
Rocky Enterprise Linux 9.2 Manual Pages on command 'rgrep.1'

$ man rgrep.1

GREP(1) User Commands GREP(1)

NAME

 grep, egrep, fgrep, rgrep - print lines that match patterns

SYNOPSIS

 grep [OPTION...] PATTERNS [FILE...]

 grep [OPTION...] -e PATTERNS ... [FILE...]

 grep [OPTION...] -f PATTERN_FILE ... [FILE...]

DESCRIPTION

 grep searches for PATTERNS in each FILE. PATTERNS is one or more patterns separated by

 newline characters, and grep prints each line that matches a pattern. Typically PATTERNS

 should be quoted when grep is used in a shell command.

 A FILE of ?-? stands for standard input. If no FILE is given, recursive searches examine

 the working directory, and nonrecursive searches read standard input.

 In addition, the variant programs egrep, fgrep and rgrep are the same as grep -E, grep -F,

 and grep -r, respectively. These variants are deprecated, but are provided for backward

 compatibility.

OPTIONS

 Generic Program Information

 --help Output a usage message and exit.

 -V, --version

 Output the version number of grep and exit.

 Pattern Syntax

 -E, --extended-regexp Page 1/15

 Interpret PATTERNS as extended regular expressions (EREs, see below).

 -F, --fixed-strings

 Interpret PATTERNS as fixed strings, not regular expressions.

 -G, --basic-regexp

 Interpret PATTERNS as basic regular expressions (BREs, see below). This is the

 default.

 -P, --perl-regexp

 Interpret I<PATTERNS> as Perl-compatible regular expressions (PCREs). This option

 is experimental when combined with the -z (--null-data) option, and grep -P may

 warn of unimplemented features.

 Matching Control

 -e PATTERNS, --regexp=PATTERNS

 Use PATTERNS as the patterns. If this option is used multiple times or is combined

 with the -f (--file) option, search for all patterns given. This option can be

 used to protect a pattern beginning with ?-?.

 -f FILE, --file=FILE

 Obtain patterns from FILE, one per line. If this option is used multiple times or

 is combined with the -e (--regexp) option, search for all patterns given. The

 empty file contains zero patterns, and therefore matches nothing.

 -i, --ignore-case

 Ignore case distinctions in patterns and input data, so that characters that differ

 only in case match each other.

 --no-ignore-case

 Do not ignore case distinctions in patterns and input data. This is the default.

 This option is useful for passing to shell scripts that already use -i, to cancel

 its effects because the two options override each other.

 -v, --invert-match

 Invert the sense of matching, to select non-matching lines.

 -w, --word-regexp

 Select only those lines containing matches that form whole words. The test is that

 the matching substring must either be at the beginning of the line, or preceded by

 a non-word constituent character. Similarly, it must be either at the end of the

 line or followed by a non-word constituent character. Word-constituent characters Page 2/15

 are letters, digits, and the underscore. This option has no effect if -x is also

 specified.

 -x, --line-regexp

 Select only those matches that exactly match the whole line. For a regular

 expression pattern, this is like parenthesizing the pattern and then surrounding it

 with ^ and $.

 -y Obsolete synonym for -i.

 General Output Control

 -c, --count

 Suppress normal output; instead print a count of matching lines for each input

 file. With the -v, --invert-match option (see below), count non-matching lines.

 --color[=WHEN], --colour[=WHEN]

 Surround the matched (non-empty) strings, matching lines, context lines, file

 names, line numbers, byte offsets, and separators (for fields and groups of context

 lines) with escape sequences to display them in color on the terminal. The colors

 are defined by the environment variable GREP_COLORS. The deprecated environment

 variable GREP_COLOR is still supported, but its setting does not have priority.

 WHEN is never, always, or auto.

 -L, --files-without-match

 Suppress normal output; instead print the name of each input file from which no

 output would normally have been printed.

 -l, --files-with-matches

 Suppress normal output; instead print the name of each input file from which output

 would normally have been printed. Scanning each input file stops upon first match.

 -m NUM, --max-count=NUM

 Stop reading a file after NUM matching lines. If the input is standard input from

 a regular file, and NUM matching lines are output, grep ensures that the standard

 input is positioned to just after the last matching line before exiting, regardless

 of the presence of trailing context lines. This enables a calling process to

 resume a search. When grep stops after NUM matching lines, it outputs any trailing

 context lines. When the -c or --count option is also used, grep does not output a

 count greater than NUM. When the -v or --invert-match option is also used, grep

 stops after outputting NUM non-matching lines. Page 3/15

 -o, --only-matching

 Print only the matched (non-empty) parts of a matching line, with each such part on

 a separate output line.

 -q, --quiet, --silent

 Quiet; do not write anything to standard output. Exit immediately with zero status

 if any match is found, even if an error was detected. Also see the -s or

 --no-messages option.

 -s, --no-messages

 Suppress error messages about nonexistent or unreadable files.

 Output Line Prefix Control

 -b, --byte-offset

 Print the 0-based byte offset within the input file before each line of output. If

 -o (--only-matching) is specified, print the offset of the matching part itself.

 -H, --with-filename

 Print the file name for each match. This is the default when there is more than

 one file to search. This is a GNU extension.

 -h, --no-filename

 Suppress the prefixing of file names on output. This is the default when there is

 only one file (or only standard input) to search.

 --label=LABEL

 Display input actually coming from standard input as input coming from file LABEL.

 This can be useful for commands that transform a file's contents before searching,

 e.g., gzip -cd foo.gz | grep --label=foo -H 'some pattern'. See also the -H

 option.

 -n, --line-number

 Prefix each line of output with the 1-based line number within its input file.

 -T, --initial-tab

 Make sure that the first character of actual line content lies on a tab stop, so

 that the alignment of tabs looks normal. This is useful with options that prefix

 their output to the actual content: -H,-n, and -b. In order to improve the

 probability that lines from a single file will all start at the same column, this

 also causes the line number and byte offset (if present) to be printed in a minimum

 size field width. Page 4/15

 -Z, --null

 Output a zero byte (the ASCII NUL character) instead of the character that normally

 follows a file name. For example, grep -lZ outputs a zero byte after each file

 name instead of the usual newline. This option makes the output unambiguous, even

 in the presence of file names containing unusual characters like newlines. This

 option can be used with commands like find -print0, perl -0, sort -z, and xargs -0

 to process arbitrary file names, even those that contain newline characters.

 Context Line Control

 -A NUM, --after-context=NUM

 Print NUM lines of trailing context after matching lines. Places a line containing

 a group separator (--) between contiguous groups of matches. With the -o or

 --only-matching option, this has no effect and a warning is given.

 -B NUM, --before-context=NUM

 Print NUM lines of leading context before matching lines. Places a line containing

 a group separator (--) between contiguous groups of matches. With the -o or

 --only-matching option, this has no effect and a warning is given.

 -C NUM, -NUM, --context=NUM

 Print NUM lines of output context. Places a line containing a group separator (--)

 between contiguous groups of matches. With the -o or --only-matching option, this

 has no effect and a warning is given.

 --group-separator=SEP

 When -A, -B, or -C are in use, print SEP instead of -- between groups of lines.

 --no-group-separator

 When -A, -B, or -C are in use, do not print a separator between groups of lines.

 File and Directory Selection

 -a, --text

 Process a binary file as if it were text; this is equivalent to the

 --binary-files=text option.

 --binary-files=TYPE

 If a file's data or metadata indicate that the file contains binary data, assume

 that the file is of type TYPE. Non-text bytes indicate binary data; these are

 either output bytes that are improperly encoded for the current locale, or null

 input bytes when the -z option is not given. Page 5/15

 By default, TYPE is binary, and grep suppresses output after null input binary data

 is discovered, and suppresses output lines that contain improperly encoded data.

 When some output is suppressed, grep follows any output with a one-line message

 saying that a binary file matches.

 If TYPE is without-match, when grep discovers null input binary data it assumes

 that the rest of the file does not match; this is equivalent to the -I option.

 If TYPE is text, grep processes a binary file as if it were text; this is

 equivalent to the -a option.

 When type is binary, grep may treat non-text bytes as line terminators even without

 the -z option. This means choosing binary versus text can affect whether a pattern

 matches a file. For example, when type is binary the pattern q$ might match q

 immediately followed by a null byte, even though this is not matched when type is

 text. Conversely, when type is binary the pattern . (period) might not match a

 null byte.

 Warning: The -a option might output binary garbage, which can have nasty side

 effects if the output is a terminal and if the terminal driver interprets some of

 it as commands. On the other hand, when reading files whose text encodings are

 unknown, it can be helpful to use -a or to set LC_ALL='C' in the environment, in

 order to find more matches even if the matches are unsafe for direct display.

 -D ACTION, --devices=ACTION

 If an input file is a device, FIFO or socket, use ACTION to process it. By

 default, ACTION is read, which means that devices are read just as if they were

 ordinary files. If ACTION is skip, devices are silently skipped.

 -d ACTION, --directories=ACTION

 If an input file is a directory, use ACTION to process it. By default, ACTION is

 read, i.e., read directories just as if they were ordinary files. If ACTION is

 skip, silently skip directories. If ACTION is recurse, read all files under each

 directory, recursively, following symbolic links only if they are on the command

 line. This is equivalent to the -r option.

 --exclude=GLOB

 Skip any command-line file with a name suffix that matches the pattern GLOB, using

 wildcard matching; a name suffix is either the whole name, or a trailing part that

 starts with a non-slash character immediately after a slash (/) in the name. When Page 6/15

 searching recursively, skip any subfile whose base name matches GLOB; the base name

 is the part after the last slash. A pattern can use *, ?, and [...] as wildcards,

 and \ to quote a wildcard or backslash character literally.

 --exclude-from=FILE

 Skip files whose base name matches any of the file-name globs read from FILE (using

 wildcard matching as described under --exclude).

 --exclude-dir=GLOB

 Skip any command-line directory with a name suffix that matches the pattern GLOB.

 When searching recursively, skip any subdirectory whose base name matches GLOB.

 Ignore any redundant trailing slashes in GLOB.

 -I Process a binary file as if it did not contain matching data; this is equivalent to

 the --binary-files=without-match option.

 --include=GLOB

 Search only files whose base name matches GLOB (using wildcard matching as

 described under --exclude). If contradictory --include and --exclude options are

 given, the last matching one wins. If no --include or --exclude options match, a

 file is included unless the first such option is --include.

 -r, --recursive

 Read all files under each directory, recursively, following symbolic links only if

 they are on the command line. Note that if no file operand is given, B<grep>

 searches the working directory. This is equivalent to the -d recurse option.

 -R, --dereference-recursive

 Read all files under each directory, recursively. Follow all symbolic links,

 unlike -r.

 Other Options

 --line-buffered

 Use line buffering on output. This can cause a performance penalty.

 -U, --binary

 Treat the file(s) as binary. By default, under MS-DOS and MS-Windows, grep guesses

 whether a file is text or binary as described for the --binary-files option. If

 grep decides the file is a text file, it strips the CR characters from the original

 file contents (to make regular expressions with ^ and $ work correctly).

 Specifying -U overrules this guesswork, causing all files to be read and passed to Page 7/15

 the matching mechanism verbatim; if the file is a text file with CR/LF pairs at the

 end of each line, this will cause some regular expressions to fail. This option

 has no effect on platforms other than MS-DOS and MS-Windows.

 -z, --null-data

 Treat input and output data as sequences of lines, each terminated by a zero byte

 (the ASCII NUL character) instead of a newline. Like the -Z or --null option, this

 option can be used with commands like sort -z to process arbitrary file names.

REGULAR EXPRESSIONS

 A regular expression is a pattern that describes a set of strings. Regular expressions

 are constructed analogously to arithmetic expressions, by using various operators to

 combine smaller expressions.

 grep understands three different versions of regular expression syntax: ?basic? (BRE),

 ?extended? (ERE) and ?perl? (PCRE). In GNU grep there is no difference in available

 functionality between basic and extended syntaxes. In other implementations, basic

 regular expressions are less powerful. The following description applies to extended

 regular expressions; differences for basic regular expressions are summarized afterwards.

 Perl-compatible regular expressions give additional functionality, and are documented in

 B<pcresyntax>(3) and B<pcrepattern>(3), but work only if PCRE support is enabled.

 The fundamental building blocks are the regular expressions that match a single character.

 Most characters, including all letters and digits, are regular expressions that match

 themselves. Any meta-character with special meaning may be quoted by preceding it with a

 backslash.

 The period . matches any single character. It is unspecified whether it matches an

 encoding error.

 Character Classes and Bracket Expressions

 A bracket expression is a list of characters enclosed by [and]. It matches any single

 character in that list. If the first character of the list is the caret ^ then it matches

 any character not in the list; it is unspecified whether it matches an encoding error.

 For example, the regular expression [0123456789] matches any single digit.

 Within a bracket expression, a range expression consists of two characters separated by a

 hyphen. It matches any single character that sorts between the two characters, inclusive,

 using the locale's collating sequence and character set. For example, in the default C

 locale, [a-d] is equivalent to [abcd]. Many locales sort characters in dictionary order, Page 8/15

 and in these locales [a-d] is typically not equivalent to [abcd]; it might be equivalent

 to [aBbCcDd], for example. To obtain the traditional interpretation of bracket

 expressions, you can use the C locale by setting the LC_ALL environment variable to the

 value C.

 Finally, certain named classes of characters are predefined within bracket expressions, as

 follows. Their names are self explanatory, and they are [:alnum:], [:alpha:], [:blank:],

 [:cntrl:], [:digit:], [:graph:], [:lower:], [:print:], [:punct:], [:space:], [:upper:],

 and [:xdigit:]. For example, [[:alnum:]] means the character class of numbers and letters

 in the current locale. In the C locale and ASCII character set encoding, this is the same

 as [0-9A-Za-z]. (Note that the brackets in these class names are part of the symbolic

 names, and must be included in addition to the brackets delimiting the bracket

 expression.) Most meta-characters lose their special meaning inside bracket expressions.

 To include a literal] place it first in the list. Similarly, to include a literal ^

 place it anywhere but first. Finally, to include a literal - place it last.

 Anchoring

 The caret ^ and the dollar sign $ are meta-characters that respectively match the empty

 string at the beginning and end of a line.

 The Backslash Character and Special Expressions

 The symbols \< and \> respectively match the empty string at the beginning and end of a

 word. The symbol \b matches the empty string at the edge of a word, and \B matches the

 empty string provided it's not at the edge of a word. The symbol \w is a synonym for

 [_[:alnum:]] and \W is a synonym for [^_[:alnum:]].

 Repetition

 A regular expression may be followed by one of several repetition operators:

 ? The preceding item is optional and matched at most once.

 * The preceding item will be matched zero or more times.

 + The preceding item will be matched one or more times.

 {n} The preceding item is matched exactly n times.

 {n,} The preceding item is matched n or more times.

 {,m} The preceding item is matched at most m times. This is a GNU extension.

 {n,m} The preceding item is matched at least n times, but not more than m times.

 Concatenation

 Two regular expressions may be concatenated; the resulting regular expression matches any Page 9/15

 string formed by concatenating two substrings that respectively match the concatenated

 expressions.

 Alternation

 Two regular expressions may be joined by the infix operator |; the resulting regular

 expression matches any string matching either alternate expression.

 Precedence

 Repetition takes precedence over concatenation, which in turn takes precedence over

 alternation. A whole expression may be enclosed in parentheses to override these

 precedence rules and form a subexpression.

 Back-references and Subexpressions

 The back-reference \n, where n is a single digit, matches the substring previously matched

 by the nth parenthesized subexpression of the regular expression.

 Basic vs Extended Regular Expressions

 In basic regular expressions the meta-characters ?, +, {, |, (, and) lose their special

 meaning; instead use the backslashed versions \?, \+, \{, \|, \(, and \).

EXIT STATUS

 Normally the exit status is 0 if a line is selected, 1 if no lines were selected, and 2 if

 an error occurred. However, if the -q or --quiet or --silent is used and a line is

 selected, the exit status is 0 even if an error occurred.

ENVIRONMENT

 The behavior of grep is affected by the following environment variables.

 The locale for category LC_foo is specified by examining the three environment variables

 LC_ALL, LC_foo, LANG, in that order. The first of these variables that is set specifies

 the locale. For example, if LC_ALL is not set, but LC_MESSAGES is set to pt_BR, then the

 Brazilian Portuguese locale is used for the LC_MESSAGES category. The C locale is used if

 none of these environment variables are set, if the locale catalog is not installed, or if

 grep was not compiled with national language support (NLS). The shell command locale -a

 lists locales that are currently available.

 GREP_COLOR

 This variable specifies the color used to highlight matched (non-empty) text. It

 is deprecated in favor of GREP_COLORS, but still supported. The mt, ms, and mc

 capabilities of GREP_COLORS have priority over it. It can only specify the color

 used to highlight the matching non-empty text in any matching line (a selected line Page 10/15

 when the -v command-line option is omitted, or a context line when -v is

 specified). The default is 01;31, which means a bold red foreground text on the

 terminal's default background.

 GREP_COLORS

 Specifies the colors and other attributes used to highlight various parts of the

 output. Its value is a colon-separated list of capabilities that defaults to

 ms=01;31:mc=01;31:sl=:cx=:fn=35:ln=32:bn=32:se=36 with the rv and ne boolean

 capabilities omitted (i.e., false). Supported capabilities are as follows.

 sl= SGR substring for whole selected lines (i.e., matching lines when the -v

 command-line option is omitted, or non-matching lines when -v is specified).

 If however the boolean rv capability and the -v command-line option are both

 specified, it applies to context matching lines instead. The default is

 empty (i.e., the terminal's default color pair).

 cx= SGR substring for whole context lines (i.e., non-matching lines when the -v

 command-line option is omitted, or matching lines when -v is specified). If

 however the boolean rv capability and the -v command-line option are both

 specified, it applies to selected non-matching lines instead. The default

 is empty (i.e., the terminal's default color pair).

 rv Boolean value that reverses (swaps) the meanings of the sl= and cx=

 capabilities when the -v command-line option is specified. The default is

 false (i.e., the capability is omitted).

 mt=01;31

 SGR substring for matching non-empty text in any matching line (i.e., a

 selected line when the -v command-line option is omitted, or a context line

 when -v is specified). Setting this is equivalent to setting both ms= and

 mc= at once to the same value. The default is a bold red text foreground

 over the current line background.

 ms=01;31

 SGR substring for matching non-empty text in a selected line. (This is only

 used when the -v command-line option is omitted.) The effect of the sl= (or

 cx= if rv) capability remains active when this kicks in. The default is a

 bold red text foreground over the current line background.

 mc=01;31 Page 11/15

 SGR substring for matching non-empty text in a context line. (This is only

 used when the -v command-line option is specified.) The effect of the cx=

 (or sl= if rv) capability remains active when this kicks in. The default is

 a bold red text foreground over the current line background.

 fn=35 SGR substring for file names prefixing any content line. The default is a

 magenta text foreground over the terminal's default background.

 ln=32 SGR substring for line numbers prefixing any content line. The default is a

 green text foreground over the terminal's default background.

 bn=32 SGR substring for byte offsets prefixing any content line. The default is a

 green text foreground over the terminal's default background.

 se=36 SGR substring for separators that are inserted between selected line fields

 (:), between context line fields, (-), and between groups of adjacent lines

 when nonzero context is specified (--). The default is a cyan text

 foreground over the terminal's default background.

 ne Boolean value that prevents clearing to the end of line using Erase in Line

 (EL) to Right (\33[K) each time a colorized item ends. This is needed on

 terminals on which EL is not supported. It is otherwise useful on terminals

 for which the back_color_erase (bce) boolean terminfo capability does not

 apply, when the chosen highlight colors do not affect the background, or

 when EL is too slow or causes too much flicker. The default is false (i.e.,

 the capability is omitted).

 Note that boolean capabilities have no =... part. They are omitted (i.e., false)

 by default and become true when specified.

 See the Select Graphic Rendition (SGR) section in the documentation of the text

 terminal that is used for permitted values and their meaning as character

 attributes. These substring values are integers in decimal representation and can

 be concatenated with semicolons. grep takes care of assembling the result into a

 complete SGR sequence (\33[...m). Common values to concatenate include 1 for bold,

 4 for underline, 5 for blink, 7 for inverse, 39 for default foreground color, 30 to

 37 for foreground colors, 90 to 97 for 16-color mode foreground colors, 38;5;0 to

 38;5;255 for 88-color and 256-color modes foreground colors, 49 for default

 background color, 40 to 47 for background colors, 100 to 107 for 16-color mode

 background colors, and 48;5;0 to 48;5;255 for 88-color and 256-color modes Page 12/15

 background colors.

 LC_ALL, LC_COLLATE, LANG

 These variables specify the locale for the LC_COLLATE category, which determines

 the collating sequence used to interpret range expressions like [a-z].

 LC_ALL, LC_CTYPE, LANG

 These variables specify the locale for the LC_CTYPE category, which determines the

 type of characters, e.g., which characters are whitespace. This category also

 determines the character encoding, that is, whether text is encoded in UTF-8,

 ASCII, or some other encoding. In the C or POSIX locale, all characters are

 encoded as a single byte and every byte is a valid character.

 LC_ALL, LC_MESSAGES, LANG

 These variables specify the locale for the LC_MESSAGES category, which determines

 the language that grep uses for messages. The default C locale uses American

 English messages.

 POSIXLY_CORRECT

 If set, grep behaves as POSIX requires; otherwise, grep behaves more like other GNU

 programs. POSIX requires that options that follow file names must be treated as

 file names; by default, such options are permuted to the front of the operand list

 and are treated as options. Also, POSIX requires that unrecognized options be

 diagnosed as ?illegal?, but since they are not really against the law the default

 is to diagnose them as ?invalid?. POSIXLY_CORRECT also disables

 _N_GNU_nonoption_argv_flags_, described below.

 _N_GNU_nonoption_argv_flags_

 (Here N is grep's numeric process ID.) If the ith character of this environment

 variable's value is 1, do not consider the ith operand of grep to be an option,

 even if it appears to be one. A shell can put this variable in the environment for

 each command it runs, specifying which operands are the results of file name

 wildcard expansion and therefore should not be treated as options. This behavior

 is available only with the GNU C library, and only when POSIXLY_CORRECT is not set.

NOTES

 This man page is maintained only fitfully; the full documentation is often more up-to-

 date.

COPYRIGHT Page 13/15

 Copyright 1998-2000, 2002, 2005-2021 Free Software Foundation, Inc.

 This is free software; see the source for copying conditions. There is NO warranty; not

 even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

BUGS

 Reporting Bugs

 Email bug reports to the bug-reporting address ?bug-grep@gnu.org?. An email archive

 ?https://lists.gnu.org/mailman/listinfo/bug-grep? and a bug tracker

 ?https://debbugs.gnu.org/cgi/pkgreport.cgi?package=grep? are available.

 Known Bugs

 Large repetition counts in the {n,m} construct may cause grep to use lots of memory. In

 addition, certain other obscure regular expressions require exponential time and space,

 and may cause grep to run out of memory.

 Back-references are very slow, and may require exponential time.

EXAMPLE

 The following example outputs the location and contents of any line containing ?f? and

 ending in ?.c?, within all files in the current directory whose names contain ?g? and end

 in ?.h?. The -n option outputs line numbers, the -- argument treats expansions of ?*g*.h?

 starting with ?-? as file names not options, and the empty file /dev/null causes file

 names to be output even if only one file name happens to be of the form ?*g*.h?.

 $ grep -n -- 'f.*\.c$' *g*.h /dev/null

 argmatch.h:1:/* definitions and prototypes for argmatch.c

 The only line that matches is line 1 of argmatch.h. Note that the regular expression syn?

 tax used in the pattern differs from the globbing syntax that the shell uses to match file

 names.

SEE ALSO

 Regular Manual Pages

 awk(1), cmp(1), diff(1), find(1), perl(1), sed(1), sort(1), xargs(1), read(2), pcre(3),

 pcresyntax(3), pcrepattern(3), terminfo(5), glob(7), regex(7)

 Full Documentation

 A complete manual ?https://www.gnu.org/software/grep/manual/? is available. If the info

 and grep programs are properly installed at your site, the command

 info grep

 should give you access to the complete manual. Page 14/15

GNU grep 3.7 2019-12-29 GREP(1)

Page 15/15

