
Rocky Enterprise Linux 9.2 Manual Pages on command 'recvmmsg.2'

$ man recvmmsg.2

RECVMMSG(2) Linux Programmer's Manual RECVMMSG(2)

NAME

 recvmmsg - receive multiple messages on a socket

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <sys/socket.h>

 int recvmmsg(int sockfd, struct mmsghdr *msgvec, unsigned int vlen,

 int flags, struct timespec *timeout);

DESCRIPTION

 The recvmmsg() system call is an extension of recvmsg(2) that allows the caller to receive

 multiple messages from a socket using a single system call. (This has performance bene?

 fits for some applications.) A further extension over recvmsg(2) is support for a timeout

 on the receive operation.

 The sockfd argument is the file descriptor of the socket to receive data from.

 The msgvec argument is a pointer to an array of mmsghdr structures. The size of this ar?

 ray is specified in vlen.

 The mmsghdr structure is defined in <sys/socket.h> as:

 struct mmsghdr {

 struct msghdr msg_hdr; /* Message header */

 unsigned int msg_len; /* Number of received bytes for header */

 };

 The msg_hdr field is a msghdr structure, as described in recvmsg(2). The msg_len field is

 the number of bytes returned for the message in the entry. This field has the same value Page 1/5

 as the return value of a single recvmsg(2) on the header.

 The flags argument contains flags ORed together. The flags are the same as documented for

 recvmsg(2), with the following addition:

 MSG_WAITFORONE (since Linux 2.6.34)

 Turns on MSG_DONTWAIT after the first message has been received.

 The timeout argument points to a struct timespec (see clock_gettime(2)) defining a timeout

 (seconds plus nanoseconds) for the receive operation (but see BUGS!). (This interval will

 be rounded up to the system clock granularity, and kernel scheduling delays mean that the

 blocking interval may overrun by a small amount.) If timeout is NULL, then the operation

 blocks indefinitely.

 A blocking recvmmsg() call blocks until vlen messages have been received or until the

 timeout expires. A nonblocking call reads as many messages as are available (up to the

 limit specified by vlen) and returns immediately.

 On return from recvmmsg(), successive elements of msgvec are updated to contain informa?

 tion about each received message: msg_len contains the size of the received message; the

 subfields of msg_hdr are updated as described in recvmsg(2). The return value of the call

 indicates the number of elements of msgvec that have been updated.

RETURN VALUE

 On success, recvmmsg() returns the number of messages received in msgvec; on error, -1 is

 returned, and errno is set to indicate the error.

ERRORS

 Errors are as for recvmsg(2). In addition, the following error can occur:

 EINVAL timeout is invalid.

 See also BUGS.

VERSIONS

 The recvmmsg() system call was added in Linux 2.6.33. Support in glibc was added in ver?

 sion 2.12.

CONFORMING TO

 recvmmsg() is Linux-specific.

BUGS

 The timeout argument does not work as intended. The timeout is checked only after the re?

 ceipt of each datagram, so that if up to vlen-1 datagrams are received before the timeout

 expires, but then no further datagrams are received, the call will block forever. Page 2/5

 If an error occurs after at least one message has been received, the call succeeds, and

 returns the number of messages received. The error code is expected to be returned on a

 subsequent call to recvmmsg(). In the current implementation, however, the error code can

 be overwritten in the meantime by an unrelated network event on a socket, for example an

 incoming ICMP packet.

EXAMPLES

 The following program uses recvmmsg() to receive multiple messages on a socket and stores

 them in multiple buffers. The call returns if all buffers are filled or if the timeout

 specified has expired.

 The following snippet periodically generates UDP datagrams containing a random number:

 $ while true; do echo $RANDOM > /dev/udp/127.0.0.1/1234;

 sleep 0.25; done

 These datagrams are read by the example application, which can give the following output:

 $./a.out

 5 messages received

 1 11782

 2 11345

 3 304

 4 13514

 5 28421

 Program source

 #define _GNU_SOURCE

 #include <netinet/ip.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 #include <sys/socket.h>

 int

 main(void)

 {

 #define VLEN 10

 #define BUFSIZE 200

 #define TIMEOUT 1 Page 3/5

 int sockfd, retval;

 struct sockaddr_in addr;

 struct mmsghdr msgs[VLEN];

 struct iovec iovecs[VLEN];

 char bufs[VLEN][BUFSIZE+1];

 struct timespec timeout;

 sockfd = socket(AF_INET, SOCK_DGRAM, 0);

 if (sockfd == -1) {

 perror("socket()");

 exit(EXIT_FAILURE);

 }

 addr.sin_family = AF_INET;

 addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);

 addr.sin_port = htons(1234);

 if (bind(sockfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {

 perror("bind()");

 exit(EXIT_FAILURE);

 }

 memset(msgs, 0, sizeof(msgs));

 for (int i = 0; i < VLEN; i++) {

 iovecs[i].iov_base = bufs[i];

 iovecs[i].iov_len = BUFSIZE;

 msgs[i].msg_hdr.msg_iov = &iovecs[i];

 msgs[i].msg_hdr.msg_iovlen = 1;

 }

 timeout.tv_sec = TIMEOUT;

 timeout.tv_nsec = 0;

 retval = recvmmsg(sockfd, msgs, VLEN, 0, &timeout);

 if (retval == -1) {

 perror("recvmmsg()");

 exit(EXIT_FAILURE);

 }

 printf("%d messages received\n", retval); Page 4/5

 for (int i = 0; i < retval; i++) {

 bufs[i][msgs[i].msg_len] = 0;

 printf("%d %s", i+1, bufs[i]);

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 clock_gettime(2), recvmsg(2), sendmmsg(2), sendmsg(2), socket(2), socket(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 RECVMMSG(2)

Page 5/5

