
Linux Ubuntu 22.4.5 Manual Pages on command 'qemu-system.1'

$ man qemu-system.1

QEMU.1(1)                                                                        QEMU.1(1)

NAME

       qemu-doc - QEMU version 4.2.1 User Documentation

SYNOPSIS

       qemu-system-x86_64 [options] [disk_image]

DESCRIPTION

       The QEMU PC System emulator simulates the following peripherals:

       -   i440FX host PCI bridge and PIIX3 PCI to ISA bridge

       -   Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA extensions

           (hardware level, including all non standard modes).

       -   PS/2 mouse and keyboard

       -   2 PCI IDE interfaces with hard disk and CD-ROM support

       -   Floppy disk

       -   PCI and ISA network adapters

       -   Serial ports

       -   IPMI BMC, either and internal or external one

       -   Creative SoundBlaster 16 sound card

       -   ENSONIQ AudioPCI ES1370 sound card

       -   Intel 82801AA AC97 Audio compatible sound card

       -   Intel HD Audio Controller and HDA codec

       -   Adlib (OPL2) - Yamaha YM3812 compatible chip

       -   Gravis Ultrasound GF1 sound card
Page 1/88



       -   CS4231A compatible sound card

       -   PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.

       SMP is supported with up to 255 CPUs.

       QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL VGA BIOS.

       QEMU uses YM3812 emulation by Tatsuyuki Satoh.

       QEMU uses GUS emulation (GUSEMU32 <http://www.deinmeister.de/gusemu/>) by Tibor

       "TS" Sch?tz.

       Note that, by default, GUS shares IRQ(7) with parallel ports and so QEMU must be

       told to not have parallel ports to have working GUS.

               qemu-system-x86_64 dos.img -soundhw gus -parallel none

       Alternatively:

               qemu-system-x86_64 dos.img -device gus,irq=5

       Or some other unclaimed IRQ.

       CS4231A is the chip used in Windows Sound System and GUSMAX products

OPTIONS

       disk_image is a raw hard disk image for IDE hard disk 0. Some targets do not need a

       disk image.

       Standard options

       -h  Display help and exit

       -version

           Display version information and exit

       -machine [type=]name[,prop=value[,...]]

           Select the emulated machine by name. Use "-machine help" to list available

           machines.

           For architectures which aim to support live migration compatibility across

           releases, each release will introduce a new versioned machine type. For

           example, the 2.8.0 release introduced machine types "pc-i440fx-2.8" and

           "pc-q35-2.8" for the x86_64/i686 architectures.

           To allow live migration of guests from QEMU version 2.8.0, to QEMU version

           2.9.0, the 2.9.0 version must support the "pc-i440fx-2.8" and "pc-q35-2.8"

           machines too. To allow users live migrating VMs to skip multiple intermediate

           releases when upgrading, new releases of QEMU will support machine types from

           many previous versions. Page 2/88



           Supported machine properties are:

           accel=accels1[:accels2[:...]]

               This is used to enable an accelerator. Depending on the target

               architecture, kvm, xen, hax, hvf, whpx or tcg can be available. By default,

               tcg is used. If there is more than one accelerator specified, the next one

               is used if the previous one fails to initialize.

           kernel_irqchip=on|off

               Controls in-kernel irqchip support for the chosen accelerator when

               available.

           gfx_passthru=on|off

               Enables IGD GFX passthrough support for the chosen machine when available.

           vmport=on|off|auto

               Enables emulation of VMWare IO port, for vmmouse etc. auto says to select

               the value based on accel. For accel=xen the default is off otherwise the

               default is on.

           kvm_shadow_mem=size

               Defines the size of the KVM shadow MMU.

           dump-guest-core=on|off

               Include guest memory in a core dump. The default is on.

           mem-merge=on|off

               Enables or disables memory merge support. This feature, when supported by

               the host, de-duplicates identical memory pages among VMs instances (enabled

               by default).

           aes-key-wrap=on|off

               Enables or disables AES key wrapping support on s390-ccw hosts. This

               feature controls whether AES wrapping keys will be created to allow

               execution of AES cryptographic functions.  The default is on.

           dea-key-wrap=on|off

               Enables or disables DEA key wrapping support on s390-ccw hosts. This

               feature controls whether DEA wrapping keys will be created to allow

               execution of DEA cryptographic functions.  The default is on.

           nvdimm=on|off

               Enables or disables NVDIMM support. The default is off. Page 3/88



           enforce-config-section=on|off

               If enforce-config-section is set to on, force migration code to send

               configuration section even if the machine-type sets the

               migration.send-configuration property to off.  NOTE: this parameter is

               deprecated. Please use -global migration.send-configuration=on|off instead.

           memory-encryption=

               Memory encryption object to use. The default is none.

       -cpu model

           Select CPU model ("-cpu help" for list and additional feature selection)

       -accel name[,prop=value[,...]]

           This is used to enable an accelerator. Depending on the target architecture,

           kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If

           there is more than one accelerator specified, the next one is used if the

           previous one fails to initialize.

           thread=single|multi

               Controls number of TCG threads. When the TCG is multi-threaded there will

               be one thread per vCPU therefor taking advantage of additional host cores.

               The default is to enable multi-threading where both the back-end and front-

               ends support it and no incompatible TCG features have been enabled (e.g.

               icount/replay).

       -smp

       [cpus=]n[,cores=cores][,threads=threads][,dies=dies][,sockets=sockets][,maxcpus=maxcpus]

           Simulate an SMP system with n CPUs. On the PC target, up to 255 CPUs are

           supported. On Sparc32 target, Linux limits the number of usable CPUs to 4.  For

           the PC target, the number of cores per die, the number of threads per cores,

           the number of dies per packages and the total number of sockets can be

           specified. Missing values will be computed.  If any on the three values is

           given, the total number of CPUs n can be omitted.  maxcpus specifies the

           maximum number of hotpluggable CPUs.

       -numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]

       -numa node[,memdev=id][,cpus=firstcpu[-lastcpu]][,nodeid=node]

       -numa dist,src=source,dst=destination,val=distance

       -numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z] Page 4/88



           Define a NUMA node and assign RAM and VCPUs to it.  Set the NUMA distance from

           a source node to a destination node.

           Legacy VCPU assignment uses cpus option where firstcpu and lastcpu are CPU

           indexes. Each cpus option represent a contiguous range of CPU indexes (or a

           single VCPU if lastcpu is omitted). A non-contiguous set of VCPUs can be

           represented by providing multiple cpus options. If cpus is omitted on all

           nodes, VCPUs are automatically split between them.

           For example, the following option assigns VCPUs 0, 1, 2 and 5 to a NUMA node:

                   -numa node,cpus=0-2,cpus=5

           cpu option is a new alternative to cpus option which uses

           socket-id|core-id|thread-id properties to assign CPU objects to a node using

           topology layout properties of CPU.  The set of properties is machine specific,

           and depends on used machine type/smp options. It could be queried with

           hotpluggable-cpus monitor command.  node-id property specifies node to which

           CPU object will be assigned, it's required for node to be declared with node

           option before it's used with cpu option.

           For example:

                   -M pc \

                   -smp 1,sockets=2,maxcpus=2 \

                   -numa node,nodeid=0 -numa node,nodeid=1 \

                   -numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1

           mem assigns a given RAM amount to a node. memdev assigns RAM from a given

           memory backend device to a node. If mem and memdev are omitted in all nodes,

           RAM is split equally between them.

           mem and memdev are mutually exclusive. Furthermore, if one node uses memdev,

           all of them have to use it.

           source and destination are NUMA node IDs.  distance is the NUMA distance from

           source to destination.  The distance from a node to itself is always 10. If any

           pair of nodes is given a distance, then all pairs must be given distances.

           Although, when distances are only given in one direction for each pair of

           nodes, then the distances in the opposite directions are assumed to be the

           same. If, however, an asymmetrical pair of distances is given for even one node

           pair, then all node pairs must be provided distance values for both directions, Page 5/88



           even when they are symmetrical. When a node is unreachable from another node,

           set the pair's distance to 255.

           Note that the -numa option doesn't allocate any of the specified resources, it

           just assigns existing resources to NUMA nodes. This means that one still has to

           use the -m, -smp options to allocate RAM and VCPUs respectively.

       -add-fd fd=fd,set=set[,opaque=opaque]

           Add a file descriptor to an fd set.  Valid options are:

           fd=fd

               This option defines the file descriptor of which a duplicate is added to fd

               set.  The file descriptor cannot be stdin, stdout, or stderr.

           set=set

               This option defines the ID of the fd set to add the file descriptor to.

           opaque=opaque

               This option defines a free-form string that can be used to describe fd.

           You can open an image using pre-opened file descriptors from an fd set:

                   qemu-system-x86_64 \

                   -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \

                   -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \

                   -drive file=/dev/fdset/2,index=0,media=disk

       -set group.id.arg=value

           Set parameter arg for item id of type group

       -global driver.prop=value

       -global driver=driver,property=property,value=value

           Set default value of driver's property prop to value, e.g.:

                   qemu-system-x86_64 -global ide-hd.physical_block_size=4096 disk-image.img

           In particular, you can use this to set driver properties for devices which are

           created automatically by the machine model. To create a device which is not

           created automatically and set properties on it, use -device.

           -global driver.prop=value is shorthand for -global

           driver=driver,property=prop,value=value.  The longhand syntax works even when

           driver contains a dot.

       -boot

      Page 6/88



[order=drives][,once=drives][,menu=on|off][,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_timeout][,strict=on|

off]

           Specify boot order drives as a string of drive letters. Valid drive letters

           depend on the target architecture. The x86 PC uses: a, b (floppy 1 and 2), c

           (first hard disk), d (first CD-ROM), n-p (Etherboot from network adapter 1-4),

           hard disk boot is the default. To apply a particular boot order only on the

           first startup, specify it via once. Note that the order or once parameter

           should not be used together with the bootindex property of devices, since the

           firmware implementations normally do not support both at the same time.

           Interactive boot menus/prompts can be enabled via menu=on as far as

           firmware/BIOS supports them. The default is non-interactive boot.

           A splash picture could be passed to bios, enabling user to show it as logo,

           when option splash=sp_name is given and menu=on, If firmware/BIOS supports

           them. Currently Seabios for X86 system support it.  limitation: The splash file

           could be a jpeg file or a BMP file in 24 BPP format(true color). The resolution

           should be supported by the SVGA mode, so the recommended is 320x240, 640x480,

           800x640.

           A timeout could be passed to bios, guest will pause for rb_timeout ms when boot

           failed, then reboot. If rb_timeout is '-1', guest will not reboot, qemu passes

           '-1' to bios by default. Currently Seabios for X86 system support it.

           Do strict boot via strict=on as far as firmware/BIOS supports it. This only

           effects when boot priority is changed by bootindex options. The default is non-

           strict boot.

                   # try to boot from network first, then from hard disk

                   qemu-system-x86_64 -boot order=nc

                   # boot from CD-ROM first, switch back to default order after reboot

                   qemu-system-x86_64 -boot once=d

                   # boot with a splash picture for 5 seconds.

                   qemu-system-x86_64 -boot menu=on,splash=/root/boot.bmp,splash-time=5000

           Note: The legacy format '-boot drives' is still supported but its use is

           discouraged as it may be removed from future versions.

       -m [size=]megs[,slots=n,maxmem=size]

           Sets guest startup RAM size to megs megabytes. Default is 128 MiB.  Optionally, Page 7/88



           a suffix of "M" or "G" can be used to signify a value in megabytes or gigabytes

           respectively. Optional pair slots, maxmem could be used to set amount of

           hotpluggable memory slots and maximum amount of memory. Note that maxmem must

           be aligned to the page size.

           For example, the following command-line sets the guest startup RAM size to 1GB,

           creates 3 slots to hotplug additional memory and sets the maximum memory the

           guest can reach to 4GB:

                   qemu-system-x86_64 -m 1G,slots=3,maxmem=4G

           If slots and maxmem are not specified, memory hotplug won't be enabled and the

           guest startup RAM will never increase.

       -mem-path path

           Allocate guest RAM from a temporarily created file in path.

       -mem-prealloc

           Preallocate memory when using -mem-path.

       -k language

           Use keyboard layout language (for example "fr" for French). This option is only

           needed where it is not easy to get raw PC keycodes (e.g. on Macs, with some X11

           servers or with a VNC or curses display). You don't normally need to use it on

           PC/Linux or PC/Windows hosts.

           The available layouts are:

                   ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv

                   da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th

                   de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr

           The default is "en-us".

       -audio-help

           Will show the -audiodev equivalent of the currently specified (deprecated)

           environment variables.

       -audiodev [driver=]driver,id=id[,prop[=value][,...]]

           Adds a new audio backend driver identified by id.  There are global and driver

           specific properties.  Some values can be set differently for input and output,

           they're marked with "in|out.".  You can set the input's property with "in.prop"

           and the output's property with "out.prop". For example:

                   -audiodev alsa,id=example,in.frequency=44110,out.frequency=8000 Page 8/88



                   -audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified

           NOTE: parameter validation is known to be incomplete, in many cases specifying

           an invalid option causes QEMU to print an error message and continue emulation

           without sound.

           Valid global options are:

           id=identifier

               Identifies the audio backend.

           timer-period=period

               Sets the timer period used by the audio subsystem in microseconds.  Default

               is 10000 (10 ms).

           in|out.mixing-engine=on|off

               Use QEMU's mixing engine to mix all streams inside QEMU and convert audio

               formats when not supported by the backend.  When off, fixed-settings must

               be off too.  Note that disabling this option means that the selected

               backend must support multiple streams and the audio formats used by the

               virtual cards, otherwise you'll get no sound.  It's not recommended to

               disable this option unless you want to use 5.1 or 7.1 audio, as mixing

               engine only supports mono and stereo audio.  Default is on.

           in|out.fixed-settings=on|off

               Use fixed settings for host audio.  When off, it will change based on how

               the guest opens the sound card.  In this case you must not specify

               frequency, channels or format.  Default is on.

           in|out.frequency=frequency

               Specify the frequency to use when using fixed-settings.  Default is

               44100Hz.

           in|out.channels=channels

               Specify the number of channels to use when using fixed-settings. Default is

               2 (stereo).

           in|out.format=format

               Specify the sample format to use when using fixed-settings.  Valid values

               are: "s8", "s16", "s32", "u8", "u16", "u32". Default is "s16".

           in|out.voices=voices

               Specify the number of voices to use.  Default is 1. Page 9/88



           in|out.buffer-length=usecs

               Sets the size of the buffer in microseconds.

       -audiodev none,id=id[,prop[=value][,...]]

           Creates a dummy backend that discards all outputs.  This backend has no backend

           specific properties.

       -audiodev alsa,id=id[,prop[=value][,...]]

           Creates backend using the ALSA.  This backend is only available on Linux.

           ALSA specific options are:

           in|out.dev=device

               Specify the ALSA device to use for input and/or output.  Default is

               "default".

           in|out.period-length=usecs

               Sets the period length in microseconds.

           in|out.try-poll=on|off

               Attempt to use poll mode with the device.  Default is on.

           threshold=threshold

               Threshold (in microseconds) when playback starts.  Default is 0.

       -audiodev coreaudio,id=id[,prop[=value][,...]]

           Creates a backend using Apple's Core Audio.  This backend is only available on

           Mac OS and only supports playback.

           Core Audio specific options are:

           in|out.buffer-count=count

               Sets the count of the buffers.

       -audiodev dsound,id=id[,prop[=value][,...]]

           Creates a backend using Microsoft's DirectSound.  This backend is only

           available on Windows and only supports playback.

           DirectSound specific options are:

           latency=usecs

               Add extra usecs microseconds latency to playback.  Default is 10000 (10

               ms).

       -audiodev oss,id=id[,prop[=value][,...]]

           Creates a backend using OSS.  This backend is available on most Unix-like

           systems. Page 10/88



           OSS specific options are:

           in|out.dev=device

               Specify the file name of the OSS device to use.  Default is "/dev/dsp".

           in|out.buffer-count=count

               Sets the count of the buffers.

           in|out.try-poll=on|of

               Attempt to use poll mode with the device.  Default is on.

           try-mmap=on|off

               Try using memory mapped device access.  Default is off.

           exclusive=on|off

               Open the device in exclusive mode (vmix won't work in this case).  Default

               is off.

           dsp-policy=policy

               Sets the timing policy (between 0 and 10, where smaller number means

               smaller latency but higher CPU usage).  Use -1 to use buffer sizes

               specified by "buffer" and "buffer-count".  This option is ignored if you do

               not have OSS 4. Default is 5.

       -audiodev pa,id=id[,prop[=value][,...]]

           Creates a backend using PulseAudio.  This backend is available on most systems.

           PulseAudio specific options are:

           server=server

               Sets the PulseAudio server to connect to.

           in|out.name=sink

               Use the specified source/sink for recording/playback.

           in|out.latency=usecs

               Desired latency in microseconds.  The PulseAudio server will try to honor

               this value but actual latencies may be lower or higher.

       -audiodev sdl,id=id[,prop[=value][,...]]

           Creates a backend using SDL.  This backend is available on most systems, but

           you should use your platform's native backend if possible.  This backend has no

           backend specific properties.

       -audiodev spice,id=id[,prop[=value][,...]]

           Creates a backend that sends audio through SPICE.  This backend requires Page 11/88



           "-spice" and automatically selected in that case, so usually you can ignore

           this option.  This backend has no backend specific properties.

       -audiodev wav,id=id[,prop[=value][,...]]

           Creates a backend that writes audio to a WAV file.

           Backend specific options are:

           path=path

               Write recorded audio into the specified file.  Default is "qemu.wav".

       -soundhw card1[,card2,...] or -soundhw all

           Enable audio and selected sound hardware. Use 'help' to print all available

           sound hardware. For example:

                   qemu-system-x86_64 -soundhw sb16,adlib disk.img

                   qemu-system-x86_64 -soundhw es1370 disk.img

                   qemu-system-x86_64 -soundhw ac97 disk.img

                   qemu-system-x86_64 -soundhw hda disk.img

                   qemu-system-x86_64 -soundhw all disk.img

                   qemu-system-x86_64 -soundhw help

           Note that Linux's i810_audio OSS kernel (for AC97) module might require

           manually specifying clocking.

                   modprobe i810_audio clocking=48000

       -device driver[,prop[=value][,...]]

           Add device driver.  prop=value sets driver properties.  Valid properties depend

           on the driver.  To get help on possible drivers and properties, use "-device

           help" and "-device driver,help".

           Some drivers are:

       -device

       ipmi-bmc-sim,id=id[,slave_addr=val][,sdrfile=file][,furareasize=val][,furdatafile=file][,guid=uuid]

           Add an IPMI BMC.  This is a simulation of a hardware management interface

           processor that normally sits on a system.  It provides a watchdog and the

           ability to reset and power control the system.  You need to connect this to an

           IPMI interface to make it useful

           The IPMI slave address to use for the BMC.  The default is 0x20.  This address

           is the BMC's address on the I2C network of management controllers.  If you

           don't know what this means, it is safe to ignore it. Page 12/88



           id=id

               The BMC id for interfaces to use this device.

           slave_addr=val

               Define slave address to use for the BMC.  The default is 0x20.

           sdrfile=file

               file containing raw Sensor Data Records (SDR) data. The default is none.

           fruareasize=val

               size of a Field Replaceable Unit (FRU) area.  The default is 1024.

           frudatafile=file

               file containing raw Field Replaceable Unit (FRU) inventory data. The

               default is none.

           guid=uuid

               value for the GUID for the BMC, in standard UUID format.  If this is set,

               get "Get GUID" command to the BMC will return it.  Otherwise "Get GUID"

               will return an error.

       -device ipmi-bmc-extern,id=id,chardev=id[,slave_addr=val]

           Add a connection to an external IPMI BMC simulator.  Instead of locally

           emulating the BMC like the above item, instead connect to an external entity

           that provides the IPMI services.

           A connection is made to an external BMC simulator.  If you do this, it is

           strongly recommended that you use the "reconnect=" chardev option to reconnect

           to the simulator if the connection is lost.  Note that if this is not used

           carefully, it can be a security issue, as the interface has the ability to send

           resets, NMIs, and power off the VM.  It's best if QEMU makes a connection to an

           external simulator running on a secure port on localhost, so neither the

           simulator nor QEMU is exposed to any outside network.

           See the "lanserv/README.vm" file in the OpenIPMI library for more details on

           the external interface.

       -device isa-ipmi-kcs,bmc=id[,ioport=val][,irq=val]

           Add a KCS IPMI interafce on the ISA bus.  This also adds a corresponding ACPI

           and SMBIOS entries, if appropriate.

           bmc=id

               The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above. Page 13/88



           ioport=val

               Define the I/O address of the interface.  The default is 0xca0 for KCS.

           irq=val

               Define the interrupt to use.  The default is 5.  To disable interrupts, set

               this to 0.

       -device isa-ipmi-bt,bmc=id[,ioport=val][,irq=val]

           Like the KCS interface, but defines a BT interface.  The default port is 0xe4

           and the default interrupt is 5.

       -name name

           Sets the name of the guest.  This name will be displayed in the SDL window

           caption.  The name will also be used for the VNC server.  Also optionally set

           the top visible process name in Linux.  Naming of individual threads can also

           be enabled on Linux to aid debugging.

       -uuid uuid

           Set system UUID.

       Block device options

       -fda file

       -fdb file

           Use file as floppy disk 0/1 image.

       -hda file

       -hdb file

       -hdc file

       -hdd file

           Use file as hard disk 0, 1, 2 or 3 image.

       -cdrom file

           Use file as CD-ROM image (you cannot use -hdc and -cdrom at the same time). You

           can use the host CD-ROM by using /dev/cdrom as filename.

       -blockdev option[,option[,option[,...]]]

           Define a new block driver node. Some of the options apply to all block drivers,

           other options are only accepted for a specific block driver. See below for a

           list of generic options and options for the most common block drivers.

           Options that expect a reference to another node (e.g. "file") can be given in

           two ways. Either you specify the node name of an already existing node Page 14/88



           (file=node-name), or you define a new node inline, adding options for the

           referenced node after a dot (file.filename=path,file.aio=native).

           A block driver node created with -blockdev can be used for a guest device by

           specifying its node name for the "drive" property in a -device argument that

           defines a block device.

           Valid options for any block driver node:

               "driver"

                   Specifies the block driver to use for the given node.

               "node-name"

                   This defines the name of the block driver node by which it will be

                   referenced later. The name must be unique, i.e. it must not match the

                   name of a different block driver node, or (if you use -drive as well)

                   the ID of a drive.

                   If no node name is specified, it is automatically generated. The

                   generated node name is not intended to be predictable and changes

                   between QEMU invocations.  For the top level, an explicit node name

                   must be specified.

               "read-only"

                   Open the node read-only. Guest write attempts will fail.

                   Note that some block drivers support only read-only access, either

                   generally or in certain configurations. In this case, the default value

                   read-only=off does not work and the option must be specified

                   explicitly.

               "auto-read-only"

                   If auto-read-only=on is set, QEMU may fall back to read-only usage even

                   when read-only=off is requested, or even switch between modes as

                   needed, e.g. depending on whether the image file is writable or whether

                   a writing user is attached to the node.

               "force-share"

                   Override the image locking system of QEMU by forcing the node to

                   utilize weaker shared access for permissions where it would normally

                   request exclusive access.  When there is the potential for multiple

                   instances to have the same file open (whether this invocation of QEMU Page 15/88



                   is the first or the second instance), both instances must permit shared

                   access for the second instance to succeed at opening the file.

                   Enabling force-share=on requires read-only=on.

               "cache.direct"

                   The host page cache can be avoided with cache.direct=on. This will

                   attempt to do disk IO directly to the guest's memory. QEMU may still

                   perform an internal copy of the data.

               "cache.no-flush"

                   In case you don't care about data integrity over host failures, you can

                   use cache.no-flush=on. This option tells QEMU that it never needs to

                   write any data to the disk but can instead keep things in cache. If

                   anything goes wrong, like your host losing power, the disk storage

                   getting disconnected accidentally, etc. your image will most probably

                   be rendered unusable.

               "discard=discard"

                   discard is one of "ignore" (or "off") or "unmap" (or "on") and controls

                   whether "discard" (also known as "trim" or "unmap") requests are

                   ignored or passed to the filesystem. Some machine types may not support

                   discard requests.

               "detect-zeroes=detect-zeroes"

                   detect-zeroes is "off", "on" or "unmap" and enables the automatic

                   conversion of plain zero writes by the OS to driver specific optimized

                   zero write commands. You may even choose "unmap" if discard is set to

                   "unmap" to allow a zero write to be converted to an "unmap" operation.

           Driver-specific options for "file"

               This is the protocol-level block driver for accessing regular files.

               "filename"

                   The path to the image file in the local filesystem

               "aio"

                   Specifies the AIO backend (threads/native, default: threads)

               "locking"

                   Specifies whether the image file is protected with Linux OFD / POSIX

                   locks. The default is to use the Linux Open File Descriptor API if Page 16/88



                   available, otherwise no lock is applied.  (auto/on/off, default: auto)

               Example:

                       -blockdev driver=file,node-name=disk,filename=disk.img

           Driver-specific options for "raw"

               This is the image format block driver for raw images. It is usually stacked

               on top of a protocol level block driver such as "file".

               "file"

                   Reference to or definition of the data source block driver node (e.g. a

                   "file" driver node)

               Example 1:

                       -blockdev driver=file,node-name=disk_file,filename=disk.img

                       -blockdev driver=raw,node-name=disk,file=disk_file

               Example 2:

                       -blockdev driver=raw,node-name=disk,file.driver=file,file.filename=disk.img

           Driver-specific options for "qcow2"

               This is the image format block driver for qcow2 images. It is usually

               stacked on top of a protocol level block driver such as "file".

               "file"

                   Reference to or definition of the data source block driver node (e.g. a

                   "file" driver node)

               "backing"

                   Reference to or definition of the backing file block device (default is

                   taken from the image file). It is allowed to pass "null" here in order

                   to disable the default backing file.

               "lazy-refcounts"

                   Whether to enable the lazy refcounts feature (on/off; default is taken

                   from the image file)

               "cache-size"

                   The maximum total size of the L2 table and refcount block caches in

                   bytes (default: the sum of l2-cache-size and refcount-cache-size)

               "l2-cache-size"

                   The maximum size of the L2 table cache in bytes (default: if cache-size

                   is not specified - 32M on Linux platforms, and 8M on non-Linux Page 17/88



                   platforms; otherwise, as large as possible within the cache-size, while

                   permitting the requested or the minimal refcount cache size)

               "refcount-cache-size"

                   The maximum size of the refcount block cache in bytes (default: 4 times

                   the cluster size; or if cache-size is specified, the part of it which

                   is not used for the L2 cache)

               "cache-clean-interval"

                   Clean unused entries in the L2 and refcount caches. The interval is in

                   seconds.  The default value is 600 on supporting platforms, and 0 on

                   other platforms.  Setting it to 0 disables this feature.

               "pass-discard-request"

                   Whether discard requests to the qcow2 device should be forwarded to the

                   data source (on/off; default: on if discard=unmap is specified, off

                   otherwise)

               "pass-discard-snapshot"

                   Whether discard requests for the data source should be issued when a

                   snapshot operation (e.g. deleting a snapshot) frees clusters in the

                   qcow2 file (on/off; default: on)

               "pass-discard-other"

                   Whether discard requests for the data source should be issued on other

                   occasions where a cluster gets freed (on/off; default: off)

               "overlap-check"

                   Which overlap checks to perform for writes to the image

                   (none/constant/cached/all; default: cached). For details or finer

                   granularity control refer to the QAPI documentation of "blockdev-add".

               Example 1:

                       -blockdev driver=file,node-name=my_file,filename=/tmp/disk.qcow2

                       -blockdev driver=qcow2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216

               Example 2:

                       -blockdev driver=qcow2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow2

           Driver-specific options for other drivers

               Please refer to the QAPI documentation of the "blockdev-add" QMP command.

       -drive option[,option[,option[,...]]] Page 18/88



           Define a new drive. This includes creating a block driver node (the backend) as

           well as a guest device, and is mostly a shortcut for defining the corresponding

           -blockdev and -device options.

           -drive accepts all options that are accepted by -blockdev. In addition, it

           knows the following options:

           file=file

               This option defines which disk image to use with this drive. If the

               filename contains comma, you must double it (for instance, "file=my,,file"

               to use file "my,file").

               Special files such as iSCSI devices can be specified using protocol

               specific URLs. See the section for "Device URL Syntax" for more

               information.

           if=interface

               This option defines on which type on interface the drive is connected.

               Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.

           bus=bus,unit=unit

               These options define where is connected the drive by defining the bus

               number and the unit id.

           index=index

               This option defines where is connected the drive by using an index in the

               list of available connectors of a given interface type.

           media=media

               This option defines the type of the media: disk or cdrom.

           snapshot=snapshot

               snapshot is "on" or "off" and controls snapshot mode for the given drive

               (see -snapshot).

           cache=cache

               cache is "none", "writeback", "unsafe", "directsync" or "writethrough" and

               controls how the host cache is used to access block data. This is a

               shortcut that sets the cache.direct and cache.no-flush options (as in

               -blockdev), and additionally cache.writeback, which provides a default for

               the write-cache option of block guest devices (as in -device). The modes

               correspond to the following settings: Page 19/88



                                    ? cache.writeback   cache.direct   cache.no-flush

                       ???????????????????????????????????????????????????????????????

                       writeback    ? on                off            off

                       none         ? on                on             off

                       writethrough ? off               off            off

                       directsync   ? off               on             off

                       unsafe       ? on                off            on

               The default mode is cache=writeback.

           aio=aio

               aio is "threads", or "native" and selects between pthread based disk I/O

               and native Linux AIO.

           format=format

               Specify which disk format will be used rather than detecting the format.

               Can be used to specify format=raw to avoid interpreting an untrusted format

               header.

           werror=action,rerror=action

               Specify which action to take on write and read errors. Valid actions are:

               "ignore" (ignore the error and try to continue), "stop" (pause QEMU),

               "report" (report the error to the guest), "enospc" (pause QEMU only if the

               host disk is full; report the error to the guest otherwise).  The default

               setting is werror=enospc and rerror=report.

           copy-on-read=copy-on-read

               copy-on-read is "on" or "off" and enables whether to copy read backing file

               sectors into the image file.

           bps=b,bps_rd=r,bps_wr=w

               Specify bandwidth throttling limits in bytes per second, either for all

               request types or for reads or writes only.  Small values can lead to

               timeouts or hangs inside the guest.  A safe minimum for disks is 2 MB/s.

           bps_max=bm,bps_rd_max=rm,bps_wr_max=wm

               Specify bursts in bytes per second, either for all request types or for

               reads or writes only.  Bursts allow the guest I/O to spike above the limit

               temporarily.

           iops=i,iops_rd=r,iops_wr=w Page 20/88



               Specify request rate limits in requests per second, either for all request

               types or for reads or writes only.

           iops_max=bm,iops_rd_max=rm,iops_wr_max=wm

               Specify bursts in requests per second, either for all request types or for

               reads or writes only.  Bursts allow the guest I/O to spike above the limit

               temporarily.

           iops_size=is

               Let every is bytes of a request count as a new request for iops throttling

               purposes.  Use this option to prevent guests from circumventing iops limits

               by sending fewer but larger requests.

           group=g

               Join a throttling quota group with given name g.  All drives that are

               members of the same group are accounted for together.  Use this option to

               prevent guests from circumventing throttling limits by using many small

               disks instead of a single larger disk.

           By default, the cache.writeback=on mode is used. It will report data writes as

           completed as soon as the data is present in the host page cache.  This is safe

           as long as your guest OS makes sure to correctly flush disk caches where

           needed. If your guest OS does not handle volatile disk write caches correctly

           and your host crashes or loses power, then the guest may experience data

           corruption.

           For such guests, you should consider using cache.writeback=off. This means that

           the host page cache will be used to read and write data, but write notification

           will be sent to the guest only after QEMU has made sure to flush each write to

           the disk. Be aware that this has a major impact on performance.

           When using the -snapshot option, unsafe caching is always used.

           Copy-on-read avoids accessing the same backing file sectors repeatedly and is

           useful when the backing file is over a slow network.  By default copy-on-read

           is off.

           Instead of -cdrom you can use:

                   qemu-system-x86_64 -drive file=file,index=2,media=cdrom

           Instead of -hda, -hdb, -hdc, -hdd, you can use:

                   qemu-system-x86_64 -drive file=file,index=0,media=disk Page 21/88



                   qemu-system-x86_64 -drive file=file,index=1,media=disk

                   qemu-system-x86_64 -drive file=file,index=2,media=disk

                   qemu-system-x86_64 -drive file=file,index=3,media=disk

           You can open an image using pre-opened file descriptors from an fd set:

                   qemu-system-x86_64 \

                   -add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \

                   -add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \

                   -drive file=/dev/fdset/2,index=0,media=disk

           You can connect a CDROM to the slave of ide0:

                   qemu-system-x86_64 -drive file=file,if=ide,index=1,media=cdrom

           If you don't specify the "file=" argument, you define an empty drive:

                   qemu-system-x86_64 -drive if=ide,index=1,media=cdrom

           Instead of -fda, -fdb, you can use:

                   qemu-system-x86_64 -drive file=file,index=0,if=floppy

                   qemu-system-x86_64 -drive file=file,index=1,if=floppy

           By default, interface is "ide" and index is automatically incremented:

                   qemu-system-x86_64 -drive file=a -drive file=b"

           is interpreted like:

                   qemu-system-x86_64 -hda a -hdb b

       -mtdblock file

           Use file as on-board Flash memory image.

       -sd file

           Use file as SecureDigital card image.

       -pflash file

           Use file as a parallel flash image.

       -snapshot

           Write to temporary files instead of disk image files. In this case, the raw

           disk image you use is not written back. You can however force the write back by

           pressing C-a s.

       -fsdev local,id=id,path=path,security_model=security_model

       [,writeout=writeout][,readonly][,fmode=fmode][,dmode=dmode]

       [,throttling.option=value[,throttling.option=value[,...]]]

       -fsdev proxy,id=id,socket=socket[,writeout=writeout][,readonly] Page 22/88



       -fsdev proxy,id=id,sock_fd=sock_fd[,writeout=writeout][,readonly]

       -fsdev synth,id=id[,readonly]

           Define a new file system device. Valid options are:

           local

               Accesses to the filesystem are done by QEMU.

           proxy

               Accesses to the filesystem are done by virtfs-proxy-helper(1).

           synth

               Synthetic filesystem, only used by QTests.

           id=id

               Specifies identifier for this device.

           path=path

               Specifies the export path for the file system device. Files under this path

               will be available to the 9p client on the guest.

           security_model=security_model

               Specifies the security model to be used for this export path.  Supported

               security models are "passthrough", "mapped-xattr", "mapped-file" and

               "none".  In "passthrough" security model, files are stored using the same

               credentials as they are created on the guest. This requires QEMU to run as

               root. In "mapped-xattr" security model, some of the file attributes like

               uid, gid, mode bits and link target are stored as file attributes. For

               "mapped-file" these attributes are stored in the hidden .virtfs_metadata

               directory. Directories exported by this security model cannot interact with

               other unix tools. "none" security model is same as passthrough except the

               sever won't report failures if it fails to set file attributes like

               ownership. Security model is mandatory only for local fsdriver. Other

               fsdrivers (like proxy) don't take security model as a parameter.

           writeout=writeout

               This is an optional argument. The only supported value is "immediate".

               This means that host page cache will be used to read and write data but

               write notification will be sent to the guest only when the data has been

               reported as written by the storage subsystem.

           readonly Page 23/88



               Enables exporting 9p share as a readonly mount for guests. By default read-

               write access is given.

           socket=socket

               Enables proxy filesystem driver to use passed socket file for communicating

               with virtfs-proxy-helper(1).

           sock_fd=sock_fd

               Enables proxy filesystem driver to use passed socket descriptor for

               communicating with virtfs-proxy-helper(1). Usually a helper like libvirt

               will create socketpair and pass one of the fds as sock_fd.

           fmode=fmode

               Specifies the default mode for newly created files on the host. Works only

               with security models "mapped-xattr" and "mapped-file".

           dmode=dmode

               Specifies the default mode for newly created directories on the host. Works

               only with security models "mapped-xattr" and "mapped-file".

           throttling.bps-total=b,throttling.bps-read=r,throttling.bps-write=w

               Specify bandwidth throttling limits in bytes per second, either for all

               request types or for reads or writes only.

           throttling.bps-total-max=bm,bps-read-max=rm,bps-write-max=wm

               Specify bursts in bytes per second, either for all request types or for

               reads or writes only.  Bursts allow the guest I/O to spike above the limit

               temporarily.

           throttling.iops-total=i,throttling.iops-read=r, throttling.iops-write=w

               Specify request rate limits in requests per second, either for all request

               types or for reads or writes only.

           throttling.iops-total-max=im,throttling.iops-read-max=irm,

           throttling.iops-write-max=iwm

               Specify bursts in requests per second, either for all request types or for

               reads or writes only.  Bursts allow the guest I/O to spike above the limit

               temporarily.

           throttling.iops-size=is

               Let every is bytes of a request count as a new request for iops throttling

               purposes. Page 24/88



           -fsdev option is used along with -device driver "virtio-9p-...".

       -device virtio-9p-type,fsdev=id,mount_tag=mount_tag

           Options for virtio-9p-... driver are:

           type

               Specifies the variant to be used. Supported values are "pci", "ccw" or

               "device", depending on the machine type.

           fsdev=id

               Specifies the id value specified along with -fsdev option.

           mount_tag=mount_tag

               Specifies the tag name to be used by the guest to mount this export point.

       -virtfs local,path=path,mount_tag=mount_tag

       ,security_model=security_model[,writeout=writeout][,readonly]

       [,fmode=fmode][,dmode=dmode][,multidevs=multidevs]

       -virtfs proxy,socket=socket,mount_tag=mount_tag [,writeout=writeout][,readonly]

       -virtfs proxy,sock_fd=sock_fd,mount_tag=mount_tag [,writeout=writeout][,readonly]

       -virtfs synth,mount_tag=mount_tag

           Define a new filesystem device and expose it to the guest using a

           virtio-9p-device. The general form of a Virtual File system pass-through

           options are:

           local

               Accesses to the filesystem are done by QEMU.

           proxy

               Accesses to the filesystem are done by virtfs-proxy-helper(1).

           synth

               Synthetic filesystem, only used by QTests.

           id=id

               Specifies identifier for the filesystem device

           path=path

               Specifies the export path for the file system device. Files under this path

               will be available to the 9p client on the guest.

           security_model=security_model

               Specifies the security model to be used for this export path.  Supported

               security models are "passthrough", "mapped-xattr", "mapped-file" and Page 25/88



               "none".  In "passthrough" security model, files are stored using the same

               credentials as they are created on the guest. This requires QEMU to run as

               root. In "mapped-xattr" security model, some of the file attributes like

               uid, gid, mode bits and link target are stored as file attributes. For

               "mapped-file" these attributes are stored in the hidden .virtfs_metadata

               directory. Directories exported by this security model cannot interact with

               other unix tools. "none" security model is same as passthrough except the

               sever won't report failures if it fails to set file attributes like

               ownership. Security model is mandatory only for local fsdriver. Other

               fsdrivers (like proxy) don't take security model as a parameter.

           writeout=writeout

               This is an optional argument. The only supported value is "immediate".

               This means that host page cache will be used to read and write data but

               write notification will be sent to the guest only when the data has been

               reported as written by the storage subsystem.

           readonly

               Enables exporting 9p share as a readonly mount for guests. By default read-

               write access is given.

           socket=socket

               Enables proxy filesystem driver to use passed socket file for communicating

               with virtfs-proxy-helper(1). Usually a helper like libvirt will create

               socketpair and pass one of the fds as sock_fd.

           sock_fd

               Enables proxy filesystem driver to use passed 'sock_fd' as the socket

               descriptor for interfacing with virtfs-proxy-helper(1).

           fmode=fmode

               Specifies the default mode for newly created files on the host. Works only

               with security models "mapped-xattr" and "mapped-file".

           dmode=dmode

               Specifies the default mode for newly created directories on the host. Works

               only with security models "mapped-xattr" and "mapped-file".

           mount_tag=mount_tag

               Specifies the tag name to be used by the guest to mount this export point. Page 26/88



           multidevs=multidevs

               Specifies how to deal with multiple devices being shared with a 9p export.

               Supported behaviours are either "remap", "forbid" or "warn". The latter is

               the default behaviour on which virtfs 9p expects only one device to be

               shared with the same export, and if more than one device is shared and

               accessed via the same 9p export then only a warning message is logged

               (once) by qemu on host side. In order to avoid file ID collisions on guest

               you should either create a separate virtfs export for each device to be

               shared with guests (recommended way) or you might use "remap" instead which

               allows you to share multiple devices with only one export instead, which is

               achieved by remapping the original inode numbers from host to guest in a

               way that would prevent such collisions. Remapping inodes in such use cases

               is required because the original device IDs from host are never passed and

               exposed on guest. Instead all files of an export shared with virtfs always

               share the same device id on guest. So two files with identical inode

               numbers but from actually different devices on host would otherwise cause a

               file ID collision and hence potential misbehaviours on guest. "forbid" on

               the other hand assumes like "warn" that only one device is shared by the

               same export, however it will not only log a warning message but also deny

               access to additional devices on guest. Note though that "forbid" does

               currently not block all possible file access operations (e.g. readdir()

               would still return entries from other devices).

       -virtfs_synth

           Create synthetic file system image. Note that this option is now deprecated.

           Please use "-fsdev synth" and "-device virtio-9p-..." instead.

       -iscsi

           Configure iSCSI session parameters.

       USB options

       -usb

           Enable USB emulation on machine types with an on-board USB host controller (if

           not enabled by default).  Note that on-board USB host controllers may not

           support USB 3.0.  In this case -device qemu-xhci can be used instead on

           machines with PCI. Page 27/88



       -usbdevice devname

           Add the USB device devname. Note that this option is deprecated, please use

           "-device usb-..." instead.

           mouse

               Virtual Mouse. This will override the PS/2 mouse emulation when activated.

           tablet

               Pointer device that uses absolute coordinates (like a touchscreen). This

               means QEMU is able to report the mouse position without having to grab the

               mouse. Also overrides the PS/2 mouse emulation when activated.

           braille

               Braille device.  This will use BrlAPI to display the braille output on a

               real or fake device.

       Display options

       -display type

           Select type of display to use. This option is a replacement for the old style

           -sdl/-curses/... options. Valid values for type are

           sdl Display video output via SDL (usually in a separate graphics window; see

               the SDL documentation for other possibilities).

           curses

               Display video output via curses. For graphics device models which support a

               text mode, QEMU can display this output using a curses/ncurses interface.

               Nothing is displayed when the graphics device is in graphical mode or if

               the graphics device does not support a text mode. Generally only the VGA

               device models support text mode.  The font charset used by the guest can be

               specified with the "charset" option, for example "charset=CP850" for IBM

               CP850 encoding. The default is "CP437".

           none

               Do not display video output. The guest will still see an emulated graphics

               card, but its output will not be displayed to the QEMU user. This option

               differs from the -nographic option in that it only affects what is done

               with video output; -nographic also changes the destination of the serial

               and parallel port data.

           gtk Display video output in a GTK window. This interface provides drop-down Page 28/88



               menus and other UI elements to configure and control the VM during runtime.

           vnc Start a VNC server on display <arg>

           egl-headless

               Offload all OpenGL operations to a local DRI device. For any graphical

               display, this display needs to be paired with either VNC or SPICE displays.

           spice-app

               Start QEMU as a Spice server and launch the default Spice client

               application. The Spice server will redirect the serial consoles and QEMU

               monitors. (Since 4.0)

       -nographic

           Normally, if QEMU is compiled with graphical window support, it displays output

           such as guest graphics, guest console, and the QEMU monitor in a window. With

           this option, you can totally disable graphical output so that QEMU is a simple

           command line application. The emulated serial port is redirected on the console

           and muxed with the monitor (unless redirected elsewhere explicitly). Therefore,

           you can still use QEMU to debug a Linux kernel with a serial console. Use C-a h

           for help on switching between the console and monitor.

       -curses

           Normally, if QEMU is compiled with graphical window support, it displays output

           such as guest graphics, guest console, and the QEMU monitor in a window. With

           this option, QEMU can display the VGA output when in text mode using a

           curses/ncurses interface. Nothing is displayed in graphical mode.

       -alt-grab

           Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also

           affects the special keys (for fullscreen, monitor-mode switching, etc).

       -ctrl-grab

           Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also affects

           the special keys (for fullscreen, monitor-mode switching, etc).

       -no-quit

           Disable SDL window close capability.

       -sdl

           Enable SDL.

       -spice option[,option[,...]] Page 29/88



           Enable the spice remote desktop protocol. Valid options are

           port=<nr>

               Set the TCP port spice is listening on for plaintext channels.

           addr=<addr>

               Set the IP address spice is listening on.  Default is any address.

           ipv4

           ipv6

           unix

               Force using the specified IP version.

           password=<secret>

               Set the password you need to authenticate.

           sasl

               Require that the client use SASL to authenticate with the spice.  The exact

               choice of authentication method used is controlled from the system / user's

               SASL configuration file for the 'qemu' service. This is typically found in

               /etc/sasl2/qemu.conf. If running QEMU as an unprivileged user, an

               environment variable SASL_CONF_PATH can be used to make it search alternate

               locations for the service config.  While some SASL auth methods can also

               provide data encryption (eg GSSAPI), it is recommended that SASL always be

               combined with the 'tls' and 'x509' settings to enable use of SSL and server

               certificates. This ensures a data encryption preventing compromise of

               authentication credentials.

           disable-ticketing

               Allow client connects without authentication.

           disable-copy-paste

               Disable copy paste between the client and the guest.

           disable-agent-file-xfer

               Disable spice-vdagent based file-xfer between the client and the guest.

           tls-port=<nr>

               Set the TCP port spice is listening on for encrypted channels.

           x509-dir=<dir>

               Set the x509 file directory. Expects same filenames as -vnc

               $display,x509=$dir Page 30/88



           x509-key-file=<file>

           x509-key-password=<file>

           x509-cert-file=<file>

           x509-cacert-file=<file>

           x509-dh-key-file=<file>

               The x509 file names can also be configured individually.

           tls-ciphers=<list>

               Specify which ciphers to use.

           tls-channel=[main|display|cursor|inputs|record|playback]

           plaintext-channel=[main|display|cursor|inputs|record|playback]

               Force specific channel to be used with or without TLS encryption.  The

               options can be specified multiple times to configure multiple channels.

               The special name "default" can be used to set the default mode.  For

               channels which are not explicitly forced into one mode the spice client is

               allowed to pick tls/plaintext as he pleases.

           image-compression=[auto_glz|auto_lz|quic|glz|lz|off]

               Configure image compression (lossless).  Default is auto_glz.

           jpeg-wan-compression=[auto|never|always]

           zlib-glz-wan-compression=[auto|never|always]

               Configure wan image compression (lossy for slow links).  Default is auto.

           streaming-video=[off|all|filter]

               Configure video stream detection.  Default is off.

           agent-mouse=[on|off]

               Enable/disable passing mouse events via vdagent.  Default is on.

           playback-compression=[on|off]

               Enable/disable audio stream compression (using celt 0.5.1).  Default is on.

           seamless-migration=[on|off]

               Enable/disable spice seamless migration. Default is off.

           gl=[on|off]

               Enable/disable OpenGL context. Default is off.

           rendernode=<file>

               DRM render node for OpenGL rendering. If not specified, it will pick the

               first available. (Since 2.9) Page 31/88



       -portrait

           Rotate graphical output 90 deg left (only PXA LCD).

       -rotate deg

           Rotate graphical output some deg left (only PXA LCD).

       -vga type

           Select type of VGA card to emulate. Valid values for type are

           cirrus

               Cirrus Logic GD5446 Video card. All Windows versions starting from Windows

               95 should recognize and use this graphic card. For optimal performances,

               use 16 bit color depth in the guest and the host OS.  (This card was the

               default before QEMU 2.2)

           std Standard VGA card with Bochs VBE extensions.  If your guest OS supports the

               VESA 2.0 VBE extensions (e.g. Windows XP) and if you want to use high

               resolution modes (>= 1280x1024x16) then you should use this option. (This

               card is the default since QEMU 2.2)

           vmware

               VMWare SVGA-II compatible adapter. Use it if you have sufficiently recent

               XFree86/XOrg server or Windows guest with a driver for this card.

           qxl QXL paravirtual graphic card.  It is VGA compatible (including VESA 2.0 VBE

               support).  Works best with qxl guest drivers installed though.  Recommended

               choice when using the spice protocol.

           tcx (sun4m only) Sun TCX framebuffer. This is the default framebuffer for sun4m

               machines and offers both 8-bit and 24-bit colour depths at a fixed

               resolution of 1024x768.

           cg3 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer

               for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)

               resolutions aimed at people wishing to run older Solaris versions.

           virtio

               Virtio VGA card.

           none

               Disable VGA card.

       -full-screen

           Start in full screen. Page 32/88



       -g widthxheight[xdepth]

           Set the initial graphical resolution and depth (PPC, SPARC only).

       -vnc display[,option[,option[,...]]]

           Normally, if QEMU is compiled with graphical window support, it displays output

           such as guest graphics, guest console, and the QEMU monitor in a window. With

           this option, you can have QEMU listen on VNC display display and redirect the

           VGA display over the VNC session. It is very useful to enable the usb tablet

           device when using this option (option -device usb-tablet). When using the VNC

           display, you must use the -k parameter to set the keyboard layout if you are

           not using en-us. Valid syntax for the display is

           to=L

               With this option, QEMU will try next available VNC displays, until the

               number L, if the origianlly defined "-vnc display" is not available, e.g.

               port 5900+display is already used by another application. By default, to=0.

           host:d

               TCP connections will only be allowed from host on display d.  By convention

               the TCP port is 5900+d. Optionally, host can be omitted in which case the

               server will accept connections from any host.

           unix:path

               Connections will be allowed over UNIX domain sockets where path is the

               location of a unix socket to listen for connections on.

           none

               VNC is initialized but not started. The monitor "change" command can be

               used to later start the VNC server.

           Following the display value there may be one or more option flags separated by

           commas. Valid options are

           reverse

               Connect to a listening VNC client via a "reverse" connection. The client is

               specified by the display. For reverse network connections

               (host:d,"reverse"), the d argument is a TCP port number, not a display

               number.

           websocket

               Opens an additional TCP listening port dedicated to VNC Websocket Page 33/88



               connections.  If a bare websocket option is given, the Websocket port is

               5700+display. An alternative port can be specified with the syntax

               "websocket"=port.

               If host is specified connections will only be allowed from this host.  It

               is possible to control the websocket listen address independently, using

               the syntax "websocket"=host:port.

               If no TLS credentials are provided, the websocket connection runs in

               unencrypted mode. If TLS credentials are provided, the websocket connection

               requires encrypted client connections.

           password

               Require that password based authentication is used for client connections.

               The password must be set separately using the "set_password" command in the

               pcsys_monitor. The syntax to change your password is: "set_password

               <protocol> <password>" where <protocol> could be either "vnc" or "spice".

               If you would like to change <protocol> password expiration, you should use

               "expire_password <protocol> <expiration-time>" where expiration time could

               be one of the following options: now, never, +seconds or UNIX time of

               expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800

               to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for

               this date and time).

               You can also use keywords "now" or "never" for the expiration time to allow

               <protocol> password to expire immediately or never expire.

           tls-creds=ID

               Provides the ID of a set of TLS credentials to use to secure the VNC

               server. They will apply to both the normal VNC server socket and the

               websocket socket (if enabled). Setting TLS credentials will cause the VNC

               server socket to enable the VeNCrypt auth mechanism.  The credentials

               should have been previously created using the -object tls-creds argument.

           tls-authz=ID

               Provides the ID of the QAuthZ authorization object against which the

               client's x509 distinguished name will validated. This object is only

               resolved at time of use, so can be deleted and recreated on the fly while

               the VNC server is active. If missing, it will default to denying access. Page 34/88



           sasl

               Require that the client use SASL to authenticate with the VNC server.  The

               exact choice of authentication method used is controlled from the system /

               user's SASL configuration file for the 'qemu' service. This is typically

               found in /etc/sasl2/qemu.conf. If running QEMU as an unprivileged user, an

               environment variable SASL_CONF_PATH can be used to make it search alternate

               locations for the service config.  While some SASL auth methods can also

               provide data encryption (eg GSSAPI), it is recommended that SASL always be

               combined with the 'tls' and 'x509' settings to enable use of SSL and server

               certificates. This ensures a data encryption preventing compromise of

               authentication credentials. See the vnc_security section for details on

               using SASL authentication.

           sasl-authz=ID

               Provides the ID of the QAuthZ authorization object against which the

               client's SASL username will validated. This object is only resolved at time

               of use, so can be deleted and recreated on the fly while the VNC server is

               active. If missing, it will default to denying access.

           acl Legacy method for enabling authorization of clients against the x509

               distinguished name and SASL username. It results in the creation of two

               "authz-list" objects with IDs of "vnc.username" and "vnc.x509dname". The

               rules for these objects must be configured with the HMP ACL commands.

               This option is deprecated and should no longer be used. The new sasl-authz

               and tls-authz options are a replacement.

           lossy

               Enable lossy compression methods (gradient, JPEG, ...). If this option is

               set, VNC client may receive lossy framebuffer updates depending on its

               encoding settings. Enabling this option can save a lot of bandwidth at the

               expense of quality.

           non-adaptive

               Disable adaptive encodings. Adaptive encodings are enabled by default.  An

               adaptive encoding will try to detect frequently updated screen regions, and

               send updates in these regions using a lossy encoding (like JPEG).  This can

               be really helpful to save bandwidth when playing videos. Disabling adaptive Page 35/88



               encodings restores the original static behavior of encodings like Tight.

           share=[allow-exclusive|force-shared|ignore]

               Set display sharing policy.  'allow-exclusive' allows clients to ask for

               exclusive access.  As suggested by the rfb spec this is implemented by

               dropping other connections.  Connecting multiple clients in parallel

               requires all clients asking for a shared session (vncviewer: -shared

               switch).  This is the default.  'force-shared' disables exclusive client

               access.  Useful for shared desktop sessions, where you don't want someone

               forgetting specify -shared disconnect everybody else.  'ignore' completely

               ignores the shared flag and allows everybody connect unconditionally.

               Doesn't conform to the rfb spec but is traditional QEMU behavior.

           key-delay-ms

               Set keyboard delay, for key down and key up events, in milliseconds.

               Default is 10.  Keyboards are low-bandwidth devices, so this slowdown can

               help the device and guest to keep up and not lose events in case events are

               arriving in bulk.  Possible causes for the latter are flaky network

               connections, or scripts for automated testing.

           audiodev=audiodev

               Use the specified audiodev when the VNC client requests audio transmission.

               When not using an -audiodev argument, this option must be omitted,

               otherwise is must be present and specify a valid audiodev.

       i386 target only

       -win2k-hack

           Use it when installing Windows 2000 to avoid a disk full bug. After Windows

           2000 is installed, you no longer need this option (this option slows down the

           IDE transfers).

       -no-fd-bootchk

           Disable boot signature checking for floppy disks in BIOS. May be needed to boot

           from old floppy disks.

       -no-acpi

           Disable ACPI (Advanced Configuration and Power Interface) support. Use it if

           your guest OS complains about ACPI problems (PC target machine only).

       -no-hpet Page 36/88



           Disable HPET support.

       -acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n]

       [,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]

           Add ACPI table with specified header fields and context from specified files.

           For file=, take whole ACPI table from the specified files, including all ACPI

           headers (possible overridden by other options).  For data=, only data portion

           of the table is used, all header information is specified in the command line.

           If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id

           fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order

           to ensure the field matches required by the Microsoft SLIC spec and the ACPI

           spec.

       -smbios file=binary

           Load SMBIOS entry from binary file.

       -smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d][,uefi=on|off]

           Specify SMBIOS type 0 fields

       -smbios

       type=1[,manufacturer=str][,product=str][,version=str][,serial=str][,uuid=uuid][,sku=str][,family=str]

           Specify SMBIOS type 1 fields

       -smbios

       type=2[,manufacturer=str][,product=str][,version=str][,serial=str][,asset=str][,location=str]

           Specify SMBIOS type 2 fields

       -smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str][,sku=str]

           Specify SMBIOS type 3 fields

       -smbios

       type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str][,asset=str][,part=str]

           Specify SMBIOS type 4 fields

       -smbios

       type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str][,asset=str][,part=str][,speed=%d]

           Specify SMBIOS type 17 fields

       Network options

       -nic

       [tap|bridge|user|l2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]

           This option is a shortcut for configuring both the on-board (default) guest NIC Page 37/88



           hardware and the host network backend in one go. The host backend options are

           the same as with the corresponding -netdev options below.  The guest NIC model

           can be set with model=modelname.  Use model=help to list the available device

           types.  The hardware MAC address can be set with mac=macaddr.

           The following two example do exactly the same, to show how -nic can be used to

           shorten the command line length (note that the e1000 is the default on i386, so

           the model=e1000 parameter could even be omitted here, too):

                   qemu-system-x86_64 -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32

                   qemu-system-x86_64 -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32

       -nic none

           Indicate that no network devices should be configured. It is used to override

           the default configuration (default NIC with "user" host network backend) which

           is activated if no other networking options are provided.

       -netdev user,id=id[,option][,option][,...]

           Configure user mode host network backend which requires no administrator

           privilege to run. Valid options are:

           id=id

               Assign symbolic name for use in monitor commands.

           ipv4=on|off and ipv6=on|off

               Specify that either IPv4 or IPv6 must be enabled. If neither is specified

               both protocols are enabled.

           net=addr[/mask]

               Set IP network address the guest will see. Optionally specify the netmask,

               either in the form a.b.c.d or as number of valid top-most bits. Default is

               10.0.2.0/24.

           host=addr

               Specify the guest-visible address of the host. Default is the 2nd IP in the

               guest network, i.e. x.x.x.2.

           ipv6-net=addr[/int]

               Set IPv6 network address the guest will see (default is fec0::/64). The

               network prefix is given in the usual hexadecimal IPv6 address notation. The

               prefix size is optional, and is given as the number of valid top-most bits

               (default is 64). Page 38/88



           ipv6-host=addr

               Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6

               in the guest network, i.e. xxxx::2.

           restrict=on|off

               If this option is enabled, the guest will be isolated, i.e. it will not be

               able to contact the host and no guest IP packets will be routed over the

               host to the outside. This option does not affect any explicitly set

               forwarding rules.

           hostname=name

               Specifies the client hostname reported by the built-in DHCP server.

           dhcpstart=addr

               Specify the first of the 16 IPs the built-in DHCP server can assign.

               Default is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to

               x.x.x.31.

           dns=addr

               Specify the guest-visible address of the virtual nameserver. The address

               must be different from the host address. Default is the 3rd IP in the guest

               network, i.e. x.x.x.3.

           ipv6-dns=addr

               Specify the guest-visible address of the IPv6 virtual nameserver. The

               address must be different from the host address. Default is the 3rd IP in

               the guest network, i.e. xxxx::3.

           dnssearch=domain

               Provides an entry for the domain-search list sent by the built-in DHCP

               server. More than one domain suffix can be transmitted by specifying this

               option multiple times. If supported, this will cause the guest to

               automatically try to append the given domain suffix(es) in case a domain

               name can not be resolved.

               Example:

                       qemu-system-x86_64 -nic user,dnssearch=mgmt.example.org,dnssearch=example.org

           domainname=domain

               Specifies the client domain name reported by the built-in DHCP server.

           tftp=dir Page 39/88



               When using the user mode network stack, activate a built-in TFTP server.

               The files in dir will be exposed as the root of a TFTP server.  The TFTP

               client on the guest must be configured in binary mode (use the command

               "bin" of the Unix TFTP client).

           tftp-server-name=name

               In BOOTP reply, broadcast name as the "TFTP server name" (RFC2132 option

               66). This can be used to advise the guest to load boot files or

               configurations from a different server than the host address.

           bootfile=file

               When using the user mode network stack, broadcast file as the BOOTP

               filename. In conjunction with tftp, this can be used to network boot a

               guest from a local directory.

               Example (using pxelinux):

                       qemu-system-x86_64 -hda linux.img -boot n -device e1000,netdev=n1 \

                       -netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0

           smb=dir[,smbserver=addr]

               When using the user mode network stack, activate a built-in SMB server so

               that Windows OSes can access to the host files in dir transparently. The IP

               address of the SMB server can be set to addr. By default the 4th IP in the

               guest network is used, i.e. x.x.x.4.

               In the guest Windows OS, the line:

                       10.0.2.4 smbserver

               must be added in the file C:\WINDOWS\LMHOSTS (for windows 9x/Me) or

               C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS (Windows NT/2000).

               Then dir can be accessed in \\smbserver\qemu.

               Note that a SAMBA server must be installed on the host OS.

           hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport

               Redirect incoming TCP or UDP connections to the host port hostport to the

               guest IP address guestaddr on guest port guestport. If guestaddr is not

               specified, its value is x.x.x.15 (default first address given by the built-

               in DHCP server). By specifying hostaddr, the rule can be bound to a

               specific host interface. If no connection type is set, TCP is used. This

               option can be given multiple times. Page 40/88



               For example, to redirect host X11 connection from screen 1 to guest screen

               0, use the following:

                       # on the host

                       qemu-system-x86_64 -nic user,hostfwd=tcp:127.0.0.1:6001-:6000

                       # this host xterm should open in the guest X11 server

                       xterm -display :1

               To redirect telnet connections from host port 5555 to telnet port on the

               guest, use the following:

                       # on the host

                       qemu-system-x86_64 -nic user,hostfwd=tcp::5555-:23

                       telnet localhost 5555

               Then when you use on the host "telnet localhost 5555", you connect to the

               guest telnet server.

           guestfwd=[tcp]:server:port-dev

           guestfwd=[tcp]:server:port-cmd:command

               Forward guest TCP connections to the IP address server on port port to the

               character device dev or to a program executed by cmd:command which gets

               spawned for each connection. This option can be given multiple times.

               You can either use a chardev directly and have that one used throughout

               QEMU's lifetime, like in the following example:

                       # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever

                       # the guest accesses it

                       qemu-system-x86_64 -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321

               Or you can execute a command on every TCP connection established by the

               guest, so that QEMU behaves similar to an inetd process for that virtual

               server:

                       # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234

                       # and connect the TCP stream to its stdin/stdout

                       qemu-system-x86_64 -nic  'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'

       -netdev

       tap,id=id[,fd=h][,ifname=name][,script=file][,downscript=dfile][,br=bridge][,helper=helper]

           Configure a host TAP network backend with ID id.

           Use the network script file to configure it and the network script dfile to Page 41/88



           deconfigure it. If name is not provided, the OS automatically provides one. The

           default network configure script is /etc/qemu-ifup and the default network

           deconfigure script is /etc/qemu-ifdown. Use script=no or downscript=no to

           disable script execution.

           If running QEMU as an unprivileged user, use the network helper helper to

           configure the TAP interface and attach it to the bridge.  The default network

           helper executable is /path/to/qemu-bridge-helper and the default bridge device

           is br0.

           fd=h can be used to specify the handle of an already opened host TAP interface.

           Examples:

                   #launch a QEMU instance with the default network script

                   qemu-system-x86_64 linux.img -nic tap

                   #launch a QEMU instance with two NICs, each one connected

                   #to a TAP device

                   qemu-system-x86_64 linux.img \

                   -netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \

                   -netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1

                   #launch a QEMU instance with the default network helper to

                   #connect a TAP device to bridge br0

                   qemu-system-x86_64 linux.img -device virtio-net-pci,netdev=n1 \

                   -netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"

       -netdev bridge,id=id[,br=bridge][,helper=helper]

           Connect a host TAP network interface to a host bridge device.

           Use the network helper helper to configure the TAP interface and attach it to

           the bridge. The default network helper executable is

           /path/to/qemu-bridge-helper and the default bridge device is br0.

           Examples:

                   #launch a QEMU instance with the default network helper to

                   #connect a TAP device to bridge br0

                   qemu-system-x86_64 linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1

                   #launch a QEMU instance with the default network helper to

                   #connect a TAP device to bridge qemubr0

                   qemu-system-x86_64 linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1 Page 42/88



       -netdev socket,id=id[,fd=h][,listen=[host]:port][,connect=host:port]

           This host network backend can be used to connect the guest's network to another

           QEMU virtual machine using a TCP socket connection. If listen is specified,

           QEMU waits for incoming connections on port (host is optional). connect is used

           to connect to another QEMU instance using the listen option. fd=h specifies an

           already opened TCP socket.

           Example:

                   # launch a first QEMU instance

                   qemu-system-x86_64 linux.img \

                   -device e1000,netdev=n1,mac=52:54:00:12:34:56 \

                   -netdev socket,id=n1,listen=:1234

                   # connect the network of this instance to the network of the first instance

                   qemu-system-x86_64 linux.img \

                   -device e1000,netdev=n2,mac=52:54:00:12:34:57 \

                   -netdev socket,id=n2,connect=127.0.0.1:1234

       -netdev socket,id=id[,fd=h][,mcast=maddr:port[,localaddr=addr]]

           Configure a socket host network backend to share the guest's network traffic

           with another QEMU virtual machines using a UDP multicast socket, effectively

           making a bus for every QEMU with same multicast address maddr and port.  NOTES:

           1.  Several QEMU can be running on different hosts and share same bus (assuming

               correct multicast setup for these hosts).

           2.  mcast support is compatible with User Mode Linux (argument ethN=mcast), see

               <http://user-mode-linux.sf.net>.

           3.  Use fd=h to specify an already opened UDP multicast socket.

           Example:

                   # launch one QEMU instance

                   qemu-system-x86_64 linux.img \

                   -device e1000,netdev=n1,mac=52:54:00:12:34:56 \

                   -netdev socket,id=n1,mcast=230.0.0.1:1234

                   # launch another QEMU instance on same "bus"

                   qemu-system-x86_64 linux.img \

                   -device e1000,netdev=n2,mac=52:54:00:12:34:57 \

                   -netdev socket,id=n2,mcast=230.0.0.1:1234 Page 43/88



                   # launch yet another QEMU instance on same "bus"

                   qemu-system-x86_64 linux.img \

                   -device e1000,netdev=n3,mac=52:54:00:12:34:58 \

                   -netdev socket,id=n3,mcast=230.0.0.1:1234

           Example (User Mode Linux compat.):

                   # launch QEMU instance (note mcast address selected is UML's default)

                   qemu-system-x86_64 linux.img \

                   -device e1000,netdev=n1,mac=52:54:00:12:34:56 \

                   -netdev socket,id=n1,mcast=239.192.168.1:1102

                   # launch UML

                   /path/to/linux ubd0=/path/to/root_fs eth0=mcast

           Example (send packets from host's 1.2.3.4):

                   qemu-system-x86_64 linux.img \

                   -device e1000,netdev=n1,mac=52:54:00:12:34:56 \

                   -netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4

       -netdev

      

l2tpv3,id=id,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport],txsession=txsession[,rxsession=rxsession][,ipv6][,ud

p][,cookie64][,counter][,pincounter][,txcookie=txcookie][,rxcookie=rxcookie][,offset=offset]

           Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a

           popular protocol to transport Ethernet (and other Layer 2) data frames between

           two systems. It is present in routers, firewalls and the Linux kernel (from

           version 3.3 onwards).

           This transport allows a VM to communicate to another VM, router or firewall

           directly.

           src=srcaddr

               source address (mandatory)

           dst=dstaddr

               destination address (mandatory)

           udp select udp encapsulation (default is ip).

           srcport=srcport

               source udp port.

           dstport=dstport Page 44/88



               destination udp port.

           ipv6

               force v6, otherwise defaults to v4.

           rxcookie=rxcookie

           txcookie=txcookie

               Cookies are a weak form of security in the l2tpv3 specification.  Their

               function is mostly to prevent misconfiguration. By default they are 32 bit.

           cookie64

               Set cookie size to 64 bit instead of the default 32

           counter=off

               Force a 'cut-down' L2TPv3 with no counter as in

               draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00

           pincounter=on

               Work around broken counter handling in peer. This may also help on networks

               which have packet reorder.

           offset=offset

               Add an extra offset between header and data

           For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge

           br-lan on the remote Linux host 1.2.3.4:

                   # Setup tunnel on linux host using raw ip as encapsulation

                   # on 1.2.3.4

                   ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \

                   encap udp udp_sport 16384 udp_dport 16384

                   ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \

                   0xFFFFFFFF peer_session_id 0xFFFFFFFF

                   ifconfig vmtunnel0 mtu 1500

                   ifconfig vmtunnel0 up

                   brctl addif br-lan vmtunnel0

                   # on 4.3.2.1

                   # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter

                   qemu-system-x86_64 linux.img -device e1000,netdev=n1 \

                   -netdev

l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counterPage 45/88



       -netdev vde,id=id[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]

           Configure VDE backend to connect to PORT n of a vde switch running on host and

           listening for incoming connections on socketpath. Use GROUP groupname and MODE

           octalmode to change default ownership and permissions for communication port.

           This option is only available if QEMU has been compiled with vde support

           enabled.

           Example:

                   # launch vde switch

                   vde_switch -F -sock /tmp/myswitch

                   # launch QEMU instance

                   qemu-system-x86_64 linux.img -nic vde,sock=/tmp/myswitch

       -netdev vhost-user,chardev=id[,vhostforce=on|off][,queues=n]

           Establish a vhost-user netdev, backed by a chardev id. The chardev should be a

           unix domain socket backed one. The vhost-user uses a specifically defined

           protocol to pass vhost ioctl replacement messages to an application on the

           other end of the socket. On non-MSIX guests, the feature can be forced with

           vhostforce. Use 'queues=n' to specify the number of queues to be created for

           multiqueue vhost-user.

           Example:

                   qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \

                   -numa node,memdev=mem \

                   -chardev socket,id=chr0,path=/path/to/socket \

                   -netdev type=vhost-user,id=net0,chardev=chr0 \

                   -device virtio-net-pci,netdev=net0

       -netdev hubport,id=id,hubid=hubid[,netdev=nd]

           Create a hub port on the emulated hub with ID hubid.

           The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a

           single netdev. Alternatively, you can also connect the hubport to another

           netdev with ID nd by using the netdev=nd option.

       -net nic[,netdev=nd][,macaddr=mac][,model=type]

       [,name=name][,addr=addr][,vectors=v]

           Legacy option to configure or create an on-board (or machine default) Network

           Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e. Page 46/88



           the default hub), or to the netdev nd.  The NIC is an e1000 by default on the

           PC target. Optionally, the MAC address can be changed to mac, the device

           address set to addr (PCI cards only), and a name can be assigned for use in

           monitor commands.  Optionally, for PCI cards, you can specify the number v of

           MSI-X vectors that the card should have; this option currently only affects

           virtio cards; set v = 0 to disable MSI-X. If no -net option is specified, a

           single NIC is created.  QEMU can emulate several different models of network

           card.  Use "-net nic,model=help" for a list of available devices for your

           target.

       -net user|tap|bridge|socket|l2tpv3|vde[,...][,name=name]

           Configure a host network backend (with the options corresponding to the same

           -netdev option) and connect it to the emulated hub 0 (the default hub). Use

           name to specify the name of the hub port.

       Character device options

       The general form of a character device option is:

       -chardev backend,id=id[,mux=on|off][,options]

           Backend is one of: null, socket, udp, msmouse, vc, ringbuf, file, pipe,

           console, serial, pty, stdio, braille, tty, parallel, parport, spicevmc,

           spiceport.  The specific backend will determine the applicable options.

           Use "-chardev help" to print all available chardev backend types.

           All devices must have an id, which can be any string up to 127 characters long.

           It is used to uniquely identify this device in other command line directives.

           A character device may be used in multiplexing mode by multiple front-ends.

           Specify mux=on to enable this mode.  A multiplexer is a "1:N" device, and here

           the "1" end is your specified chardev backend, and the "N" end is the various

           parts of QEMU that can talk to a chardev.  If you create a chardev with id=myid

           and mux=on, QEMU will create a multiplexer with your specified ID, and you can

           then configure multiple front ends to use that chardev ID for their

           input/output. Up to four different front ends can be connected to a single

           multiplexed chardev. (Without multiplexing enabled, a chardev can only be used

           by a single front end.)  For instance you could use this to allow a single

           stdio chardev to be used by two serial ports and the QEMU monitor:

                   -chardev stdio,mux=on,id=char0 \ Page 47/88



                   -mon chardev=char0,mode=readline \

                   -serial chardev:char0 \

                   -serial chardev:char0

           You can have more than one multiplexer in a system configuration; for instance

           you could have a TCP port multiplexed between UART 0 and UART 1, and stdio

           multiplexed between the QEMU monitor and a parallel port:

                   -chardev stdio,mux=on,id=char0 \

                   -mon chardev=char0,mode=readline \

                   -parallel chardev:char0 \

                   -chardev tcp,...,mux=on,id=char1 \

                   -serial chardev:char1 \

                   -serial chardev:char1

           When you're using a multiplexed character device, some escape sequences are

           interpreted in the input.

           Note that some other command line options may implicitly create multiplexed

           character backends; for instance -serial mon:stdio creates a multiplexed stdio

           backend connected to the serial port and the QEMU monitor, and -nographic also

           multiplexes the console and the monitor to stdio.

           There is currently no support for multiplexing in the other direction (where a

           single QEMU front end takes input and output from multiple chardevs).

           Every backend supports the logfile option, which supplies the path to a file to

           record all data transmitted via the backend. The logappend option controls

           whether the log file will be truncated or appended to when opened.

       The available backends are:

       -chardev null,id=id

           A void device. This device will not emit any data, and will drop any data it

           receives. The null backend does not take any options.

       -chardev socket,id=id[,TCP options or unix

       options][,server][,nowait][,telnet][,websocket][,reconnect=seconds][,tls-creds=id][,tls-authz=id]

           Create a two-way stream socket, which can be either a TCP or a unix socket. A

           unix socket will be created if path is specified. Behaviour is undefined if TCP

           options are specified for a unix socket.

           server specifies that the socket shall be a listening socket. Page 48/88



           nowait specifies that QEMU should not block waiting for a client to connect to

           a listening socket.

           telnet specifies that traffic on the socket should interpret telnet escape

           sequences.

           websocket specifies that the socket uses WebSocket protocol for communication.

           reconnect sets the timeout for reconnecting on non-server sockets when the

           remote end goes away.  qemu will delay this many seconds and then attempt to

           reconnect.  Zero disables reconnecting, and is the default.

           tls-creds requests enablement of the TLS protocol for encryption, and specifies

           the id of the TLS credentials to use for the handshake. The credentials must be

           previously created with the -object tls-creds argument.

           tls-auth provides the ID of the QAuthZ authorization object against which the

           client's x509 distinguished name will be validated. This object is only

           resolved at time of use, so can be deleted and recreated on the fly while the

           chardev server is active. If missing, it will default to denying access.

           TCP and unix socket options are given below:

           TCP options: port=port[,host=host][,to=to][,ipv4][,ipv6][,nodelay]

               host for a listening socket specifies the local address to be bound.  For a

               connecting socket species the remote host to connect to. host is optional

               for listening sockets. If not specified it defaults to 0.0.0.0.

               port for a listening socket specifies the local port to be bound. For a

               connecting socket specifies the port on the remote host to connect to.

               port can be given as either a port number or a service name.  port is

               required.

               to is only relevant to listening sockets. If it is specified, and port

               cannot be bound, QEMU will attempt to bind to subsequent ports up to and

               including to until it succeeds. to must be specified as a port number.

               ipv4 and ipv6 specify that either IPv4 or IPv6 must be used.  If neither is

               specified the socket may use either protocol.

               nodelay disables the Nagle algorithm.

           unix options: path=path

               path specifies the local path of the unix socket. path is required.

       -chardev Page 49/88



       udp,id=id[,host=host],port=port[,localaddr=localaddr][,localport=localport][,ipv4][,ipv6]

           Sends all traffic from the guest to a remote host over UDP.

           host specifies the remote host to connect to. If not specified it defaults to

           "localhost".

           port specifies the port on the remote host to connect to. port is required.

           localaddr specifies the local address to bind to. If not specified it defaults

           to 0.0.0.0.

           localport specifies the local port to bind to. If not specified any available

           local port will be used.

           ipv4 and ipv6 specify that either IPv4 or IPv6 must be used.  If neither is

           specified the device may use either protocol.

       -chardev msmouse,id=id

           Forward QEMU's emulated msmouse events to the guest. msmouse does not take any

           options.

       -chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]

           Connect to a QEMU text console. vc may optionally be given a specific size.

           width and height specify the width and height respectively of the console, in

           pixels.

           cols and rows specify that the console be sized to fit a text console with the

           given dimensions.

       -chardev ringbuf,id=id[,size=size]

           Create a ring buffer with fixed size size.  size must be a power of two and

           defaults to "64K".

       -chardev file,id=id,path=path

           Log all traffic received from the guest to a file.

           path specifies the path of the file to be opened. This file will be created if

           it does not already exist, and overwritten if it does. path is required.

       -chardev pipe,id=id,path=path

           Create a two-way connection to the guest. The behaviour differs slightly

           between Windows hosts and other hosts:

           On Windows, a single duplex pipe will be created at \\.pipe\path.

           On other hosts, 2 pipes will be created called path.in and path.out. Data

           written to path.in will be received by the guest. Data written by the guest can Page 50/88



           be read from path.out. QEMU will not create these fifos, and requires them to

           be present.

           path forms part of the pipe path as described above. path is required.

       -chardev console,id=id

           Send traffic from the guest to QEMU's standard output. console does not take

           any options.

           console is only available on Windows hosts.

       -chardev serial,id=id,path=path

           Send traffic from the guest to a serial device on the host.

           On Unix hosts serial will actually accept any tty device, not only serial

           lines.

           path specifies the name of the serial device to open.

       -chardev pty,id=id

           Create a new pseudo-terminal on the host and connect to it. pty does not take

           any options.

           pty is not available on Windows hosts.

       -chardev stdio,id=id[,signal=on|off]

           Connect to standard input and standard output of the QEMU process.

           signal controls if signals are enabled on the terminal, that includes exiting

           QEMU with the key sequence Control-c. This option is enabled by default, use

           signal=off to disable it.

       -chardev braille,id=id

           Connect to a local BrlAPI server. braille does not take any options.

       -chardev tty,id=id,path=path

           tty is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and DragonFlyBSD

           hosts.  It is an alias for serial.

           path specifies the path to the tty. path is required.

       -chardev parallel,id=id,path=path

       -chardev parport,id=id,path=path

           parallel is only available on Linux, FreeBSD and DragonFlyBSD hosts.

           Connect to a local parallel port.

           path specifies the path to the parallel port device. path is required.

       -chardev spicevmc,id=id,debug=debug,name=name Page 51/88



           spicevmc is only available when spice support is built in.

           debug debug level for spicevmc

           name name of spice channel to connect to

           Connect to a spice virtual machine channel, such as vdiport.

       -chardev spiceport,id=id,debug=debug,name=name

           spiceport is only available when spice support is built in.

           debug debug level for spicevmc

           name name of spice port to connect to

           Connect to a spice port, allowing a Spice client to handle the traffic

           identified by a name (preferably a fqdn).

       Bluetooth(R) options

       -bt hci[...]

           Defines the function of the corresponding Bluetooth HCI.  -bt options are

           matched with the HCIs present in the chosen machine type.  For example when

           emulating a machine with only one HCI built into it, only the first "-bt

           hci[...]" option is valid and defines the HCI's logic.  The Transport Layer is

           decided by the machine type.  Currently the machines "n800" and "n810" have one

           HCI and all other machines have none.

           Note: This option and the whole bluetooth subsystem is considered as

           deprecated.  If you still use it, please send a mail to <qemu-devel@nongnu.org>

           where you describe your usecase.

           The following three types are recognized:

           -bt hci,null

               (default) The corresponding Bluetooth HCI assumes no internal logic and

               will not respond to any HCI commands or emit events.

           -bt hci,host[:id]

               ("bluez" only) The corresponding HCI passes commands / events to / from the

               physical HCI identified by the name id (default: "hci0") on the computer

               running QEMU.  Only available on "bluez" capable systems like Linux.

           -bt hci[,vlan=n]

               Add a virtual, standard HCI that will participate in the Bluetooth

               scatternet n (default 0).  Similarly to -net VLANs, devices inside a

               bluetooth network n can only communicate with other devices in the same Page 52/88



               network (scatternet).

       -bt vhci[,vlan=n]

           (Linux-host only) Create a HCI in scatternet n (default 0) attached to the host

           bluetooth stack instead of to the emulated target.  This allows the host and

           target machines to participate in a common scatternet and communicate.

           Requires the Linux "vhci" driver installed.  Can be used as following:

                   qemu-system-x86_64 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5

       -bt device:dev[,vlan=n]

           Emulate a bluetooth device dev and place it in network n (default 0).  QEMU can

           only emulate one type of bluetooth devices currently:

           keyboard

               Virtual wireless keyboard implementing the HIDP bluetooth profile.

       TPM device options

       The general form of a TPM device option is:

       -tpmdev backend,id=id[,options]

           The specific backend type will determine the applicable options.  The "-tpmdev"

           option creates the TPM backend and requires a "-device" option that specifies

           the TPM frontend interface model.

           Use "-tpmdev help" to print all available TPM backend types.

       The available backends are:

       -tpmdev passthrough,id=id,path=path,cancel-path=cancel-path

           (Linux-host only) Enable access to the host's TPM using the passthrough driver.

           path specifies the path to the host's TPM device, i.e., on a Linux host this

           would be "/dev/tpm0".  path is optional and by default "/dev/tpm0" is used.

           cancel-path specifies the path to the host TPM device's sysfs entry allowing

           for cancellation of an ongoing TPM command.  cancel-path is optional and by

           default QEMU will search for the sysfs entry to use.

           Some notes about using the host's TPM with the passthrough driver:

           The TPM device accessed by the passthrough driver must not be used by any other

           application on the host.

           Since the host's firmware (BIOS/UEFI) has already initialized the TPM, the VM's

           firmware (BIOS/UEFI) will not be able to initialize the TPM again and may

           therefore not show a TPM-specific menu that would otherwise allow the user to Page 53/88



           configure the TPM, e.g., allow the user to enable/disable or

           activate/deactivate the TPM.  Further, if TPM ownership is released from within

           a VM then the host's TPM will get disabled and deactivated. To enable and

           activate the TPM again afterwards, the host has to be rebooted and the user is

           required to enter the firmware's menu to enable and activate the TPM.  If the

           TPM is left disabled and/or deactivated most TPM commands will fail.

           To create a passthrough TPM use the following two options:

                   -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0

           Note that the "-tpmdev" id is "tpm0" and is referenced by "tpmdev=tpm0" in the

           device option.

       -tpmdev emulator,id=id,chardev=dev

           (Linux-host only) Enable access to a TPM emulator using Unix domain socket

           based chardev backend.

           chardev specifies the unique ID of a character device backend that provides

           connection to the software TPM server.

           To create a TPM emulator backend device with chardev socket backend:

                   -chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device

tpm-tis,tpmdev=tpm0

       Linux/Multiboot boot specific

       When using these options, you can use a given Linux or Multiboot kernel without

       installing it in the disk image. It can be useful for easier testing of various

       kernels.

       -kernel bzImage

           Use bzImage as kernel image. The kernel can be either a Linux kernel or in

           multiboot format.

       -append cmdline

           Use cmdline as kernel command line

       -initrd file

           Use file as initial ram disk.

       -initrd "file1 arg=foo,file2"

           This syntax is only available with multiboot.

           Use file1 and file2 as modules and pass arg=foo as parameter to the first

           module. Page 54/88



       -dtb file

           Use file as a device tree binary (dtb) image and pass it to the kernel on boot.

       Debug/Expert options

       -fw_cfg [name=]name,file=file

           Add named fw_cfg entry with contents from file file.

       -fw_cfg [name=]name,string=str

           Add named fw_cfg entry with contents from string str.

           The terminating NUL character of the contents of str will not be included as

           part of the fw_cfg item data. To insert contents with embedded NUL characters,

           you have to use the file parameter.

           The fw_cfg entries are passed by QEMU through to the guest.

           Example:

                   -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin

           creates an fw_cfg entry named opt/com.mycompany/blob with contents from

           ./my_blob.bin.

       -serial dev

           Redirect the virtual serial port to host character device dev. The default

           device is "vc" in graphical mode and "stdio" in non graphical mode.

           This option can be used several times to simulate up to 4 serial ports.

           Use "-serial none" to disable all serial ports.

           Available character devices are:

           vc[:WxH]

               Virtual console. Optionally, a width and height can be given in pixel with

                       vc:800x600

               It is also possible to specify width or height in characters:

                       vc:80Cx24C

           pty [Linux only] Pseudo TTY (a new PTY is automatically allocated)

           none

               No device is allocated.

           null

               void device

           chardev:id

               Use a named character device defined with the "-chardev" option. Page 55/88



           /dev/XXX

               [Linux only] Use host tty, e.g. /dev/ttyS0. The host serial port parameters

               are set according to the emulated ones.

           /dev/parportN

               [Linux only, parallel port only] Use host parallel port N. Currently SPP

               and EPP parallel port features can be used.

           file:filename

               Write output to filename. No character can be read.

           stdio

               [Unix only] standard input/output

           pipe:filename

               name pipe filename

           COMn

               [Windows only] Use host serial port n

           udp:[remote_host]:remote_port[@[src_ip]:src_port]

               This implements UDP Net Console.  When remote_host or src_ip are not

               specified they default to 0.0.0.0.  When not using a specified src_port a

               random port is automatically chosen.

               If you just want a simple readonly console you can use "netcat" or "nc", by

               starting QEMU with: "-serial udp::4555" and nc as: "nc -u -l -p 4555". Any

               time QEMU writes something to that port it will appear in the netconsole

               session.

               If you plan to send characters back via netconsole or you want to stop and

               start QEMU a lot of times, you should have QEMU use the same source port

               each time by using something like "-serial udp::4555@4556" to QEMU. Another

               approach is to use a patched version of netcat which can listen to a TCP

               port and send and receive characters via udp.  If you have a patched

               version of netcat which activates telnet remote echo and single char

               transfer, then you can use the following options to set up a netcat

               redirector to allow telnet on port 5555 to access the QEMU port.

               "QEMU Options:"

                   -serial udp::4555@4556

               "netcat options:" Page 56/88



                   -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T

               "telnet options:"

                   localhost 5555

           tcp:[host]:port[,server][,nowait][,nodelay][,reconnect=seconds]

               The TCP Net Console has two modes of operation.  It can send the serial I/O

               to a location or wait for a connection from a location.  By default the TCP

               Net Console is sent to host at the port.  If you use the server option QEMU

               will wait for a client socket application to connect to the port before

               continuing, unless the "nowait" option was specified.  The "nodelay" option

               disables the Nagle buffering algorithm.  The "reconnect" option only

               applies if noserver is set, if the connection goes down it will attempt to

               reconnect at the given interval.  If host is omitted, 0.0.0.0 is assumed.

               Only one TCP connection at a time is accepted. You can use "telnet" to

               connect to the corresponding character device.

               "Example to send tcp console to 192.168.0.2 port 4444"

                   -serial tcp:192.168.0.2:4444

               "Example to listen and wait on port 4444 for connection"

                   -serial tcp::4444,server

               "Example to not wait and listen on ip 192.168.0.100 port 4444"

                   -serial tcp:192.168.0.100:4444,server,nowait

           telnet:host:port[,server][,nowait][,nodelay]

               The telnet protocol is used instead of raw tcp sockets.  The options work

               the same as if you had specified "-serial tcp".  The difference is that the

               port acts like a telnet server or client using telnet option negotiation.

               This will also allow you to send the MAGIC_SYSRQ sequence if you use a

               telnet that supports sending the break sequence.  Typically in unix telnet

               you do it with Control-] and then type "send break" followed by pressing

               the enter key.

           websocket:host:port,server[,nowait][,nodelay]

               The WebSocket protocol is used instead of raw tcp socket. The port acts as

               a WebSocket server. Client mode is not supported.

           unix:path[,server][,nowait][,reconnect=seconds]

               A unix domain socket is used instead of a tcp socket.  The option works the Page 57/88



               same as if you had specified "-serial tcp" except the unix domain socket

               path is used for connections.

           mon:dev_string

               This is a special option to allow the monitor to be multiplexed onto

               another serial port.  The monitor is accessed with key sequence of Control-

               a and then pressing c.  dev_string should be any one of the serial devices

               specified above.  An example to multiplex the monitor onto a telnet server

               listening on port 4444 would be:

               "-serial mon:telnet::4444,server,nowait"

               When the monitor is multiplexed to stdio in this way, Ctrl+C will not

               terminate QEMU any more but will be passed to the guest instead.

           braille

               Braille device.  This will use BrlAPI to display the braille output on a

               real or fake device.

           msmouse

               Three button serial mouse. Configure the guest to use Microsoft protocol.

       -parallel dev

           Redirect the virtual parallel port to host device dev (same devices as the

           serial port). On Linux hosts, /dev/parportN can be used to use hardware devices

           connected on the corresponding host parallel port.

           This option can be used several times to simulate up to 3 parallel ports.

           Use "-parallel none" to disable all parallel ports.

       -monitor dev

           Redirect the monitor to host device dev (same devices as the serial port).  The

           default device is "vc" in graphical mode and "stdio" in non graphical mode.

           Use "-monitor none" to disable the default monitor.

       -qmp dev

           Like -monitor but opens in 'control' mode.

       -qmp-pretty dev

           Like -qmp but uses pretty JSON formatting.

       -mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]

           Setup monitor on chardev name. "pretty" turns on JSON pretty printing easing

           human reading and debugging. Page 58/88



       -debugcon dev

           Redirect the debug console to host device dev (same devices as the serial

           port).  The debug console is an I/O port which is typically port 0xe9; writing

           to that I/O port sends output to this device.  The default device is "vc" in

           graphical mode and "stdio" in non graphical mode.

       -pidfile file

           Store the QEMU process PID in file. It is useful if you launch QEMU from a

           script.

       -singlestep

           Run the emulation in single step mode.

       --preconfig

           Pause QEMU for interactive configuration before the machine is created, which

           allows querying and configuring properties that will affect machine

           initialization.  Use QMP command 'x-exit-preconfig' to exit the preconfig state

           and move to the next state (i.e. run guest if -S isn't used or pause the second

           time if -S is used).  This option is experimental.

       -S  Do not start CPU at startup (you must type 'c' in the monitor).

       -realtime mlock=on|off

           Run qemu with realtime features.  mlocking qemu and guest memory can be enabled

           via mlock=on (enabled by default).

       -overcommit mem-lock=on|off

       -overcommit cpu-pm=on|off

           Run qemu with hints about host resource overcommit. The default is to assume

           that host overcommits all resources.

           Locking qemu and guest memory can be enabled via mem-lock=on (disabled by

           default).  This works when host memory is not overcommitted and reduces the

           worst-case latency for guest.  This is equivalent to realtime.

           Guest ability to manage power state of host cpus (increasing latency for other

           processes on the same host cpu, but decreasing latency for guest) can be

           enabled via cpu-pm=on (disabled by default).  This works best when host CPU is

           not overcommitted. When used, host estimates of CPU cycle and power utilization

           will be incorrect, not taking into account guest idle time.

       -gdb dev Page 59/88



           Wait for gdb connection on device dev. Typical connections will likely be TCP-

           based, but also UDP, pseudo TTY, or even stdio are reasonable use case. The

           latter is allowing to start QEMU from within gdb and establish the connection

           via a pipe:

                   (gdb) target remote | exec qemu-system-x86_64 -gdb stdio ...

       -s  Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234.

       -d item1[,...]

           Enable logging of specified items. Use '-d help' for a list of log items.

       -D logfile

           Output log in logfile instead of to stderr

       -dfilter range1[,...]

           Filter debug output to that relevant to a range of target addresses. The filter

           spec can be either start+size, start-size or start..end where start end and

           size are the addresses and sizes required. For example:

                   -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000

           Will dump output for any code in the 0x1000 sized block starting at 0x8000 and

           the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized

           block starting at 0xffffffc00005f000.

       -seed number

           Force the guest to use a deterministic pseudo-random number generator, seeded

           with number.  This does not affect crypto routines within the host.

       -L  path

           Set the directory for the BIOS, VGA BIOS and keymaps.

           To list all the data directories, use "-L help".

       -bios file

           Set the filename for the BIOS.

       -enable-kvm

           Enable KVM full virtualization support. This option is only available if KVM

           support is enabled when compiling.

       -xen-domid id

           Specify xen guest domain id (XEN only).

       -xen-attach

           Attach to existing xen domain.  libxl will use this when starting QEMU (XEN Page 60/88



           only).  Restrict set of available xen operations to specified domain id (XEN

           only).

       -no-reboot

           Exit instead of rebooting.

       -no-shutdown

           Don't exit QEMU on guest shutdown, but instead only stop the emulation.  This

           allows for instance switching to monitor to commit changes to the disk image.

       -loadvm file

           Start right away with a saved state ("loadvm" in monitor)

       -daemonize

           Daemonize the QEMU process after initialization.  QEMU will not detach from

           standard IO until it is ready to receive connections on any of its devices.

           This option is a useful way for external programs to launch QEMU without having

           to cope with initialization race conditions.

       -option-rom file

           Load the contents of file as an option ROM.  This option is useful to load

           things like EtherBoot.

       -rtc [base=utc|localtime|datetime][,clock=host|rt|vm][,driftfix=none|slew]

           Specify base as "utc" or "localtime" to let the RTC start at the current UTC or

           local time, respectively. "localtime" is required for correct date in MS-DOS or

           Windows. To start at a specific point in time, provide datetime in the format

           "2006-06-17T16:01:21" or "2006-06-17". The default base is UTC.

           By default the RTC is driven by the host system time. This allows using of the

           RTC as accurate reference clock inside the guest, specifically if the host time

           is smoothly following an accurate external reference clock, e.g. via NTP.  If

           you want to isolate the guest time from the host, you can set clock to "rt"

           instead, which provides a host monotonic clock if host support it.  To even

           prevent the RTC from progressing during suspension, you can set clock to "vm"

           (virtual clock). clock=vm is recommended especially in icount mode in order to

           preserve determinism; however, note that in icount mode the speed of the

           virtual clock is variable and can in general differ from the host clock.

           Enable driftfix (i386 targets only) if you experience time drift problems,

           specifically with Windows' ACPI HAL. This option will try to figure out how Page 61/88



           many timer interrupts were not processed by the Windows guest and will re-

           inject them.

       -icount [shift=N|auto][,rr=record|replay,rrfile=filename,rrsnapshot=snapshot]

           Enable virtual instruction counter.  The virtual cpu will execute one

           instruction every 2^N ns of virtual time.  If "auto" is specified then the

           virtual cpu speed will be automatically adjusted to keep virtual time within a

           few seconds of real time.

           When the virtual cpu is sleeping, the virtual time will advance at default

           speed unless sleep=on|off is specified.  With sleep=on|off, the virtual time

           will jump to the next timer deadline instantly whenever the virtual cpu goes to

           sleep mode and will not advance if no timer is enabled. This behavior give

           deterministic execution times from the guest point of view.

           Note that while this option can give deterministic behavior, it does not

           provide cycle accurate emulation.  Modern CPUs contain superscalar out of order

           cores with complex cache hierarchies.  The number of instructions executed

           often has little or no correlation with actual performance.

           align=on will activate the delay algorithm which will try to synchronise the

           host clock and the virtual clock. The goal is to have a guest running at the

           real frequency imposed by the shift option.  Whenever the guest clock is behind

           the host clock and if align=on is specified then we print a message to the user

           to inform about the delay.  Currently this option does not work when shift is

           "auto".  Note: The sync algorithm will work for those shift values for which

           the guest clock runs ahead of the host clock. Typically this happens when the

           shift value is high (how high depends on the host machine).

           When rr option is specified deterministic record/replay is enabled.  Replay log

           is written into filename file in record mode and read from this file in replay

           mode.

           Option rrsnapshot is used to create new vm snapshot named snapshot at the start

           of execution recording. In replay mode this option is used to load the initial

           VM state.

       -watchdog model

           Create a virtual hardware watchdog device.  Once enabled (by a guest action),

           the watchdog must be periodically polled by an agent inside the guest or else Page 62/88



           the guest will be restarted. Choose a model for which your guest has drivers.

           The model is the model of hardware watchdog to emulate. Use "-watchdog help" to

           list available hardware models. Only one watchdog can be enabled for a guest.

           The following models may be available:

           ib700

               iBASE 700 is a very simple ISA watchdog with a single timer.

           i6300esb

               Intel 6300ESB I/O controller hub is a much more featureful PCI-based dual-

               timer watchdog.

           diag288

               A virtual watchdog for s390x backed by the diagnose 288 hypercall

               (currently KVM only).

       -watchdog-action action

           The action controls what QEMU will do when the watchdog timer expires.  The

           default is "reset" (forcefully reset the guest).  Other possible actions are:

           "shutdown" (attempt to gracefully shutdown the guest), "poweroff" (forcefully

           poweroff the guest), "inject-nmi" (inject a NMI into the guest), "pause" (pause

           the guest), "debug" (print a debug message and continue), or "none" (do

           nothing).

           Note that the "shutdown" action requires that the guest responds to ACPI

           signals, which it may not be able to do in the sort of situations where the

           watchdog would have expired, and thus "-watchdog-action shutdown" is not

           recommended for production use.

           Examples:

           "-watchdog i6300esb -watchdog-action pause"

           "-watchdog ib700"

       -echr numeric_ascii_value

           Change the escape character used for switching to the monitor when using

           monitor and serial sharing.  The default is 0x01 when using the "-nographic"

           option.  0x01 is equal to pressing "Control-a".  You can select a different

           character from the ascii control keys where 1 through 26 map to Control-a

           through Control-z.  For instance you could use the either of the following to

           change the escape character to Control-t. Page 63/88



           "-echr 0x14"

           "-echr 20"

       -show-cursor

           Show cursor.

       -tb-size n

           Set TB size.

       -incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]

       -incoming rdma:host:port[,ipv4][,ipv6]

           Prepare for incoming migration, listen on a given tcp port.

       -incoming unix:socketpath

           Prepare for incoming migration, listen on a given unix socket.

       -incoming fd:fd

           Accept incoming migration from a given filedescriptor.

       -incoming exec:cmdline

           Accept incoming migration as an output from specified external command.

       -incoming defer

           Wait for the URI to be specified via migrate_incoming.  The monitor can be used

           to change settings (such as migration parameters) prior to issuing the

           migrate_incoming to allow the migration to begin.

       -only-migratable

           Only allow migratable devices. Devices will not be allowed to enter an

           unmigratable state.

       -nodefaults

           Don't create default devices. Normally, QEMU sets the default devices like

           serial port, parallel port, virtual console, monitor device, VGA adapter,

           floppy and CD-ROM drive and others. The "-nodefaults" option will disable all

           those default devices.

       -chroot dir

           Immediately before starting guest execution, chroot to the specified directory.

           Especially useful in combination with -runas.

       -runas user

           Immediately before starting guest execution, drop root privileges, switching to

           the specified user. Page 64/88



       -prom-env variable=value

           Set OpenBIOS nvram variable to given value (PPC, SPARC only).

       -semihosting

           Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios II only).

       -semihosting-config

       [enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]

           Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios II only).

           target="native|gdb|auto"

               Defines where the semihosting calls will be addressed, to QEMU ("native")

               or to GDB ("gdb"). The default is "auto", which means "gdb" during debug

               sessions and "native" otherwise.

           chardev=str1

               Send the output to a chardev backend output for native or auto output when

               not in gdb

           arg=str1,arg=str2,...

               Allows the user to pass input arguments, and can be used multiple times to

               build up a list. The old-style "-kernel"/"-append" method of passing a

               command line is still supported for backward compatibility. If both the

               "--semihosting-config arg" and the "-kernel"/"-append" are specified, the

               former is passed to semihosting as it always takes precedence.

       -old-param

           Old param mode (ARM only).

       -sandbox

       arg[,obsolete=string][,elevateprivileges=string][,spawn=string][,resourcecontrol=string]

           Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering

           and 'off' will disable it.  The default is 'off'.

           obsolete=string

               Enable Obsolete system calls

           elevateprivileges=string

               Disable set*uid|gid system calls

           spawn=string

               Disable *fork and execve

           resourcecontrol=string Page 65/88



               Disable process affinity and schedular priority

       -readconfig file

           Read device configuration from file. This approach is useful when you want to

           spawn QEMU process with many command line options but you don't want to exceed

           the command line character limit.

       -writeconfig file

           Write device configuration to file. The file can be either filename to save

           command line and device configuration into file or dash "-") character to print

           the output to stdout. This can be later used as input file for "-readconfig"

           option.

       -no-user-config

           The "-no-user-config" option makes QEMU not load any of the user-provided

           config files on sysconfdir.

       -trace [[enable=]pattern][,events=file][,file=file]

           Specify tracing options.

           [enable=]pattern

               Immediately enable events matching pattern (either event name or a globbing

               pattern).  This option is only available if QEMU has been compiled with the

               simple, log or ftrace tracing backend.  To specify multiple events or

               patterns, specify the -trace option multiple times.

               Use "-trace help" to print a list of names of trace points.

           events=file

               Immediately enable events listed in file.  The file must contain one event

               name (as listed in the trace-events-all file) per line; globbing patterns

               are accepted too.  This option is only available if QEMU has been compiled

               with the simple, log or ftrace tracing backend.

           file=file

               Log output traces to file.  This option is only available if QEMU has been

               compiled with the simple tracing backend.

       -plugin file=file[,arg=string]

           Load a plugin.

           file=file

               Load the given plugin from a shared library file. Page 66/88



           arg=string

               Argument string passed to the plugin. (Can be given multiple times.)

       -enable-fips

           Enable FIPS 140-2 compliance mode.

       -msg timestamp[=on|off]

           prepend a timestamp to each log message.(default:on)

       -dump-vmstate file

           Dump json-encoded vmstate information for current machine type to file in file

       -enable-sync-profile

           Enable synchronization profiling.

       Generic object creation

       -object typename[,prop1=value1,...]

           Create a new object of type typename setting properties in the order they are

           specified.  Note that the 'id' property must be set.  These objects are placed

           in the '/objects' path.

           -object

          

memory-backend-file,id=id,size=size,mem-path=dir,share=on|off,discard-data=on|off,merge=on|off,dump=on|off,prealloc=on

|off,host-nodes=host-

           nodes,policy=default|preferred|bind|interleave,align=align

               Creates a memory file backend object, which can be used to back the guest

               RAM with huge pages.

               The id parameter is a unique ID that will be used to reference this memory

               region when configuring the -numa argument.

               The size option provides the size of the memory region, and accepts common

               suffixes, eg 500M.

               The mem-path provides the path to either a shared memory or huge page

               filesystem mount.

               The share boolean option determines whether the memory region is marked as

               private to QEMU, or shared. The latter allows a co-operating external

               process to access the QEMU memory region.

               The share is also required for pvrdma devices due to limitations in the

               RDMA API provided by Linux. Page 67/88



               Setting share=on might affect the ability to configure NUMA bindings for

               the memory backend under some circumstances, see

               Documentation/vm/numa_memory_policy.txt on the Linux kernel source tree for

               additional details.

               Setting the discard-data boolean option to on indicates that file contents

               can be destroyed when QEMU exits, to avoid unnecessarily flushing data to

               the backing file.  Note that discard-data is only an optimization, and QEMU

               might not discard file contents if it aborts unexpectedly or is terminated

               using SIGKILL.

               The merge boolean option enables memory merge, also known as

               MADV_MERGEABLE, so that Kernel Samepage Merging will consider the pages for

               memory deduplication.

               Setting the dump boolean option to off excludes the memory from core dumps.

               This feature is also known as MADV_DONTDUMP.

               The prealloc boolean option enables memory preallocation.

               The host-nodes option binds the memory range to a list of NUMA host nodes.

               The policy option sets the NUMA policy to one of the following values:

               default

                   default host policy

               preferred

                   prefer the given host node list for allocation

               bind

                   restrict memory allocation to the given host node list

               interleave

                   interleave memory allocations across the given host node list

               The align option specifies the base address alignment when QEMU mmap(2)

               mem-path, and accepts common suffixes, eg 2M. Some backend store specified

               by mem-path requires an alignment different than the default one used by

               QEMU, eg the device DAX /dev/dax0.0 requires 2M alignment rather than 4K.

               In such cases, users can specify the required alignment via this option.

               The pmem option specifies whether the backing file specified by mem-path is

               in host persistent memory that can be accessed using the SNIA NVM

               programming model (e.g. Intel NVDIMM).  If pmem is set to 'on', QEMU will Page 68/88



               take necessary operations to guarantee the persistence of its own writes to

               mem-path (e.g. in vNVDIMM label emulation and live migration).  Also, we

               will map the backend-file with MAP_SYNC flag, which ensures the file

               metadata is in sync for mem-path in case of host crash or a power failure.

               MAP_SYNC requires support from both the host kernel (since Linux kernel

               4.15) and the filesystem of mem-path mounted with DAX option.

           -object

           memory-backend-ram,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-nodes=host-

           nodes,policy=default|preferred|bind|interleave

               Creates a memory backend object, which can be used to back the guest RAM.

               Memory backend objects offer more control than the -m option that is

               traditionally used to define guest RAM. Please refer to memory-backend-file

               for a description of the options.

           -object

           memory-backend-memfd,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-nodes=host-

           nodes,policy=default|preferred|bind|interleave,seal=on|off,hugetlb=on|off,hugetlbsize=size

               Creates an anonymous memory file backend object, which allows QEMU to share

               the memory with an external process (e.g. when using vhost-user). The

               memory is allocated with memfd and optional sealing. (Linux only)

               The seal option creates a sealed-file, that will block further resizing the

               memory ('on' by default).

               The hugetlb option specify the file to be created resides in the hugetlbfs

               filesystem (since Linux 4.14).  Used in conjunction with the hugetlb

               option, the hugetlbsize option specify the hugetlb page size on systems

               that support multiple hugetlb page sizes (it must be a power of 2 value

               supported by the system).

               In some versions of Linux, the hugetlb option is incompatible with the seal

               option (requires at least Linux 4.16).

               Please refer to memory-backend-file for a description of the other options.

               The share boolean option is on by default with memfd.

           -object rng-builtin,id=id

               Creates a random number generator backend which obtains entropy from QEMU

               builtin functions. The id parameter is a unique ID that will be used to Page 69/88



               reference this entropy backend from the virtio-rng device. By default, the

               virtio-rng device uses this RNG backend.

           -object rng-random,id=id,filename=/dev/random

               Creates a random number generator backend which obtains entropy from a

               device on the host. The id parameter is a unique ID that will be used to

               reference this entropy backend from the virtio-rng device. The filename

               parameter specifies which file to obtain entropy from and if omitted

               defaults to /dev/urandom.

           -object rng-egd,id=id,chardev=chardevid

               Creates a random number generator backend which obtains entropy from an

               external daemon running on the host. The id parameter is a unique ID that

               will be used to reference this entropy backend from the virtio-rng device.

               The chardev parameter is the unique ID of a character device backend that

               provides the connection to the RNG daemon.

           -object

           tls-creds-anon,id=id,endpoint=endpoint,dir=/path/to/cred/dir,verify-peer=on|off

               Creates a TLS anonymous credentials object, which can be used to provide

               TLS support on network backends. The id parameter is a unique ID which

               network backends will use to access the credentials. The endpoint is either

               server or client depending on whether the QEMU network backend that uses

               the credentials will be acting as a client or as a server. If verify-peer

               is enabled (the default) then once the handshake is completed, the peer

               credentials will be verified, though this is a no-op for anonymous

               credentials.

               The dir parameter tells QEMU where to find the credential files. For server

               endpoints, this directory may contain a file dh-params.pem providing

               diffie-hellman parameters to use for the TLS server. If the file is

               missing, QEMU will generate a set of DH parameters at startup. This is a

               computationally expensive operation that consumes random pool entropy, so

               it is recommended that a persistent set of parameters be generated upfront

               and saved.

           -object

           tls-creds-psk,id=id,endpoint=endpoint,dir=/path/to/keys/dir[,username=username] Page 70/88



               Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used

               to provide TLS support on network backends. The id parameter is a unique ID

               which network backends will use to access the credentials. The endpoint is

               either server or client depending on whether the QEMU network backend that

               uses the credentials will be acting as a client or as a server. For clients

               only, username is the username which will be sent to the server.  If

               omitted it defaults to "qemu".

               The dir parameter tells QEMU where to find the keys file.  It is called

               "dir/keys.psk" and contains "username:key" pairs.  This file can most

               easily be created using the GnuTLS "psktool" program.

               For server endpoints, dir may also contain a file dh-params.pem providing

               diffie-hellman parameters to use for the TLS server. If the file is

               missing, QEMU will generate a set of DH parameters at startup. This is a

               computationally expensive operation that consumes random pool entropy, so

               it is recommended that a persistent set of parameters be generated up front

               and saved.

           -object

           tls-creds-x509,id=id,endpoint=endpoint,dir=/path/to/cred/dir,priority=priority,verify-peer=on|off,passwordid=id

               Creates a TLS anonymous credentials object, which can be used to provide

               TLS support on network backends. The id parameter is a unique ID which

               network backends will use to access the credentials. The endpoint is either

               server or client depending on whether the QEMU network backend that uses

               the credentials will be acting as a client or as a server. If verify-peer

               is enabled (the default) then once the handshake is completed, the peer

               credentials will be verified. With x509 certificates, this implies that the

               clients must be provided with valid client certificates too.

               The dir parameter tells QEMU where to find the credential files. For server

               endpoints, this directory may contain a file dh-params.pem providing

               diffie-hellman parameters to use for the TLS server. If the file is

               missing, QEMU will generate a set of DH parameters at startup. This is a

               computationally expensive operation that consumes random pool entropy, so

               it is recommended that a persistent set of parameters be generated upfront

               and saved. Page 71/88



               For x509 certificate credentials the directory will contain further files

               providing the x509 certificates. The certificates must be stored in PEM

               format, in filenames ca-cert.pem, ca-crl.pem (optional), server-cert.pem

               (only servers), server-key.pem (only servers), client-cert.pem (only

               clients), and client-key.pem (only clients).

               For the server-key.pem and client-key.pem files which contain sensitive

               private keys, it is possible to use an encrypted version by providing the

               passwordid parameter. This provides the ID of a previously created "secret"

               object containing the password for decryption.

               The priority parameter allows to override the global default priority used

               by gnutls. This can be useful if the system administrator needs to use a

               weaker set of crypto priorities for QEMU without potentially forcing the

               weakness onto all applications. Or conversely if one wants wants a stronger

               default for QEMU than for all other applications, they can do this through

               this parameter. Its format is a gnutls priority string as described at

               <https://gnutls.org/manual/html_node/Priority-Strings.html>.

           -object

           filter-buffer,id=id,netdev=netdevid,interval=t[,queue=all|rx|tx][,status=on|off]

               Interval t can't be 0, this filter batches the packet delivery: all packets

               arriving in a given interval on netdev netdevid are delayed until the end

               of the interval. Interval is in microseconds.  status is optional that

               indicate whether the netfilter is on (enabled) or off (disabled), the

               default status for netfilter will be 'on'.

               queue all|rx|tx is an option that can be applied to any netfilter.

               all: the filter is attached both to the receive and the transmit queue of

               the netdev (default).

               rx: the filter is attached to the receive queue of the netdev, where it

               will receive packets sent to the netdev.

               tx: the filter is attached to the transmit queue of the netdev, where it

               will receive packets sent by the netdev.

           -object

           filter-mirror,id=id,netdev=netdevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support]

               filter-mirror on netdev netdevid,mirror net packet to chardevchardevid, if Page 72/88



               it has the vnet_hdr_support flag, filter-mirror will mirror packet with

               vnet_hdr_len.

           -object

           filter-redirector,id=id,netdev=netdevid,indev=chardevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support]

               filter-redirector on netdev netdevid,redirect filter's net packet to

               chardev chardevid,and redirect indev's packet to filter.if it has the

               vnet_hdr_support flag, filter-redirector will redirect packet with

               vnet_hdr_len.  Create a filter-redirector we need to differ outdev id from

               indev id, id can not be the same. we can just use indev or outdev, but at

               least one of indev or outdev need to be specified.

           -object

           filter-rewriter,id=id,netdev=netdevid,queue=all|rx|tx,[vnet_hdr_support]

               Filter-rewriter is a part of COLO project.It will rewrite tcp packet to

               secondary from primary to keep secondary tcp connection,and rewrite tcp

               packet to primary from secondary make tcp packet can be handled by

               client.if it has the vnet_hdr_support flag, we can parse packet with vnet

               header.

               usage: colo secondary: -object

               filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 -object

               filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1 -object

               filter-rewriter,id=rew0,netdev=hn0,queue=all

           -object filter-dump,id=id,netdev=dev[,file=filename][,maxlen=len]

               Dump the network traffic on netdev dev to the file specified by filename.

               At most len bytes (64k by default) per packet are stored.  The file format

               is libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.

           -object

          

colo-compare,id=id,primary_in=chardevid,secondary_in=chardevid,outdev=chardevid,iothread=id[,vnet_hdr_support][,notify

_dev=id]

               Colo-compare gets packet from primary_inchardevid and

               secondary_inchardevid, than compare primary packet with secondary packet.

               If the packets are same, we will output primary packet to outdevchardevid,

               else we will notify colo-frame do checkpoint and send primary packet to Page 73/88



               outdevchardevid.  In order to improve efficiency, we need to put the task

               of comparison in another thread. If it has the vnet_hdr_support flag, colo

               compare will send/recv packet with vnet_hdr_len.  If you want to use Xen

               COLO, will need the notify_dev to notify Xen colo-frame to do checkpoint.

               we must use it with the help of filter-mirror and filter-redirector.

                       KVM COLO

                       primary:

                       -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown

                       -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66

                       -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait

                       -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait

                       -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait

                       -chardev socket,id=compare0-0,host=3.3.3.3,port=9001

                       -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait

                       -chardev socket,id=compare_out0,host=3.3.3.3,port=9005

                       -object iothread,id=iothread1

                       -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0

                       -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out

                       -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0

                       -object

colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,iothread=iothread1

                       secondary:

                       -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown

                       -device e1000,netdev=hn0,mac=52:a4:00:12:78:66

                       -chardev socket,id=red0,host=3.3.3.3,port=9003

                       -chardev socket,id=red1,host=3.3.3.3,port=9004

                       -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0

                       -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1

                       Xen COLO

                       primary:

                       -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown

                       -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66

                       -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait Page 74/88



                       -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait

                       -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait

                       -chardev socket,id=compare0-0,host=3.3.3.3,port=9001

                       -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait

                       -chardev socket,id=compare_out0,host=3.3.3.3,port=9005

                       -chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait

                       -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0

                       -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out

                       -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0

                       -object iothread,id=iothread1

                       -object

colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0,notify_dev=nofity_way,iot

hread=iothread1

                       secondary:

                       -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown

                       -device e1000,netdev=hn0,mac=52:a4:00:12:78:66

                       -chardev socket,id=red0,host=3.3.3.3,port=9003

                       -chardev socket,id=red1,host=3.3.3.3,port=9004

                       -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0

                       -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1

               If you want to know the detail of above command line, you can read the

               colo-compare git log.

           -object cryptodev-backend-builtin,id=id[,queues=queues]

               Creates a cryptodev backend which executes crypto opreation from the QEMU

               cipher APIS. The id parameter is a unique ID that will be used to reference

               this cryptodev backend from the virtio-crypto device. The queues parameter

               is optional, which specify the queue number of cryptodev backend, the

               default of queues is 1.

                       # qemu-system-x86_64 \

                       [...] \

                       -object cryptodev-backend-builtin,id=cryptodev0 \

                       -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \

                       [...] Page 75/88



           -object cryptodev-vhost-user,id=id,chardev=chardevid[,queues=queues]

               Creates a vhost-user cryptodev backend, backed by a chardev chardevid.  The

               id parameter is a unique ID that will be used to reference this cryptodev

               backend from the virtio-crypto device.  The chardev should be a unix domain

               socket backed one. The vhost-user uses a specifically defined protocol to

               pass vhost ioctl replacement messages to an application on the other end of

               the socket.  The queues parameter is optional, which specify the queue

               number of cryptodev backend for multiqueue vhost-user, the default of

               queues is 1.

                       # qemu-system-x86_64 \

                       [...] \

                       -chardev socket,id=chardev0,path=/path/to/socket \

                       -object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \

                       -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \

                       [...]

           -object secret,id=id,data=string,format=raw|base64[,keyid=secretid,iv=string]

           -object secret,id=id,file=filename,format=raw|base64[,keyid=secretid,iv=string]

               Defines a secret to store a password, encryption key, or some other

               sensitive data. The sensitive data can either be passed directly via the

               data parameter, or indirectly via the file parameter. Using the data

               parameter is insecure unless the sensitive data is encrypted.

               The sensitive data can be provided in raw format (the default), or base64.

               When encoded as JSON, the raw format only supports valid UTF-8 characters,

               so base64 is recommended for sending binary data. QEMU will convert from

               which ever format is provided to the format it needs internally. eg, an RBD

               password can be provided in raw format, even though it will be base64

               encoded when passed onto the RBD sever.

               For added protection, it is possible to encrypt the data associated with a

               secret using the AES-256-CBC cipher. Use of encryption is indicated by

               providing the keyid and iv parameters. The keyid parameter provides the ID

               of a previously defined secret that contains the AES-256 decryption key.

               This key should be 32-bytes long and be base64 encoded. The iv parameter

               provides the random initialization vector used for encryption of this Page 76/88



               particular secret and should be a base64 encrypted string of the 16-byte

               IV.

               The simplest (insecure) usage is to provide the secret inline

                       # qemu-system-x86_64 -object secret,id=sec0,data=letmein,format=raw

               The simplest secure usage is to provide the secret via a file

               # printf "letmein" > mypasswd.txt # qemu-system-x86_64 -object

               secret,id=sec0,file=mypasswd.txt,format=raw

               For greater security, AES-256-CBC should be used. To illustrate usage,

               consider the openssl command line tool which can encrypt the data. Note

               that when encrypting, the plaintext must be padded to the cipher block size

               (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.

               First a master key needs to be created in base64 encoding:

                       # openssl rand -base64 32 > key.b64

                       # KEY=$(base64 -d key.b64 | hexdump  -v -e '/1 "%02X"')

               Each secret to be encrypted needs to have a random initialization vector

               generated. These do not need to be kept secret

                       # openssl rand -base64 16 > iv.b64

                       # IV=$(base64 -d iv.b64 | hexdump  -v -e '/1 "%02X"')

               The secret to be defined can now be encrypted, in this case we're telling

               openssl to base64 encode the result, but it could be left as raw bytes if

               desired.

                       # SECRET=$(printf "letmein" |

                       openssl enc -aes-256-cbc -a -K $KEY -iv $IV)

               When launching QEMU, create a master secret pointing to "key.b64" and

               specify that to be used to decrypt the user password. Pass the contents of

               "iv.b64" to the second secret

                       # qemu-system-x86_64 \

                       -object secret,id=secmaster0,format=base64,file=key.b64 \

                       -object secret,id=sec0,keyid=secmaster0,format=base64,\

                       data=$SECRET,iv=$(<iv.b64)

           -object

          

sev-guest,id=id,cbitpos=cbitpos,reduced-phys-bits=val,[sev-device=string,policy=policy,handle=handle,dh-cert-file=file,sessiPage 77/88



on-file=file]

               Create a Secure Encrypted Virtualization (SEV) guest object, which can be

               used to provide the guest memory encryption support on AMD processors.

               When memory encryption is enabled, one of the physical address bit (aka the

               C-bit) is utilized to mark if a memory page is protected. The cbitpos is

               used to provide the C-bit position. The C-bit position is Host family

               dependent hence user must provide this value. On EPYC, the value should be

               47.

               When memory encryption is enabled, we loose certain bits in physical

               address space.  The reduced-phys-bits is used to provide the number of bits

               we loose in physical address space. Similar to C-bit, the value is Host

               family dependent.  On EPYC, the value should be 5.

               The sev-device provides the device file to use for communicating with the

               SEV firmware running inside AMD Secure Processor. The default device is

               '/dev/sev'. If hardware supports memory encryption then /dev/sev devices

               are created by CCP driver.

               The policy provides the guest policy to be enforced by the SEV firmware and

               restrict what configuration and operational commands can be performed on

               this guest by the hypervisor. The policy should be provided by the guest

               owner and is bound to the guest and cannot be changed throughout the

               lifetime of the guest.  The default is 0.

               If guest policy allows sharing the key with another SEV guest then handle

               can be use to provide handle of the guest from which to share the key.

               The dh-cert-file and session-file provides the guest owner's Public Diffie-

               Hillman key defined in SEV spec. The PDH and session parameters are used

               for establishing a cryptographic session with the guest owner to negotiate

               keys used for attestation. The file must be encoded in base64.

               e.g to launch a SEV guest

                       # qemu-system-x86_64 \

                       ......

                       -object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \

                       -machine ...,memory-encryption=sev0

                       ..... Page 78/88



           -object authz-simple,id=id,identity=string

               Create an authorization object that will control access to network

               services.

               The identity parameter is identifies the user and its format depends on the

               network service that authorization object is associated with. For

               authorizing based on TLS x509 certificates, the identity must be the x509

               distinguished name. Note that care must be taken to escape any commas in

               the distinguished name.

               An example authorization object to validate a x509 distinguished name would

               look like:

                       # qemu-system-x86_64 \

                       ...

                       -object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example

Org,,L=London,,ST=London,,C=GB' \

                       ...

               Note the use of quotes due to the x509 distinguished name containing

               whitespace, and escaping of ','.

           -object authz-listfile,id=id,filename=path,refresh=yes|no

               Create an authorization object that will control access to network

               services.

               The filename parameter is the fully qualified path to a file containing the

               access control list rules in JSON format.

               An example set of rules that match against SASL usernames might look like:

                       {

                       "rules": [

                       { "match": "fred", "policy": "allow", "format": "exact" },

                       { "match": "bob", "policy": "allow", "format": "exact" },

                       { "match": "danb", "policy": "deny", "format": "glob" },

                       { "match": "dan*", "policy": "allow", "format": "exact" },

                       ],

                       "policy": "deny"

                       }

               When checking access the object will iterate over all the rules and the Page 79/88



               first rule to match will have its policy value returned as the result. If

               no rules match, then the default policy value is returned.

               The rules can either be an exact string match, or they can use the simple

               UNIX glob pattern matching to allow wildcards to be used.

               If refresh is set to true the file will be monitored and automatically

               reloaded whenever its content changes.

               As with the "authz-simple" object, the format of the identity strings being

               matched depends on the network service, but is usually a TLS x509

               distinguished name, or a SASL username.

               An example authorization object to validate a SASL username would look

               like:

                       # qemu-system-x86_64 \

                       ...

                       -object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=yes

                       ...

           -object authz-pam,id=id,service=string

               Create an authorization object that will control access to network

               services.

               The service parameter provides the name of a PAM service to use for

               authorization. It requires that a file "/etc/pam.d/service" exist to

               provide the configuration for the "account" subsystem.

               An example authorization object to validate a TLS x509 distinguished name

               would look like:

                       # qemu-system-x86_64 \

                       ...

                       -object authz-pam,id=auth0,service=qemu-vnc

                       ...

               There would then be a corresponding config file for PAM at

               "/etc/pam.d/qemu-vnc" that contains:

                       account requisite  pam_listfile.so item=user sense=allow \

                       file=/etc/qemu/vnc.allow

               Finally the "/etc/qemu/vnc.allow" file would contain the list of x509

               distingished names that are permitted access Page 80/88



                       CN=laptop.example.com,O=Example Home,L=London,ST=London,C=GB

       During the graphical emulation, you can use special key combinations to change

       modes. The default key mappings are shown below, but if you use "-alt-grab" then

       the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use "-ctrl-grab"

       then the modifier is the right Ctrl key (instead of Ctrl-Alt):

       Ctrl-Alt-f

           Toggle full screen

       Ctrl-Alt-+

           Enlarge the screen

       Ctrl-Alt--

           Shrink the screen

       Ctrl-Alt-u

           Restore the screen's un-scaled dimensions

       Ctrl-Alt-n

           Switch to virtual console 'n'. Standard console mappings are:

           1   Target system display

           2   Monitor

           3   Serial port

       Ctrl-Alt

           Toggle mouse and keyboard grab.

       In the virtual consoles, you can use Ctrl-Up, Ctrl-Down, Ctrl-PageUp and Ctrl-

       PageDown to move in the back log.

       During emulation, if you are using a character backend multiplexer (which is the

       default if you are using -nographic) then several commands are available via an

       escape sequence. These key sequences all start with an escape character, which is

       Ctrl-a by default, but can be changed with -echr. The list below assumes you're

       using the default.

       Ctrl-a h

           Print this help

       Ctrl-a x

           Exit emulator

       Ctrl-a s

           Save disk data back to file (if -snapshot) Page 81/88



       Ctrl-a t

           Toggle console timestamps

       Ctrl-a b

           Send break (magic sysrq in Linux)

       Ctrl-a c

           Rotate between the frontends connected to the multiplexer (usually this

           switches between the monitor and the console)

       Ctrl-a Ctrl-a

           Send the escape character to the frontend

       The following options are specific to the PowerPC emulation:

       -g WxH[xDEPTH]

           Set the initial VGA graphic mode. The default is 800x600x32.

       -prom-env string

           Set OpenBIOS variables in NVRAM, for example:

                   qemu-system-ppc -prom-env 'auto-boot?=false' \

                    -prom-env 'boot-device=hd:2,\yaboot' \

                    -prom-env 'boot-args=conf=hd:2,\yaboot.conf'

           These variables are not used by Open Hack'Ware.

       The following options are specific to the Sparc32 emulation:

       -g WxHx[xDEPTH]

           Set the initial graphics mode. For TCX, the default is 1024x768x8 with the

           option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option

           of 1152x900x8 for people who wish to use OBP.

       -prom-env string

           Set OpenBIOS variables in NVRAM, for example:

                   qemu-system-sparc -prom-env 'auto-boot?=false' \

                    -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'

       -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]

           Set the emulated machine type. Default is SS-5.

       The following options are specific to the Sparc64 emulation:

       -prom-env string

           Set OpenBIOS variables in NVRAM, for example:

                   qemu-system-sparc64 -prom-env 'auto-boot?=false' Page 82/88



       -M [sun4u|sun4v|niagara]

           Set the emulated machine type. The default is sun4u.

       The following options are specific to the ARM emulation:

       -semihosting

           Enable semihosting syscall emulation.

           On ARM this implements the "Angel" interface.

           Note that this allows guest direct access to the host filesystem, so should

           only be used with trusted guest OS.

       The following options are specific to the ColdFire emulation:

       -semihosting

           Enable semihosting syscall emulation.

           On M68K this implements the "ColdFire GDB" interface used by libgloss.

           Note that this allows guest direct access to the host filesystem, so should

           only be used with trusted guest OS.

       The following options are specific to the Xtensa emulation:

       -semihosting

           Enable semihosting syscall emulation.

           Xtensa semihosting provides basic file IO calls, such as

           open/read/write/seek/select.  Tensilica baremetal libc for ISS and linux

           platform "sim" use this interface.

           Note that this allows guest direct access to the host filesystem, so should

           only be used with trusted guest OS.

NOTES

       In addition to using normal file images for the emulated storage devices, QEMU can

       also use networked resources such as iSCSI devices. These are specified using a

       special URL syntax.

       iSCSI

           iSCSI support allows QEMU to access iSCSI resources directly and use as images

           for the guest storage. Both disk and cdrom images are supported.

           Syntax for specifying iSCSI LUNs is

           "iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>"

           By default qemu will use the iSCSI initiator-name

           'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command Page 83/88



           line or a configuration file.

           Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to

           detect stalled requests and force a reestablishment of the session. The timeout

           is specified in seconds. The default is 0 which means no timeout. Libiscsi

           1.15.0 or greater is required for this feature.

           Example (without authentication):

                   qemu-system-x86_64 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \

                                    -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \

                                    -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1

           Example (CHAP username/password via URL):

                   qemu-system-x86_64 -drive file=iscsi://user%password@192.0.2.1/iqn.2001-04.com.example/1

           Example (CHAP username/password via environment variables):

                   LIBISCSI_CHAP_USERNAME="user" \

                   LIBISCSI_CHAP_PASSWORD="password" \

                   qemu-system-x86_64 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1

       NBD QEMU supports NBD (Network Block Devices) both using TCP protocol as well as

           Unix Domain Sockets.  With TCP, the default port is 10809.

           Syntax for specifying a NBD device using TCP, in preferred URI form:

           "nbd://<server-ip>[:<port>]/[<export>]"

           Syntax for specifying a NBD device using Unix Domain Sockets; remember that '?'

           is a shell glob character and may need quoting:

           "nbd+unix:///[<export>]?socket=<domain-socket>"

           Older syntax that is also recognized:

           "nbd:<server-ip>:<port>[:exportname=<export>]"

           Syntax for specifying a NBD device using Unix Domain Sockets

           "nbd:unix:<domain-socket>[:exportname=<export>]"

           Example for TCP

                   qemu-system-x86_64 --drive file=nbd:192.0.2.1:30000

           Example for Unix Domain Sockets

                   qemu-system-x86_64 --drive file=nbd:unix:/tmp/nbd-socket

       SSH QEMU supports SSH (Secure Shell) access to remote disks.

           Examples:

                   qemu-system-x86_64 -drive file=ssh://user@host/path/to/disk.img Page 84/88



                   qemu-system-x86_64 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img

           Currently authentication must be done using ssh-agent.  Other authentication

           methods may be supported in future.

       Sheepdog

           Sheepdog is a distributed storage system for QEMU.  QEMU supports using either

           local sheepdog devices or remote networked devices.

           Syntax for specifying a sheepdog device

                   sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]

           Example

                   qemu-system-x86_64 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine

           See also <https://sheepdog.github.io/sheepdog/>.

       GlusterFS

           GlusterFS is a user space distributed file system.  QEMU supports the use of

           GlusterFS volumes for hosting VM disk images using TCP, Unix Domain Sockets and

           RDMA transport protocols.

           Syntax for specifying a VM disk image on GlusterFS volume is

                   URI:

                   gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]

                   JSON:

                   'json:{"driver":"qcow2","file":{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",

                                                    "server":[{"type":"tcp","host":"...","port":"..."},

                                                              {"type":"unix","socket":"..."}]}}'

           Example

                   URI:

                   qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,

                                                  file.debug=9,file.logfile=/var/log/qemu-gluster.log

                   JSON:

                   qemu-system-x86_64 'json:{"driver":"qcow2",

                                             "file":{"driver":"gluster",

                                                      "volume":"testvol","path":"a.img",

                                                      "debug":9,"logfile":"/var/log/qemu-gluster.log",

                                                      "server":[{"type":"tcp","host":"1.2.3.4","port":24007},

                                                                {"type":"unix","socket":"/var/run/glusterd.socket"}]}}' Page 85/88



                   qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,

                                                         file.debug=9,file.logfile=/var/log/qemu-gluster.log,

                                                         file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,

                                                         file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket

           See also <http://www.gluster.org>.

       HTTP/HTTPS/FTP/FTPS

           QEMU supports read-only access to files accessed over http(s) and ftp(s).

           Syntax using a single filename:

                   <protocol>://[<username>[:<password>]@]<host>/<path>

           where:

           protocol

               'http', 'https', 'ftp', or 'ftps'.

           username

               Optional username for authentication to the remote server.

           password

               Optional password for authentication to the remote server.

           host

               Address of the remote server.

           path

               Path on the remote server, including any query string.

           The following options are also supported:

           url The full URL when passing options to the driver explicitly.

           readahead

               The amount of data to read ahead with each range request to the remote

               server.  This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k'

               or 'b'. If it does not have a suffix, it will be assumed to be in bytes.

               The value must be a multiple of 512 bytes. It defaults to 256k.

           sslverify

               Whether to verify the remote server's certificate when connecting over SSL.

               It can have the value 'on' or 'off'. It defaults to 'on'.

           cookie

               Send this cookie (it can also be a list of cookies separated by ';') with

               each outgoing request.  Only supported when using protocols such as HTTP Page 86/88



               which support cookies, otherwise ignored.

           timeout

               Set the timeout in seconds of the CURL connection. This timeout is the time

               that CURL waits for a response from the remote server to get the size of

               the image to be downloaded. If not set, the default timeout of 5 seconds is

               used.

           Note that when passing options to qemu explicitly, driver is the value of

           <protocol>.

           Example: boot from a remote Fedora 20 live ISO image

                   qemu-system-x86_64 --drive

media=cdrom,file=https://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-

x86_64-20-1.iso,readonly

                   qemu-system-x86_64 --drive

media=cdrom,file.driver=http,file.url=http://archives.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-

Desktop-x86_64-20-1.iso,readonly

           Example: boot from a remote Fedora 20 cloud image using a local overlay for

           writes, copy-on-read, and a readahead of 64k

                   qemu-img create -f qcow2 -o backing_file='json:{"file.driver":"http",,

"file.url":"http://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211

.1-sda.qcow2",, "file.readahead":"64k"}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2

                   qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on

           Example: boot from an image stored on a VMware vSphere server with a self-

           signed certificate using a local overlay for writes, a readahead of 64k and a

           timeout of 10 seconds.

                   qemu-img create -f qcow2 -o backing_file='json:{"file.driver":"https",,

"file.url":"https://user:password@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",,

"file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10}' /tmp/test.qcow2

                   qemu-system-x86_64 -drive file=/tmp/test.qcow2

SEE ALSO

       The HTML documentation of QEMU for more precise information and Linux user mode

       emulator invocation.

AUTHOR

       Fabrice Bellard Page 87/88



                                        2022-12-08                               QEMU.1(1)

Page 88/88


