled. This mode is implicit

 for systems that do not support two alternate end of line delim?

 iters, and may be helpful for certain terminals.

 xtrace Same as -x.

 If no option name is supplied, then the current option settings are

 printed.

 -p Disables processing of the $HOME/.profile file and uses the file

 /etc/suid_profile instead of the ENV file. This mode is on whenever the

 effective uid (gid) is not equal to the real uid (gid). Turning this off

 causes the effective uid and gid to be set to the real uid and gid.

 -r Enables the restricted shell. This option cannot be unset once set. Page 69/81

 -s Sort the positional parameters lexicographically.

 -t (Obsolete). Exit after reading and executing one command.

 -u Treat unset parameters as an error when substituting. $@ and $* are ex?

 empt.

 -v Print shell input lines as they are read.

 -x Print commands and their arguments as they are executed.

 -- Do not change any of the options; useful in setting $1 to a value beginning

 with -. If no arguments follow this option then the positional parameters

 are unset.

 As an obsolete feature, if the first arg is - then the -x and -v options are turned

 off and the next arg is treated as the first argument. Using + rather than -

 causes these options to be turned off. These options can also be used upon invoca?

 tion of the shell. The current set of options may be found in $-. Unless -A is

 specified, the remaining arguments are positional parameters and are assigned, in

 order, to $1 $2 If no arguments are given, then the names and values of all

 variables are printed on the standard output.

 ? shift [n]

 The positional parameters from $n+1 ... are renamed $1 ... , default n is 1. The

 parameter n can be any arithmetic expression that evaluates to a non-negative num?

 ber less than or equal to $#.

 sleep [-s] duration

 Suspends execution for the number of decimal seconds or fractions of a second given

 by duration. duration can be an integer, floating point value or ISO 8601 duration

 specifying the length of time to sleep. The option -s causes the sleep builtin to

 terminate when it receives any signal. If duration is not specified in conjunction

 with -s, sleep will wait for a signal indefinitely.

 source name [arg ...]

 Same as ., except it is not treated as a special built-in command.

 stop job ...

 Sends a SIGSTOP signal to one or more processes specified by job, suspending them

 until they receive SIGCONT. The same as kill -s STOP.

 suspend

 Sends a SIGSTOP signal to the main shell process, suspending the script or child Page 70/81

 shell session until it receives SIGCONT (for instance, when typing fg in the parent

 shell). Equivalent to kill -s STOP "$$", except that it accepts no operands and re?

 fuses to suspend a login shell.

 test expression

 The test and [commands execute conditional expressions similar to those specified

 for the [[compound command under Conditional Expressions above, but with several

 important differences. The =, == and != operators test for string (in)equality

 without pattern matching; == is nonstandard and unportable. The f3&& and || opera?

 tors are not available. Instead, the -a and -o binary operators can be used, but

 they are fraught with pitfalls due to grammatical ambiguities and therefore depre?

 cated in favor of invoking separate test commands. Most importantly, as test and [

 are simple regular commands, field splitting and pathname expansion are performed

 on all their arguments and all aspects of regular shell grammar (such as redirect?

 ion) remain active. This is usually harmful, so care must be taken to quote argu?

 ments and expansions to avoid this. To avoid the many pitfalls arising from these

 issues, the [[compound command should be used instead. The primary purpose of the

 test and [commands is compatibility with other shells that lack [[.

 The test/[command does not parse options except if there are two arguments and the

 second is --. To access the inline documentation with an option such as --man, you

 need one of the forms test --man -- or [--man --].

 times Displays the accumulated user and system CPU times, one line with the times used by

 the shell and another with those used by all of the shell's child processes. No op?

 tions are supported.

 ? trap [-p] [action] [sig] ...

 The -p option causes the trap action associated with each trap as specified by the

 arguments to be printed with appropriate quoting. Otherwise, action will be pro?

 cessed as if it were an argument to eval when the shell receives signal(s) sig.

 Each sig can be given as a number or as the name of the signal. Trap commands are

 executed in order of signal number. Any attempt to set a trap on a signal that was

 ignored on entry to the current shell is ineffective. If action is omitted and the

 first sig is a number, or if action is -, then the trap(s) for each sig are reset

 to their original values. If action is the null string then this signal is ignored

 by the shell and by the commands it invokes. If sig is ERR then action will be ex? Page 71/81

 ecuted whenever a command has a non-zero exit status. If sig is DEBUG then action

 will be executed before each command. The variable .sh.command will contain the

 current command line when action is running, in the same format as the output gen?

 erated by the xtrace option (minus the preceding PS4 prompt). If the exit status

 of the trap is 2 the command will not be executed. If the exit status of the trap

 is 255 and inside a function or a dot script, the function or dot script will re?

 turn. If sig is 0 or EXIT and the trap statement is executed inside the body of a

 function defined with the function name syntax, then the command action is executed

 after the function completes. If sig is 0 or EXIT for a trap set outside any func?

 tion then the command action is executed on exit from the shell. If sig is KEYBD,

 then action will be executed whenever a key is read while in emacs, gmacs, or vi

 mode. The trap command with no arguments prints a list of commands associated with

 each signal number.

 An exit or return without an argument in a trap action will preserve the exit status of

 the command that invoked the trap.

 true Does nothing, and exits 0. Used with while for infinite loops.

 type [-afpq] name ...

 The same as whence -v.

 ?? typeset [?ACHSbflmnprstux] [?EFLRXZi[n]] [+-M [mapname]] [-T [tname=(as?

 sign_list)]] [-h str] [-a [type]] [vname[=value]] ...

 Sets attributes and values for shell variables and functions. When invoked inside

 a function defined with the function name syntax, a new instance of the variable

 vname is created, and the variable's value and type are restored when the function

 completes. The following list of attributes may be specified:

 -A Declares vname to be an associative array. Subscripts are strings rather

 than arithmetic expressions.

 -C Causes each vname to be a compound variable. If value names a compound vari?

 able, it is copied into vname. Otherwise, the empty compound value is as?

 signed to vname.

 -a Declares vname to be an indexed array. If type is specified, it must be the

 name of an enumeration type created with the enum command and it allows enu?

 meration constants to be used as subscripts.

 -E Declares vname to be a double precision floating point number. If n is non- Page 72/81

 zero, it defines the number of significant figures that are used when ex?

 panding vname. Otherwise, ten significant figures will be used.

 -F Declares vname to be a double precision floating point number. If n is non-

 zero, it defines the number of places after the decimal point that are used

 when expanding vname. Otherwise ten places after the decimal point will be

 used.

 -H This option provides UNIX to host-name file mapping on non-UNIX machines.

 -L Left justify and remove leading blanks from value. If n is non-zero, it de?

 fines the width of the field, otherwise it is determined by the width of the

 value of first assignment. When the variable is assigned to, it is filled

 on the right with blanks or truncated, if necessary, to fit into the field.

 The -R option is turned off.

 -M Use the character mapping mapping defined by wctrans(3). such as tolower

 and toupper when assigning a value to each of the specified operands. When

 mapping is specified and there are not operands, all variables that use this

 mapping are written to standard output. When mapping is omitted and there

 are no operands, all mapped variables are written to standard output.

 -R Right justify and fill with leading blanks. If n is non-zero, it defines

 the width of the field, otherwise it is determined by the width of the value

 of first assignment. The field is left filled with blanks or truncated from

 the end if the variable is reassigned. The -L option is turned off.

 -S When used within the assign_list of a type definition, it causes the speci?

 fied subvariable to be shared by all instances of the type. When used in?

 side a function defined with the function reserved word, the specified vari?

 ables will have function static scope. Otherwise, the variable is unset

 prior to processing the assignment list.

 -T If followed by tname, it creates a type named by tname using the compound

 assignment assign_list to tname. Otherwise, it writes all the type defini?

 tions to standard output.

 -X Declares vname to be a double precision floating point number and expands

 using the %a format of ISO-C99. If n is non-zero, it defines the number of

 hex digits after the radix point that is used when expanding vname. The de?

 fault is 10. Page 73/81

 -Z Right justify and fill with leading zeros if the first non-blank character

 is a digit and the -L option has not been set. Remove leading zeros if the

 -L option is also set. If n is non-zero, it defines the width of the field,

 otherwise it is determined by the width of the value of first assignment.

 -f The names refer to function names rather than variable names. No assign?

 ments can be made and the only other valid options are -S, -t, -u and -x.

 The -S can be used with discipline functions defined in a type to indicate

 that the function is static. For a static function, the same method will be

 used by all instances of that type no matter which instance references it.

 In addition, it can only use value of variables from the original type defi?

 nition. These discipline functions cannot be redefined in any type in?

 stance. The -t option turns on execution tracing for this function. The -u

 option causes this function to be marked undefined. The FPATH variable will

 be searched to find the function definition when the function is referenced.

 If no options other than -f is specified, then the function definition will

 be displayed on standard output. If +f is specified, then a line containing

 the function name followed by a shell comment containing the line number and

 path name of the file where this function was defined, if any, is displayed.

 The exit status can be used to determine whether the function is defined so

 that typeset -f .sh.math.name will return 0 when math function name is de?

 fined and non-zero otherwise.

 -b The variable can hold any number of bytes of data. The data can be text or

 binary. The value is represented by the base64 encoding of the data. If -Z

 is also specified, the size in bytes of the data in the buffer will be de?

 termined by the size associated with the -Z. If the base64 string assigned

 results in more data, it will be truncated. Otherwise, it will be filled

 with bytes whose value is zero. The printf format %B can be used to output

 the actual data in this buffer instead of the base64 encoding of the data.

 -h Used within type definitions to add information when generating information

 about the subvariable on the man page. It is ignored when used outside of a

 type definition. When used with -f the information is associated with the

 corresponding discipline function.

 -i Declares vname to be represented internally as integer. The right hand side Page 74/81

 of an assignment is evaluated as an arithmetic expression when assigning to

 an integer. If n is non-zero, it defines the output arithmetic base, other?

 wise the output base will be ten.

 -l Used with -i, -E or -F, to indicate long integer, or long float. Otherwise,

 all uppercase characters are converted to lowercase. The uppercase option,

 -u, is turned off. Equivalent to -M tolower .

 -m moves or renames the variable. The value is the name of a variable whose

 value will be moved to vname. The original variable will be unset. Cannot

 be used with any other options.

 -n Declares vname to be a reference to the variable whose name is defined by

 the value of variable vname. This is usually used to reference a variable

 inside a function whose name has been passed as an argument. Cannot be used

 with any other options.

 -p The name, attributes and values for the given vnames are written on standard

 output in a form that can be used as shell input. If +p is specified, then

 the values are not displayed.

 -r The given vnames are marked read-only and these names cannot be changed by

 subsequent assignment.

 -s When given along with -i, restricts integer size to short.

 -t Tags the variables. Tags are user definable and have no special meaning to

 the shell.

 -u When given along with -i, specifies unsigned integer. Otherwise, all lower?

 case characters are converted to uppercase. The lowercase option, -l, is

 turned off. Equivalent to -M toupper .

 -x The given vnames are marked for automatic export to the environment of sub?

 sequently-executed commands. Variables whose names contain a . cannot be

 exported.

 The -i, -F, -E, and -X options cannot be specified along with -R, -L, or -Z. The

 -b option cannot be specified along with -L, -u, or -l. The -f, -m, -n, and -T op?

 tions cannot be used together with any other option.

 Using + rather than - causes these options to be turned off. If no vname arguments

 are given, a list of vnames (and optionally the values) of the variables is

 printed. (Using + rather than - keeps the values from being printed.) The -p op? Page 75/81

 tion causes typeset followed by the option letters to be printed before each name

 rather than the names of the options. If any option other than -p is given, only

 those variables which have all of the given options are printed. Otherwise, the

 vnames and attributes of all variables that have attributes are printed.

 ulimit [-HSaMctdfxlqenupmrbiswTv] [limit]

 Set or display a resource limit. The available resource limits are listed below.

 Many systems do not support one or more of these limits. The limit for a specified

 resource is set when limit is specified. The value of limit can be a number in the

 unit specified below with each resource, or the value unlimited. The -H and -S op?

 tions specify whether the hard limit or the soft limit for the given resource is

 set. A hard limit cannot be increased once it is set. A soft limit can be in?

 creased up to the value of the hard limit. If neither the H nor S option is speci?

 fied, the limit applies to both. The current resource limit is printed when limit

 is omitted. In this case, the soft limit is printed unless H is specified. When

 more than one resource is specified, then the limit name and unit is printed before

 the value.

 -a Lists all of the current resource limits.

 -b The socket buffer size in bytes.

 -c The number of 512-byte blocks on the size of core dumps.

 -d The number of K-bytes on the size of the data area.

 -e The scheduling priority.

 -f The number of 512-byte blocks on files that can be written by the current

 process or by child processes (files of any size may be read).

 -i The signal queue size.

 -l The locked address space in K-bytes.

 -M The address space limit in K-bytes.

 -m The number of K-bytes on the size of physical memory.

 -n The number of file descriptors plus 1.

 -p The number of 512-byte blocks for pipe buffering.

 -q The message queue size in K-bytes.

 -r The max real-time priority.

 -s The number of K-bytes on the size of the stack area.

 -T The number of threads. Page 76/81

 -t The number of CPU seconds to be used by each process.

 -u The number of processes.

 -v The number of K-bytes for virtual memory.

 -w The swap size in K-bytes.

 -x The number of file locks.

 If no option is given, -f is assumed.

 umask [-S] [mask]

 The user file-creation mask is set to mask (see umask(2)). mask can either be an

 octal number or a symbolic value as described in chmod(1). If a symbolic value is

 given, the new umask value is the complement of the result of applying mask to the

 complement of the previous umask value. If mask is omitted, the current value of

 the mask is printed. The -S option causes the mode to be printed as a symbolic

 value. Otherwise, the mask is printed in octal.

 unalias [-a] name ...

 The aliases given by the list of names are removed from the alias list. The -a op?

 tion causes all the aliases to be unset.

 ? unset [-fnv] vname ...

 The variables given by the list of vnames are unassigned, i.e., except for subvari?

 ables within a type, their values and attributes are erased. For subvariables of a

 type, the values are reset to the default value from the type definition. Readonly

 variables cannot be unset. If the -f option is set, then the names refer to func?

 tion names. If the -v option is set, then the names refer to variable names. The

 -f option overrides -v. If -n is set and name is a name reference, then name will

 be unset rather than the variable that it references. The default is equivalent to

 -v. Unsetting LINENO, MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and _ re?

 moves their special meaning even if they are subsequently assigned to.

 wait [job ...]

 Wait for the specified job and report its termination status. If job is not given,

 then all currently active child processes are waited for. The exit status from

 this command is that of the last process waited for if job is specified; otherwise

 it is zero. See Jobs for a description of the format of job.

 whence [-afpqv] name ...

 For each name, indicate how it would be interpreted if used as a command name. Page 77/81

 The -v option produces a more verbose report. The -f option skips the search for

 functions. The -p option does a path search for name even if name is an alias, a

 function, or a reserved word. The -p option turns off the -v option. The -q op?

 tion causes whence to enter quiet mode. whence will return zero if all arguments

 are built-ins, functions, or are programs found on the path. The -a option is sim?

 ilar to the -v option but causes all interpretations of the given name to be re?

 ported.

 Invocation.

 If the shell is invoked by exec(2), initialization depends on argument zero ($0) as fol?

 lows. If the first character of $0 is -, or the -l option is given on the invocation com?

 mand line, then the shell is assumed to be a login shell. If the basename of the command

 path in $0 is rsh, rksh, or krsh, then the shell becomes restricted. If the basename is

 sh or rsh, or the -o posix option is given on the invocation command line, then the shell

 is initialized in full POSIX compliance mode (see the set builtin command above for more

 information). After this, if the shell was assumed to be a login shell, commands are read

 from /etc/profile and then from $HOME/.profile if it exists. Alternatively, the option -l

 causes the shell to be treated as a login shell. Next, for interactive shells, commands

 are read from the file named by ENV if the file exists, its name being determined by per?

 forming parameter expansion, command substitution, and arithmetic expansion on the value

 of that environment variable. If the -s option is not present and arg and a file by the

 name of arg exists, then it reads and executes this script. Otherwise, if the first arg

 does not contain a /, a path search is performed on the first arg to determine the name of

 the script to execute. The script arg must have execute permission and any setuid and

 setgid settings will be ignored. If the script is not found on the path, arg is processed

 as if it named a built-in command or function. Commands are then read as described below;

 the following options are interpreted by the shell when it is invoked:

 -D A list of all double quoted strings that are preceded by a $ will be printed on

 standard output and the shell will exit. This set of strings will be subject to

 language translation when the locale is not C or POSIX. No commands will be exe?

 cuted.

 -E or -o rc or --rc

 Read the file named by the ENV variable or by $HOME/.kshrc if not defined after

 the profiles. On by default for interactive shells. Use +E, +o rc or --norc to Page 78/81

 turn off.

 -c Read and execute a script from the first arg instead of a file. The second arg,

 if present, becomes that script's command name ($0). Any third and further args

 become positional parameters starting at $1.

 -s Read and execute a script from standard input instead of a file. The command name

 ($0) cannot be set. Any args become the positional parameters starting at $1.

 This option is forced on if no arg is given and is ignored if -c is also speci?

 fied.

 -i or -o interactive or --interactive

 If the -i option is present or if the shell's standard input and standard error

 are attached to a terminal (as told by tcgetattr(3)), then this shell is interac?

 tive. In this case TERM is ignored (so that kill 0 does not kill an interactive

 shell) and INTR is caught and ignored (so that wait is interruptible). In all

 cases, QUIT is ignored by the shell.

 -r or -o restricted or --restricted

 If the -r option is present, the shell is a restricted shell.

 The remaining options and arguments are described under the set command above. An op?

 tional - as the first argument is ignored.

 Rksh Only.

 Rksh is used to set up login names and execution environments whose capabilities are more

 controlled than those of the standard shell. The actions of rksh are identical to those

 of ksh, except that the following are disallowed:

 unsetting the restricted option,

 changing directory (see cd(1)),

 setting or unsetting the value or attributes of SHELL, ENV, FPATH, or PATH,

 specifying path or command names containing /,

 redirecting output (>, >|, <>, and >>),

 adding or deleting built-in commands,

 using command -p to invoke a command.

 The restrictions above are enforced after .profile and the ENV files are interpreted.

 When a command to be executed is found to be a shell procedure, rksh invokes ksh to exe?

 cute it. Thus, it is possible to provide to the end-user shell procedures that have ac?

 cess to the full power of the standard shell, while imposing a limited menu of commands; Page 79/81

 this scheme assumes that the end-user does not have write and execute permissions in the

 same directory.

 The net effect of these rules is that the writer of the .profile has complete control over

 user actions, by performing guaranteed setup actions and leaving the user in an appropri?

 ate directory (probably not the login directory).

 The system administrator often sets up a directory of commands (e.g., /usr/rbin) that can

 be safely invoked by rksh.

EXIT STATUS

 Errors detected by the shell, such as syntax errors, cause the shell to return a non-zero

 exit status. If the shell is being used non-interactively, then execution of the shell

 file is abandoned unless the error occurs inside a subshell in which case the subshell is

 abandoned. Otherwise, the shell returns the exit status of the last command executed (see

 also the exit command above). Run time errors detected by the shell are reported by

 printing the command or function name and the error condition. If the line number that

 the error occurred on is greater than one, then the line number is also printed in square

 brackets ([]) after the command or function name.

FILES

 /etc/profile

 The system wide initialization file, executed for login shells.

 $HOME/.profile

 The personal initialization file, executed for login shells after /etc/profile.

 $HOME/.kshrc

 Default personal initialization file, executed for interactive shells when ENV is

 not set.

 /etc/suid_profile

 Alternative initialization file, executed instead of the personal initialization

 file when the real and effective user or group id do not match.

 /dev/null

 NULL device

SEE ALSO

 cat(1), cd(1), chmod(1), cut(1), date(1), egrep(1), echo(1), emacs(1), env(1), fgrep(1),

 gmacs(1), grep(1), stty(1), test(1), umask(1), vi(1), dup(2), exec(2), fork(2), getpw?

 nam(3), ioctl(2), lseek(2), paste(1), pathconf(2), pipe(2), sysconf(3), umask(2), Page 80/81

 ulimit(2), wait(2), strftime(3), wctrans(3), rand(3), profile(5), environ(7).

 Morris I. Bolsky and David G. Korn, The New KornShell Command and Programming Language,

 Prentice Hall, 1995.

 POSIX - Part 2: Shell and Utilities, IEEE Std 1003.2-1992, ISO/IEC 9945-2, IEEE, 1993.

CAVEATS

 If a command is executed, and then a command with the same name is installed in a direc?

 tory in the search path before the directory where the original command was found, the

 shell will continue to exec the original command. Use the hash command or the -t option

 of the alias command to correct this situation.

 Some very old shell scripts contain a ^ as a synonym for the pipe character |.

 Using the hist built-in command within a compound command will cause the whole command to

 disappear from the history file.

 The built-in command . file reads the whole file before any commands are executed. There?

 fore, alias and unalias commands in the file will not apply to any commands defined in the

 file.

 Traps are not processed while a job is waiting for a foreground process. Thus, a trap on

 CHLD won't be executed until the foreground job terminates.

 It is a good idea to leave a space after the comma operator in arithmetic expressions to

 prevent the comma from being interpreted as the decimal point character in certain lo?

 cales.

 KSH(1)

Page 81/81

