
Linux Ubuntu 22.4.5 Manual Pages on command 'python3.6m.1'

$ man python3.6m.1

PYTHON(1) General Commands Manual PYTHON(1)

NAME

 python - an interpreted, interactive, object-oriented programming language

SYNOPSIS

 python [-B] [-b] [-d] [-E] [-h] [-i] [-I]

 [-m module-name] [-q] [-O] [-OO] [-s] [-S] [-u]

 [-v] [-V] [-W argument] [-x] [[-X option] -?]

 [-c command | script | -] [arguments]

DESCRIPTION

 Python is an interpreted, interactive, object-oriented programming language that

 combines remarkable power with very clear syntax. For an introduction to program?

 ming in Python, see the Python Tutorial. The Python Library Reference documents

 built-in and standard types, constants, functions and modules. Finally, the Python

 Reference Manual describes the syntax and semantics of the core language in (per?

 haps too) much detail. (These documents may be located via the INTERNET RESOURCES

 below; they may be installed on your system as well.)

 Python's basic power can be extended with your own modules written in C or C++. On

 most systems such modules may be dynamically loaded. Python is also adaptable as

 an extension language for existing applications. See the internal documentation

 for hints.

 Documentation for installed Python modules and packages can be viewed by running

 the pydoc program.
Page 1/7

COMMAND LINE OPTIONS

 -B Don't write .pyc files on import. See also PYTHONDONTWRITEBYTECODE.

 -b Issue warnings about str(bytes_instance), str(bytearray_instance) and com?

 paring bytes/bytearray with str. (-bb: issue errors)

 -c command

 Specify the command to execute (see next section). This terminates the op?

 tion list (following options are passed as arguments to the command).

 -d Turn on parser debugging output (for wizards only, depending on compilation

 options).

 -E Ignore environment variables like PYTHONPATH and PYTHONHOME that modify the

 behavior of the interpreter.

 -h , -? , --help

 Prints the usage for the interpreter executable and exits.

 -i When a script is passed as first argument or the -c option is used, enter

 interactive mode after executing the script or the command. It does not

 read the $PYTHONSTARTUP file. This can be useful to inspect global vari?

 ables or a stack trace when a script raises an exception.

 -I Run Python in isolated mode. This also implies -E and -s. In isolated mode

 sys.path contains neither the script's directory nor the user's site-pack?

 ages directory. All PYTHON* environment variables are ignored, too. Further

 restrictions may be imposed to prevent the user from injecting malicious

 code.

 -m module-name

 Searches sys.path for the named module and runs the corresponding .py file

 as a script.

 -O Remove assert statements and any code conditional on the value of __debug__;

 augment the filename for compiled (bytecode) files by adding .opt-1 before

 the .pyc extension.

 -OO Do -O and also discard docstrings; change the filename for compiled (byte?

 code) files by adding .opt-2 before the .pyc extension.

 -q Do not print the version and copyright messages. These messages are also

 suppressed in non-interactive mode.

 -s Don't add user site directory to sys.path. Page 2/7

 -S Disable the import of the module site and the site-dependent manipulations

 of sys.path that it entails. Also disable these manipulations if site is

 explicitly imported later.

 -u Force the binary I/O layers of stdout and stderr to be unbuffered. stdin is

 always buffered. The text I/O layer will still be line-buffered.

 -v Print a message each time a module is initialized, showing the place (file?

 name or built-in module) from which it is loaded. When given twice, print a

 message for each file that is checked for when searching for a module. Also

 provides information on module cleanup at exit.

 -V , --version

 Prints the Python version number of the executable and exits. When given

 twice, print more information about the build.

 -W argument

 Warning control. Python sometimes prints warning message to sys.stderr. A

 typical warning message has the following form: file:line: category: mes?

 sage. By default, each warning is printed once for each source line where

 it occurs. This option controls how often warnings are printed. Multiple

 -W options may be given; when a warning matches more than one option, the

 action for the last matching option is performed. Invalid -W options are

 ignored (a warning message is printed about invalid options when the first

 warning is issued). Warnings can also be controlled from within a Python

 program using the warnings module.

 The simplest form of argument is one of the following action strings (or a

 unique abbreviation): ignore to ignore all warnings; default to explicitly

 request the default behavior (printing each warning once per source line);

 all to print a warning each time it occurs (this may generate many messages

 if a warning is triggered repeatedly for the same source line, such as in?

 side a loop); module to print each warning only the first time it occurs in

 each module; once to print each warning only the first time it occurs in the

 program; or error to raise an exception instead of printing a warning mes?

 sage.

 The full form of argument is action:message:category:module:line. Here, ac?

 tion is as explained above but only applies to messages that match the re? Page 3/7

 maining fields. Empty fields match all values; trailing empty fields may be

 omitted. The message field matches the start of the warning message

 printed; this match is case-insensitive. The category field matches the

 warning category. This must be a class name; the match test whether the ac?

 tual warning category of the message is a subclass of the specified warning

 category. The full class name must be given. The module field matches the

 (fully-qualified) module name; this match is case-sensitive. The line field

 matches the line number, where zero matches all line numbers and is thus

 equivalent to an omitted line number.

 -X option

 Set implementation specific option.

 -x Skip the first line of the source. This is intended for a DOS specific hack

 only. Warning: the line numbers in error messages will be off by one!

INTERPRETER INTERFACE

 The interpreter interface resembles that of the UNIX shell: when called with stan?

 dard input connected to a tty device, it prompts for commands and executes them un?

 til an EOF is read; when called with a file name argument or with a file as stan?

 dard input, it reads and executes a script from that file; when called with -c com?

 mand, it executes the Python statement(s) given as command. Here command may con?

 tain multiple statements separated by newlines. Leading whitespace is significant

 in Python statements! In non-interactive mode, the entire input is parsed before

 it is executed.

 If available, the script name and additional arguments thereafter are passed to the

 script in the Python variable sys.argv, which is a list of strings (you must first

 import sys to be able to access it). If no script name is given, sys.argv[0] is an

 empty string; if -c is used, sys.argv[0] contains the string '-c'. Note that op?

 tions interpreted by the Python interpreter itself are not placed in sys.argv.

 In interactive mode, the primary prompt is `>>>'; the second prompt (which appears

 when a command is not complete) is `...'. The prompts can be changed by assignment

 to sys.ps1 or sys.ps2. The interpreter quits when it reads an EOF at a prompt.

 When an unhandled exception occurs, a stack trace is printed and control returns to

 the primary prompt; in non-interactive mode, the interpreter exits after printing

 the stack trace. The interrupt signal raises the KeyboardInterrupt exception; Page 4/7

 other UNIX signals are not caught (except that SIGPIPE is sometimes ignored, in fa?

 vor of the IOError exception). Error messages are written to stderr.

FILES AND DIRECTORIES

 These are subject to difference depending on local installation conventions; ${pre?

 fix} and ${exec_prefix} are installation-dependent and should be interpreted as for

 GNU software; they may be the same. On Debian GNU/{Hurd,Linux} the default for

 both is /usr.

 ${exec_prefix}/bin/python

 Recommended location of the interpreter.

 ${prefix}/lib/python<version>

 ${exec_prefix}/lib/python<version>

 Recommended locations of the directories containing the standard modules.

 ${prefix}/include/python<version>

 ${exec_prefix}/include/python<version>

 Recommended locations of the directories containing the include files needed

 for developing Python extensions and embedding the interpreter.

ENVIRONMENT VARIABLES

 PYTHONHOME

 Change the location of the standard Python libraries. By default, the li?

 braries are searched in ${prefix}/lib/python<version> and ${exec_pre?

 fix}/lib/python<version>, where ${prefix} and ${exec_prefix} are installa?

 tion-dependent directories, both defaulting to /usr/local. When $PYTHONHOME

 is set to a single directory, its value replaces both ${prefix} and

 ${exec_prefix}. To specify different values for these, set $PYTHONHOME to

 ${prefix}:${exec_prefix}.

 PYTHONPATH

 Augments the default search path for module files. The format is the same

 as the shell's $PATH: one or more directory pathnames separated by colons.

 Non-existent directories are silently ignored. The default search path is

 installation dependent, but generally begins with ${prefix}/lib/python<ver?

 sion> (see PYTHONHOME above). The default search path is always appended to

 $PYTHONPATH. If a script argument is given, the directory containing the

 script is inserted in the path in front of $PYTHONPATH. The search path can Page 5/7

 be manipulated from within a Python program as the variable sys.path.

 PYTHONSTARTUP

 If this is the name of a readable file, the Python commands in that file are

 executed before the first prompt is displayed in interactive mode. The file

 is executed in the same name space where interactive commands are executed

 so that objects defined or imported in it can be used without qualification

 in the interactive session. You can also change the prompts sys.ps1 and

 sys.ps2 in this file.

 PYTHONOPTIMIZE

 If this is set to a non-empty string it is equivalent to specifying the -O

 option. If set to an integer, it is equivalent to specifying -O multiple

 times.

 PYTHONDEBUG

 If this is set to a non-empty string it is equivalent to specifying the -d

 option. If set to an integer, it is equivalent to specifying -d multiple

 times.

 PYTHONDONTWRITEBYTECODE

 If this is set to a non-empty string it is equivalent to specifying the -B

 option (don't try to write .pyc files).

 PYTHONINSPECT

 If this is set to a non-empty string it is equivalent to specifying the -i

 option.

 PYTHONIOENCODING

 If this is set before running the interpreter, it overrides the encoding

 used for stdin/stdout/stderr, in the syntax encodingname:errorhandler The

 errorhandler part is optional and has the same meaning as in str.encode. For

 stderr, the errorhandler

 part is ignored; the handler will always be ?backslashreplace?.

 PYTHONNOUSERSITE

 If this is set to a non-empty string it is equivalent to specifying the -s

 option (Don't add the user site directory to sys.path).

 PYTHONUNBUFFERED

 If this is set to a non-empty string it is equivalent to specifying the -u Page 6/7

 option.

 PYTHONVERBOSE

 If this is set to a non-empty string it is equivalent to specifying the -v

 option. If set to an integer, it is equivalent to specifying -v multiple

 times.

 PYTHONWARNINGS

 If this is set to a comma-separated string it is equivalent to specifying

 the -W option for each separate value.

 PYTHONHASHSEED

 If this variable is set to "random", a random value is used to seed the

 hashes of str, bytes and datetime objects.

 If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for

 generating the hash() of the types covered by the hash randomization. Its

 purpose is to allow repeatable hashing, such as for selftests for the inter?

 preter itself, or to allow a cluster of python processes to share hash val?

 ues.

 The integer must be a decimal number in the range [0,4294967295]. Specify?

 ing the value 0 will disable hash randomization.

AUTHOR

 The Python Software Foundation: https://www.python.org/psf/

INTERNET RESOURCES

 Main website: https://www.python.org/

 Documentation: https://docs.python.org/

 Developer resources: https://devguide.python.org/

 Downloads: https://www.python.org/downloads/

 Module repository: https://pypi.org/

 Newsgroups: comp.lang.python, comp.lang.python.announce

LICENSING

 Python is distributed under an Open Source license. See the file "LICENSE" in the

 Python source distribution for information on terms & conditions for accessing and

 otherwise using Python and for a DISCLAIMER OF ALL WARRANTIES.

 PYTHON(1)

Page 7/7

