
Rocky Enterprise Linux 9.2 Manual Pages on command 'random_r.3'

$ man random_r.3

RANDOM_R(3) Linux Programmer's Manual RANDOM_R(3)

NAME

 random_r, srandom_r, initstate_r, setstate_r - reentrant random number generator

SYNOPSIS

 #include <stdlib.h>

 int random_r(struct random_data *buf, int32_t *result);

 int srandom_r(unsigned int seed, struct random_data *buf);

 int initstate_r(unsigned int seed, char *statebuf,

 size_t statelen, struct random_data *buf);

 int setstate_r(char *statebuf, struct random_data *buf);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 random_r(), srandom_r(), initstate_r(), setstate_r():

 /* Glibc since 2.19: */ _DEFAULT_SOURCE

 || /* Glibc versions <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION

 These functions are the reentrant equivalents of the functions described in random(3).

 They are suitable for use in multithreaded programs where each thread needs to obtain an

 independent, reproducible sequence of random numbers.

 The random_r() function is like random(3), except that instead of using state information

 maintained in a global variable, it uses the state information in the argument pointed to

 by buf, which must have been previously initialized by initstate_r(). The generated ran?

 dom number is returned in the argument result.

 The srandom_r() function is like srandom(3), except that it initializes the seed for the Page 1/3

 random number generator whose state is maintained in the object pointed to by buf, which

 must have been previously initialized by initstate_r(), instead of the seed associated

 with the global state variable.

 The initstate_r() function is like initstate(3) except that it initializes the state in

 the object pointed to by buf, rather than initializing the global state variable. Before

 calling this function, the buf.state field must be initialized to NULL. The initstate_r()

 function records a pointer to the statebuf argument inside the structure pointed to by

 buf. Thus, statebuf should not be deallocated so long as buf is still in use. (So,

 statebuf should typically be allocated as a static variable, or allocated on the heap us?

 ing malloc(3) or similar.)

 The setstate_r() function is like setstate(3) except that it modifies the state in the ob?

 ject pointed to by buf, rather than modifying the global state variable. state must first

 have been initialized using initstate_r() or be the result of a previous call of set?

 state_r().

RETURN VALUE

 All of these functions return 0 on success. On error, -1 is returned, with errno set to

 indicate the cause of the error.

ERRORS

 EINVAL A state array of less than 8 bytes was specified to initstate_r().

 EINVAL The statebuf or buf argument to setstate_r() was NULL.

 EINVAL The buf or result argument to random_r() was NULL.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?random_r(), srandom_r(), ? Thread safety ? MT-Safe race:buf ?

 ?initstate_r(), setstate_r() ? ? ?

 ???

CONFORMING TO

 These functions are nonstandard glibc extensions.

BUGS

 The initstate_r() interface is confusing. It appears that the random_data type is in? Page 2/3

 tended to be opaque, but the implementation requires the user to either initialize the

 buf.state field to NULL or zero out the entire structure before the call.

SEE ALSO

 drand48(3), rand(3), random(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2017-09-15 RANDOM_R(3)

Page 3/3

