
Rocky Enterprise Linux 9.2 Manual Pages on command 'ptrace.2'

$ man ptrace.2

PTRACE(2)                           Linux Programmer's Manual                           PTRACE(2)

NAME

       ptrace - process trace

SYNOPSIS

       #include <sys/ptrace.h>

       long ptrace(enum __ptrace_request request, pid_t pid,

                   void *addr, void *data);

DESCRIPTION

       The  ptrace() system call provides a means by which one process (the "tracer") may observe

       and control the execution of another process (the "tracee"), and examine  and  change  the

       tracee's memory and registers.  It is primarily used to implement breakpoint debugging and

       system call tracing.

       A tracee first needs to be attached to the tracer.  Attachment and subsequent commands are

       per  thread:  in  a  multithreaded process, every thread can be individually attached to a

       (potentially different) tracer, or left not attached and thus  not  debugged.   Therefore,

       "tracee"  always means "(one) thread", never "a (possibly multithreaded) process".  Ptrace

       commands are always sent to a specific tracee using a call of the form

           ptrace(PTRACE_foo, pid, ...)

       where pid is the thread ID of the corresponding Linux thread.

       (Note that in this page, a "multithreaded process" means  a  thread  group  consisting  of

       threads created using the clone(2) CLONE_THREAD flag.)

       A  process  can  initiate  a  trace by calling fork(2) and having the resulting child do a

       PTRACE_TRACEME, followed (typically) by an execve(2).  Alternatively, one process may com? Page 1/32



       mence tracing another process using PTRACE_ATTACH or PTRACE_SEIZE.

       While being traced, the tracee will stop each time a signal is delivered, even if the sig?

       nal is being ignored.  (An exception is SIGKILL, which has its usual effect.)  The  tracer

       will  be  notified  at  its  next  call to waitpid(2) (or one of the related "wait" system

       calls); that call will return a status value containing  information  that  indicates  the

       cause  of the stop in the tracee.  While the tracee is stopped, the tracer can use various

       ptrace requests to inspect and modify the tracee.  The tracer then causes  the  tracee  to

       continue,  optionally ignoring the delivered signal (or even delivering a different signal

       instead).

       If the PTRACE_O_TRACEEXEC option is not in effect, all successful calls  to  execve(2)  by

       the  traced  process will cause it to be sent a SIGTRAP signal, giving the parent a chance

       to gain control before the new program begins execution.

       When the tracer is finished tracing, it can cause the tracee to continue  executing  in  a

       normal, untraced mode via PTRACE_DETACH.

       The value of request determines the action to be performed:

       PTRACE_TRACEME

              Indicate  that  this  process  is  to  be traced by its parent.  A process probably

              shouldn't make this request if its parent isn't expecting to trace it.  (pid, addr,

              and data are ignored.)

              The  PTRACE_TRACEME  request is used only by the tracee; the remaining requests are

              used only by the tracer.  In the following requests, pid specifies the thread ID of

              the  tracee  to  be acted on.  For requests other than PTRACE_ATTACH, PTRACE_SEIZE,

              PTRACE_INTERRUPT, and PTRACE_KILL, the tracee must be stopped.

       PTRACE_PEEKTEXT, PTRACE_PEEKDATA

              Read a word at the address addr in the tracee's memory, returning the word  as  the

              result  of  the  ptrace() call.  Linux does not have separate text and data address

              spaces, so these two requests are currently equivalent.  (data is ignored; but  see

              NOTES.)

       PTRACE_PEEKUSER

              Read a word at offset addr in the tracee's USER area, which holds the registers and

              other information about the process (see <sys/user.h>).  The word  is  returned  as

              the  result  of  the  ptrace()  call.   Typically, the offset must be word-aligned,

              though this might vary by architecture.  See NOTES.   (data  is  ignored;  but  see Page 2/32



              NOTES.)

       PTRACE_POKETEXT, PTRACE_POKEDATA

              Copy the word data to the address addr in the tracee's memory.  As for PTRACE_PEEK?

              TEXT and PTRACE_PEEKDATA, these two requests are currently equivalent.

       PTRACE_POKEUSER

              Copy  the  word  data  to  offset  addr  in  the  tracee's  USER  area.    As   for

              PTRACE_PEEKUSER,  the  offset must typically be word-aligned.  In order to maintain

              the integrity of the kernel, some modifications to the USER area are disallowed.

       PTRACE_GETREGS, PTRACE_GETFPREGS

              Copy the tracee's general-purpose or floating-point registers, respectively, to the

              address data in the tracer.  See <sys/user.h> for information on the format of this

              data.  (addr is ignored.)  Note that SPARC systems have the  meaning  of  data  and

              addr reversed; that is, data is ignored and the registers are copied to the address

              addr.  PTRACE_GETREGS and PTRACE_GETFPREGS are not present on all architectures.

       PTRACE_GETREGSET (since Linux 2.6.34)

              Read the tracee's registers.  addr specifies, in an architecture-dependent way, the

              type of registers to be read.  NT_PRSTATUS (with numerical value 1) usually results

              in reading of general-purpose registers.  If the CPU has,  for  example,  floating-

              point  and/or vector registers, they can be retrieved by setting addr to the corre?

              sponding NT_foo constant.  data points to a struct iovec, which describes the  des?

              tination  buffer's  location and length.  On return, the kernel modifies iov.len to

              indicate the actual number of bytes returned.

       PTRACE_SETREGS, PTRACE_SETFPREGS

              Modify the tracee's general-purpose or floating-point registers, respectively, from

              the  address data in the tracer.  As for PTRACE_POKEUSER, some general-purpose reg?

              ister modifications may be disallowed.  (addr is ignored.)  Note that SPARC systems

              have the meaning of data and addr reversed; that is, data is ignored and the regis?

              ters are copied from the address addr.  PTRACE_SETREGS and PTRACE_SETFPREGS are not

              present on all architectures.

       PTRACE_SETREGSET (since Linux 2.6.34)

              Modify  the  tracee's  registers.   The  meaning  of  addr and data is analogous to

              PTRACE_GETREGSET.

       PTRACE_GETSIGINFO (since Linux 2.3.99-pre6) Page 3/32



              Retrieve information about the signal that  caused  the  stop.   Copy  a  siginfo_t

              structure  (see  sigaction(2))  from  the tracee to the address data in the tracer.

              (addr is ignored.)

       PTRACE_SETSIGINFO (since Linux 2.3.99-pre6)

              Set signal information: copy a siginfo_t structure from the  address  data  in  the

              tracer  to the tracee.  This will affect only signals that would normally be deliv?

              ered to the tracee and were caught by the tracer.  It  may  be  difficult  to  tell

              these normal signals from synthetic signals generated by ptrace() itself.  (addr is

              ignored.)

       PTRACE_PEEKSIGINFO (since Linux 3.10)

              Retrieve siginfo_t structures without removing signals from a queue.   addr  points

              to  a  ptrace_peeksiginfo_args  structure  that specifies the ordinal position from

              which copying of signals should start, and the number of  signals  to  copy.   sig?

              info_t  structures are copied into the buffer pointed to by data.  The return value

              contains the number of copied signals (zero indicates that there is no signal  cor?

              responding  to the specified ordinal position).  Within the returned siginfo struc?

              tures, the si_code field includes information (__SI_CHLD,  __SI_FAULT,  etc.)  that

              are not otherwise exposed to user space.

           struct ptrace_peeksiginfo_args {

               u64 off;    /* Ordinal position in queue at which

                              to start copying signals */

               u32 flags;  /* PTRACE_PEEKSIGINFO_SHARED or 0 */

               s32 nr;     /* Number of signals to copy */

           };

              Currently,  there  is only one flag, PTRACE_PEEKSIGINFO_SHARED, for dumping signals

              from the process-wide signal queue.  If this flag is not set, signals are read from

              the per-thread queue of the specified thread.

       PTRACE_GETSIGMASK (since Linux 3.11)

              Place  a  copy  of  the  mask of blocked signals (see sigprocmask(2)) in the buffer

              pointed to by data, which should be a pointer to a buffer of  type  sigset_t.   The

              addr  argument  contains  the  size  of  the  buffer  pointed  to  by  data  (i.e.,

              sizeof(sigset_t)).

       PTRACE_SETSIGMASK (since Linux 3.11) Page 4/32



              Change the mask of blocked signals (see sigprocmask(2)) to the value  specified  in

              the  buffer  pointed  to  by  data,  which  should be a pointer to a buffer of type

              sigset_t.  The addr argument contains the size of the buffer  pointed  to  by  data

              (i.e., sizeof(sigset_t)).

       PTRACE_SETOPTIONS (since Linux 2.4.6; see BUGS for caveats)

              Set  ptrace  options  from  data.  (addr is ignored.)  data is interpreted as a bit

              mask of options, which are specified by the following flags:

              PTRACE_O_EXITKILL (since Linux 3.8)

                     Send a SIGKILL signal to the tracee if the tracer  exits.   This  option  is

                     useful  for ptrace jailers that want to ensure that tracees can never escape

                     the tracer's control.

              PTRACE_O_TRACECLONE (since Linux 2.5.46)

                     Stop the tracee at the next clone(2) and  automatically  start  tracing  the

                     newly  cloned process, which will start with a SIGSTOP, or PTRACE_EVENT_STOP

                     if PTRACE_SEIZE was used.  A waitpid(2) by the tracer will return  a  status

                     value such that

                       status>>8 == (SIGTRAP | (PTRACE_EVENT_CLONE<<8))

                     The PID of the new process can be retrieved with PTRACE_GETEVENTMSG.

                     This  option may not catch clone(2) calls in all cases.  If the tracee calls

                     clone(2) with the CLONE_VFORK flag, PTRACE_EVENT_VFORK will be delivered in?

                     stead  if PTRACE_O_TRACEVFORK is set; otherwise if the tracee calls clone(2)

                     with the exit signal set to SIGCHLD, PTRACE_EVENT_FORK will be delivered  if

                     PTRACE_O_TRACEFORK is set.

              PTRACE_O_TRACEEXEC (since Linux 2.5.46)

                     Stop  the tracee at the next execve(2).  A waitpid(2) by the tracer will re?

                     turn a status value such that

                       status>>8 == (SIGTRAP | (PTRACE_EVENT_EXEC<<8))

                     If the execing thread is not a thread group leader, the thread ID  is  reset

                     to  thread  group leader's ID before this stop.  Since Linux 3.0, the former

                     thread ID can be retrieved with PTRACE_GETEVENTMSG.

              PTRACE_O_TRACEEXIT (since Linux 2.5.60)

                     Stop the tracee at exit.  A waitpid(2) by the tracer will  return  a  status

                     value such that Page 5/32



                       status>>8 == (SIGTRAP | (PTRACE_EVENT_EXIT<<8))

                     The tracee's exit status can be retrieved with PTRACE_GETEVENTMSG.

                     The  tracee  is  stopped early during process exit, when registers are still

                     available, allowing the tracer to see where the exit occurred,  whereas  the

                     normal  exit  notification  is  done  after the process is finished exiting.

                     Even though context is available, the tracer cannot prevent  the  exit  from

                     happening at this point.

              PTRACE_O_TRACEFORK (since Linux 2.5.46)

                     Stop  the  tracee  at  the  next fork(2) and automatically start tracing the

                     newly forked process, which will start with a SIGSTOP, or  PTRACE_EVENT_STOP

                     if  PTRACE_SEIZE  was used.  A waitpid(2) by the tracer will return a status

                     value such that

                       status>>8 == (SIGTRAP | (PTRACE_EVENT_FORK<<8))

                     The PID of the new process can be retrieved with PTRACE_GETEVENTMSG.

              PTRACE_O_TRACESYSGOOD (since Linux 2.4.6)

                     When delivering system call traps, set bit 7 in the signal number (i.e., de?

                     liver  SIGTRAP|0x80).  This makes it easy for the tracer to distinguish nor?

                     mal traps from those caused by a system call.

              PTRACE_O_TRACEVFORK (since Linux 2.5.46)

                     Stop the tracee at the next vfork(2) and  automatically  start  tracing  the

                     newly vforked process, which will start with a SIGSTOP, or PTRACE_EVENT_STOP

                     if PTRACE_SEIZE was used.  A waitpid(2) by the tracer will return  a  status

                     value such that

                       status>>8 == (SIGTRAP | (PTRACE_EVENT_VFORK<<8))

                     The PID of the new process can be retrieved with PTRACE_GETEVENTMSG.

              PTRACE_O_TRACEVFORKDONE (since Linux 2.5.60)

                     Stop the tracee at the completion of the next vfork(2).  A waitpid(2) by the

                     tracer will return a status value such that

                       status>>8 == (SIGTRAP | (PTRACE_EVENT_VFORK_DONE<<8))

                     The PID of the new process  can  (since  Linux  2.6.18)  be  retrieved  with

                     PTRACE_GETEVENTMSG.

              PTRACE_O_TRACESECCOMP (since Linux 3.5)

                     Stop  the  tracee  when a seccomp(2) SECCOMP_RET_TRACE rule is triggered.  A Page 6/32



                     waitpid(2) by the tracer will return a status value such that

                       status>>8 == (SIGTRAP | (PTRACE_EVENT_SECCOMP<<8))

                     While this triggers a PTRACE_EVENT stop, it is similar to  a  syscall-enter-

                     stop.  For details, see the note on PTRACE_EVENT_SECCOMP below.  The seccomp

                     event message data (from the SECCOMP_RET_DATA portion of the seccomp  filter

                     rule) can be retrieved with PTRACE_GETEVENTMSG.

              PTRACE_O_SUSPEND_SECCOMP (since Linux 4.3)

                     Suspend  the tracee's seccomp protections.  This applies regardless of mode,

                     and can be used when the tracee has not yet installed seccomp filters.  That

                     is,  a  valid  use  case is to suspend a tracee's seccomp protections before

                     they are installed by the tracee, let the tracee install  the  filters,  and

                     then  clear  this flag when the filters should be resumed.  Setting this op?

                     tion requires that the tracer have the CAP_SYS_ADMIN  capability,  not  have

                     any seccomp protections installed, and not have PTRACE_O_SUSPEND_SECCOMP set

                     on itself.

       PTRACE_GETEVENTMSG (since Linux 2.5.46)

              Retrieve a message (as an unsigned long) about the ptrace event that just happened,

              placing  it  at the address data in the tracer.  For PTRACE_EVENT_EXIT, this is the

              tracee's    exit    status.      For     PTRACE_EVENT_FORK,     PTRACE_EVENT_VFORK,

              PTRACE_EVENT_VFORK_DONE,  and  PTRACE_EVENT_CLONE,  this  is  the  PID  of  the new

              process.   For  PTRACE_EVENT_SECCOMP,  this  is  the   seccomp(2)   filter's   SEC?

              COMP_RET_DATA associated with the triggered rule.  (addr is ignored.)

       PTRACE_CONT

              Restart  the  stopped tracee process.  If data is nonzero, it is interpreted as the

              number of a signal to be delivered to the tracee; otherwise, no  signal  is  deliv?

              ered.   Thus,  for  example,  the  tracer  can control whether a signal sent to the

              tracee is delivered or not.  (addr is ignored.)

       PTRACE_SYSCALL, PTRACE_SINGLESTEP

              Restart the stopped tracee as for PTRACE_CONT, but arrange for  the  tracee  to  be

              stopped  at  the  next entry to or exit from a system call, or after execution of a

              single instruction, respectively.  (The tracee will also, as usual, be stopped upon

              receipt  of  a  signal.)   From the tracer's perspective, the tracee will appear to

              have been stopped by receipt of a SIGTRAP.  So, for  PTRACE_SYSCALL,  for  example, Page 7/32



              the  idea is to inspect the arguments to the system call at the first stop, then do

              another PTRACE_SYSCALL and inspect the return value of the system call at the  sec?

              ond stop.  The data argument is treated as for PTRACE_CONT.  (addr is ignored.)

       PTRACE_SET_SYSCALL (since Linux 2.6.16)

              When  in  syscall-enter-stop, change the number of the system call that is about to

              be executed to the number specified in the data argument.  The addr argument is ig?

              nored.  This request is currently supported only on arm (and arm64, though only for

              backwards compatibility), but most other architectures have other means  of  accom?

              plishing  this  (usually by changing the register that the userland code passed the

              system call number in).

       PTRACE_SYSEMU, PTRACE_SYSEMU_SINGLESTEP (since Linux 2.6.14)

              For PTRACE_SYSEMU, continue and stop on entry to the next system call,  which  will

              not  be  executed.   See  the documentation on syscall-stops below.  For PTRACE_SY?

              SEMU_SINGLESTEP, do the same but also singlestep if not a system call.   This  call

              is used by programs like User Mode Linux that want to emulate all the tracee's sys?

              tem calls.  The data argument is treated as for PTRACE_CONT.  The addr argument  is

              ignored.  These requests are currently supported only on x86.

       PTRACE_LISTEN (since Linux 3.4)

              Restart  the stopped tracee, but prevent it from executing.  The resulting state of

              the tracee is similar to a process which has been stopped by a  SIGSTOP  (or  other

              stopping  signal).   See  the  "group-stop"  subsection for additional information.

              PTRACE_LISTEN works only on tracees attached by PTRACE_SEIZE.

       PTRACE_KILL

              Send the tracee a SIGKILL to terminate it.  (addr and data are ignored.)

              This operation is deprecated; do not use it!  Instead, send a SIGKILL directly  us?

              ing  kill(2)  or  tgkill(2).   The problem with PTRACE_KILL is that it requires the

              tracee to be in signal-delivery-stop, otherwise it may not work (i.e., may complete

              successfully  but  won't kill the tracee).  By contrast, sending a SIGKILL directly

              has no such limitation.

       PTRACE_INTERRUPT (since Linux 3.4)

              Stop a tracee.   If  the  tracee  is  running  or  sleeping  in  kernel  space  and

              PTRACE_SYSCALL  is  in effect, the system call is interrupted and syscall-exit-stop

              is reported.  (The  interrupted  system  call  is  restarted  when  the  tracee  is Page 8/32



              restarted.)   If  the  tracee was already stopped by a signal and PTRACE_LISTEN was

              sent to it, the tracee stops with PTRACE_EVENT_STOP  and  WSTOPSIG(status)  returns

              the stop signal.  If any other ptrace-stop is generated at the same time (for exam?

              ple, if a signal is sent to the tracee), this ptrace-stop happens.  If none of  the

              above  applies (for example, if the tracee is running in user space), it stops with

              PTRACE_EVENT_STOP with WSTOPSIG(status) == SIGTRAP.  PTRACE_INTERRUPT only works on

              tracees attached by PTRACE_SEIZE.

       PTRACE_ATTACH

              Attach  to the process specified in pid, making it a tracee of the calling process.

              The tracee is sent a SIGSTOP, but will not necessarily have stopped by the  comple?

              tion of this call; use waitpid(2) to wait for the tracee to stop.  See the "Attach?

              ing and detaching" subsection for additional information.  (addr and data  are  ig?

              nored.)

              Permission  to  perform  a  PTRACE_ATTACH  is  governed  by  a  ptrace  access mode

              PTRACE_MODE_ATTACH_REALCREDS check; see below.

       PTRACE_SEIZE (since Linux 3.4)

              Attach to the process specified in pid, making it a tracee of the calling  process.

              Unlike  PTRACE_ATTACH, PTRACE_SEIZE does not stop the process.  Group-stops are re?

              ported as PTRACE_EVENT_STOP and WSTOPSIG(status) returns the stop signal.  Automat?

              ically  attached  children stop with PTRACE_EVENT_STOP and WSTOPSIG(status) returns

              SIGTRAP instead of having SIGSTOP signal delivered to them.  execve(2) does not de?

              liver  an  extra SIGTRAP.  Only a PTRACE_SEIZEd process can accept PTRACE_INTERRUPT

              and PTRACE_LISTEN commands.  The "seized" behavior just described is  inherited  by

              children that are automatically attached using PTRACE_O_TRACEFORK, PTRACE_O_TRACEV?

              FORK, and PTRACE_O_TRACECLONE.  addr must be zero.  data contains  a  bit  mask  of

              ptrace options to activate immediately.

              Permission  to  perform  a  PTRACE_SEIZE  is  governed  by  a  ptrace  access  mode

              PTRACE_MODE_ATTACH_REALCREDS check; see below.

       PTRACE_SECCOMP_GET_FILTER (since Linux 4.4)

              This operation allows the tracer to dump the tracee's classic BPF filters.

              addr is an integer specifying the index of the filter to be dumped.  The  most  re?

              cently installed filter has the index 0.  If addr is greater than the number of in?

              stalled filters, the operation fails with the error ENOENT. Page 9/32



              data is either a pointer to a struct sock_filter array  that  is  large  enough  to

              store the BPF program, or NULL if the program is not to be stored.

              Upon  success,  the  return value is the number of instructions in the BPF program.

              If data was NULL, then this return value can be used to correctly size  the  struct

              sock_filter array passed in a subsequent call.

              This  operation  fails  with  the  error  EACCES  if  the  caller does not have the

              CAP_SYS_ADMIN capability or if the caller is in strict or filter seccomp mode.   If

              the  filter  referred  to  by addr is not a classic BPF filter, the operation fails

              with the error EMEDIUMTYPE.

              This operation is available if the kernel was configured with both the  CONFIG_SEC?

              COMP_FILTER and the CONFIG_CHECKPOINT_RESTORE options.

       PTRACE_DETACH

              Restart  the  stopped  tracee  as for PTRACE_CONT, but first detach from it.  Under

              Linux, a tracee can be detached in this way regardless of which method was used  to

              initiate tracing.  (addr is ignored.)

       PTRACE_GET_THREAD_AREA (since Linux 2.6.0)

              This operation performs a similar task to get_thread_area(2).  It reads the TLS en?

              try in the GDT whose index is given in addr, placing a copy of the entry  into  the

              struct user_desc pointed to by data.  (By contrast with get_thread_area(2), the en?

              try_number of the struct user_desc is ignored.)

       PTRACE_SET_THREAD_AREA (since Linux 2.6.0)

              This operation performs a similar task to set_thread_area(2).  It sets the TLS  en?

              try  in the GDT whose index is given in addr, assigning it the data supplied in the

              struct user_desc pointed to by data.  (By contrast with set_thread_area(2), the en?

              try_number  of  the struct user_desc is ignored; in other words, this ptrace opera?

              tion can't be used to allocate a free TLS entry.)

       PTRACE_GET_SYSCALL_INFO (since Linux 5.3)

              Retrieve information about the system call that caused the stop.   The  information

              is  placed  into the buffer pointed by the data argument, which should be a pointer

              to a buffer of type struct ptrace_syscall_info.  The  addr  argument  contains  the

              size   of  the  buffer  pointed  to  by  the  data  argument  (i.e.,  sizeof(struct

              ptrace_syscall_info)).  The return value contains the number of bytes available  to

              be  written by the kernel.  If the size of the data to be written by the kernel ex? Page 10/32



              ceeds the size specified by the addr argument, the output data is truncated.

              The ptrace_syscall_info structure contains the following fields:

                  struct ptrace_syscal_info {

                      __u8 op;        /* Type of system call stop */

                      __u32 arch;     /* AUDIT_ARCH_* value; see seccomp(2) */

                      __u64 instruction_pointer; /* CPU instruction pointer */

                      __u64 stack_pointer;    /* CPU stack pointer */

                      union {

                          struct {    /* op == PTRACE_SYSCALL_INFO_ENTRY */

                              __u64 nr;       /* System call number */

                              __u64 args[6];  /* System call arguments */

                          } entry;

                          struct {    /* op == PTRACE_SYSCALL_INFO_EXIT */

                              __s64 rval;     /* System call return value */

                              __u8 is_error;  /* System call error flag;

                                                 Boolean: does rval contain

                                                 an error value (-ERRCODE) or

                                                 a nonerror return value? */

                          } exit;

                          struct {    /* op == PTRACE_SYSCALL_INFO_SECCOMP */

                              __u64 nr;       /* System call number */

                              __u64 args[6];  /* System call arguments */

                              __u32 ret_data; /* SECCOMP_RET_DATA portion

                                                 of SECCOMP_RET_TRACE

                                                 return value */

                          } seccomp;

                      };

                  };

              The op, arch, instruction_pointer, and stack_pointer fields  are  defined  for  all

              kinds  of  ptrace  system  call  stops.   The rest of the structure is a union; one

              should read only those fields that are meaningful for the kind of system call  stop

              specified by the op field.

              The op field has one of the following values (defined in <linux/ptrace.h>) indicat? Page 11/32



              ing what type of stop occurred and which part of the union is filled:

              PTRACE_SYSCALL_INFO_ENTRY

                     The entry component of the union contains information relating to  a  system

                     call entry stop.

              PTRACE_SYSCALL_INFO_EXIT

                     The  exit  component  of the union contains information relating to a system

                     call exit stop.

              PTRACE_SYSCALL_INFO_SECCOMP

                     The seccomp component of  the  union  contains  information  relating  to  a

                     PTRACE_EVENT_SECCOMP stop.

              PTRACE_SYSCALL_INFO_NONE

                     No component of the union contains relevant information.

   Death under ptrace

       When  a  (possibly multithreaded) process receives a killing signal (one whose disposition

       is set to SIG_DFL and whose default action is to kill  the  process),  all  threads  exit.

       Tracees  report  their  death to their tracer(s).  Notification of this event is delivered

       via waitpid(2).

       Note that the killing signal will first cause signal-delivery-stop (on one  tracee  only),

       and  only after it is injected by the tracer (or after it was dispatched to a thread which

       isn't traced), will death from the signal happen on all  tracees  within  a  multithreaded

       process.  (The term "signal-delivery-stop" is explained below.)

       SIGKILL does not generate signal-delivery-stop and therefore the tracer can't suppress it.

       SIGKILL kills even within system calls (syscall-exit-stop is not generated prior to  death

       by  SIGKILL).   The net effect is that SIGKILL always kills the process (all its threads),

       even if some threads of the process are ptraced.

       When the tracee calls _exit(2), it reports its death to its tracer.  Other threads are not

       affected.

       When any thread executes exit_group(2), every tracee in its thread group reports its death

       to its tracer.

       If the PTRACE_O_TRACEEXIT option is on, PTRACE_EVENT_EXIT will happen before actual death.

       This  applies  to exits via exit(2), exit_group(2), and signal deaths (except SIGKILL, de?

       pending on the kernel version; see BUGS below), and when threads  are  torn  down  on  ex?

       ecve(2) in a multithreaded process. Page 12/32



       The  tracer cannot assume that the ptrace-stopped tracee exists.  There are many scenarios

       when the tracee may die while stopped (such as SIGKILL).  Therefore, the  tracer  must  be

       prepared  to handle an ESRCH error on any ptrace operation.  Unfortunately, the same error

       is returned if the tracee exists but is not ptrace-stopped (for commands which  require  a

       stopped  tracee), or if it is not traced by the process which issued the ptrace call.  The

       tracer needs to keep track of the stopped/running state of the tracee, and interpret ESRCH

       as  "tracee died unexpectedly" only if it knows that the tracee has been observed to enter

       ptrace-stop.  Note that there is no guarantee that waitpid(WNOHANG) will  reliably  report

       the  tracee's death status if a ptrace operation returned ESRCH.  waitpid(WNOHANG) may re?

       turn 0 instead.  In other words, the tracee may be "not yet fully dead", but  already  re?

       fusing ptrace requests.

       The  tracer  can't assume that the tracee always ends its life by reporting WIFEXITED(sta?

       tus) or WIFSIGNALED(status); there are cases where this does not occur.  For example, if a

       thread other than thread group leader does an execve(2), it disappears; its PID will never

       be seen again, and any subsequent ptrace stops will be reported  under  the  thread  group

       leader's PID.

   Stopped states

       A  tracee  can be in two states: running or stopped.  For the purposes of ptrace, a tracee

       which is blocked in a system call (such as read(2), pause(2), etc.)  is nevertheless  con?

       sidered  to  be  running, even if the tracee is blocked for a long time.  The state of the

       tracee after PTRACE_LISTEN is somewhat of a gray  area:  it  is  not  in  any  ptrace-stop

       (ptrace  commands  won't work on it, and it will deliver waitpid(2) notifications), but it

       also may be considered "stopped" because it is not executing instructions (is  not  sched?

       uled),  and  if  it was in group-stop before PTRACE_LISTEN, it will not respond to signals

       until SIGCONT is received.

       There are many kinds of states when the tracee is stopped, and in ptrace discussions  they

       are often conflated.  Therefore, it is important to use precise terms.

       In  this manual page, any stopped state in which the tracee is ready to accept ptrace com?

       mands from the tracer is called ptrace-stop.  Ptrace-stops can be further subdivided  into

       signal-delivery-stop,  group-stop,  syscall-stop,  PTRACE_EVENT  stops,  and so on.  These

       stopped states are described in detail below.

       When the running tracee enters ptrace-stop, it notifies its tracer  using  waitpid(2)  (or

       one  of  the other "wait" system calls).  Most of this manual page assumes that the tracer Page 13/32



       waits with:

           pid = waitpid(pid_or_minus_1, &status, __WALL);

       Ptrace-stopped tracees are reported as returns with pid greater than 0 and WIFSTOPPED(sta?

       tus) true.

       The  __WALL  flag does not include the WSTOPPED and WEXITED flags, but implies their func?

       tionality.

       Setting the WCONTINUED flag when calling waitpid(2) is not  recommended:  the  "continued"

       state is per-process and consuming it can confuse the real parent of the tracee.

       Use of the WNOHANG flag may cause waitpid(2) to return 0 ("no wait results available yet")

       even if the tracer knows there should be a notification.  Example:

           errno = 0;

           ptrace(PTRACE_CONT, pid, 0L, 0L);

           if (errno == ESRCH) {

               /* tracee is dead */

               r = waitpid(tracee, &status, __WALL | WNOHANG);

               /* r can still be 0 here! */

           }

       The  following  kinds   of   ptrace-stops   exist:   signal-delivery-stops,   group-stops,

       PTRACE_EVENT  stops,  syscall-stops.   They  all  are  reported  by  waitpid(2)  with WIF?

       STOPPED(status) true.  They may be differentiated by examining the value status>>8, and if

       there is ambiguity in that value, by querying PTRACE_GETSIGINFO.  (Note: the WSTOPSIG(sta?

       tus) macro can't be used to perform this examination, because it returns the  value  (sta?

       tus>>8) & 0xff.)

   Signal-delivery-stop

       When a (possibly multithreaded) process receives any signal except SIGKILL, the kernel se?

       lects an arbitrary thread which handles the signal.  (If  the  signal  is  generated  with

       tgkill(2),  the  target thread can be explicitly selected by the caller.)  If the selected

       thread is traced, it enters signal-delivery-stop.  At this point, the signal  is  not  yet

       delivered to the process, and can be suppressed by the tracer.  If the tracer doesn't sup?

       press the signal, it passes the signal to the tracee in the next ptrace  restart  request.

       This  second step of signal delivery is called signal injection in this manual page.  Note

       that if the signal is blocked, signal-delivery-stop doesn't happen until the signal is un?

       blocked, with the usual exception that SIGSTOP can't be blocked. Page 14/32



       Signal-delivery-stop  is  observed  by  the  tracer  as  waitpid(2)  returning  with  WIF?

       STOPPED(status) true, with the signal returned by WSTOPSIG(status).  If the signal is SIG?

       TRAP,  this  may  be a different kind of ptrace-stop; see the "Syscall-stops" and "execve"

       sections below for details.  If WSTOPSIG(status) returns a stopping signal, this may be  a

       group-stop; see below.

   Signal injection and suppression

       After signal-delivery-stop is observed by the tracer, the tracer should restart the tracee

       with the call

           ptrace(PTRACE_restart, pid, 0, sig)

       where PTRACE_restart is one of the restarting ptrace requests.  If sig is 0, then a signal

       is  not delivered.  Otherwise, the signal sig is delivered.  This operation is called sig?

       nal injection in this manual page, to distinguish it from signal-delivery-stop.

       The sig value may be different from the WSTOPSIG(status) value: the  tracer  can  cause  a

       different signal to be injected.

       Note  that  a  suppressed signal still causes system calls to return prematurely.  In this

       case, system calls will be restarted: the tracer will observe the tracee to reexecute  the

       interrupted  system  call  (or restart_syscall(2) system call for a few system calls which

       use a different mechanism for restarting) if the tracer uses PTRACE_SYSCALL.  Even  system

       calls  (such as poll(2)) which are not restartable after signal are restarted after signal

       is suppressed; however, kernel bugs exist which cause some system calls to fail with EINTR

       even though no observable signal is injected to the tracee.

       Restarting  ptrace commands issued in ptrace-stops other than signal-delivery-stop are not

       guaranteed to inject a signal, even if sig is nonzero.  No error is  reported;  a  nonzero

       sig may simply be ignored.  Ptrace users should not try to "create a new signal" this way:

       use tgkill(2) instead.

       The fact that signal injection requests may be ignored when restarting  the  tracee  after

       ptrace  stops  that  are  not  signal-delivery-stops  is a cause of confusion among ptrace

       users.  One typical scenario is that the tracer observes group-stop, mistakes it for  sig?

       nal-delivery-stop, restarts the tracee with

           ptrace(PTRACE_restart, pid, 0, stopsig)

       with the intention of injecting stopsig, but stopsig gets ignored and the tracee continues

       to run.

       The SIGCONT signal has a side effect  of  waking  up  (all  threads  of)  a  group-stopped Page 15/32



       process.  This side effect happens before signal-delivery-stop.  The tracer can't suppress

       this side effect (it can only suppress signal injection, which  only  causes  the  SIGCONT

       handler  to not be executed in the tracee, if such a handler is installed).  In fact, wak?

       ing up from group-stop may be followed by signal-delivery-stop for  signal(s)  other  than

       SIGCONT,  if they were pending when SIGCONT was delivered.  In other words, SIGCONT may be

       not the first signal observed by the tracee after it was sent.

       Stopping signals cause (all threads of) a process to enter group-stop.  This  side  effect

       happens after signal injection, and therefore can be suppressed by the tracer.

       In Linux 2.4 and earlier, the SIGSTOP signal can't be injected.

       PTRACE_GETSIGINFO  can  be used to retrieve a siginfo_t structure which corresponds to the

       delivered signal.  PTRACE_SETSIGINFO may be used to modify it.  If  PTRACE_SETSIGINFO  has

       been  used  to alter siginfo_t, the si_signo field and the sig parameter in the restarting

       command must match, otherwise the result is undefined.

   Group-stop

       When a (possibly multithreaded) process receives a stopping signal, all threads stop.   If

       some  threads  are  traced,  they  enter a group-stop.  Note that the stopping signal will

       first cause signal-delivery-stop (on one tracee only), and only after it  is  injected  by

       the tracer (or after it was dispatched to a thread which isn't traced), will group-stop be

       initiated on all tracees within the multithreaded process.  As usual, every tracee reports

       its group-stop separately to the corresponding tracer.

       Group-stop is observed by the tracer as waitpid(2) returning with WIFSTOPPED(status) true,

       with the stopping signal available via WSTOPSIG(status).  The same result is  returned  by

       some  other  classes of ptrace-stops, therefore the recommended practice is to perform the

       call

           ptrace(PTRACE_GETSIGINFO, pid, 0, &siginfo)

       The call can be avoided if the signal is not SIGSTOP, SIGTSTP, SIGTTIN, or  SIGTTOU;  only

       these four signals are stopping signals.  If the tracer sees something else, it can't be a

       group-stop.  Otherwise, the tracer needs to call PTRACE_GETSIGINFO.  If  PTRACE_GETSIGINFO

       fails with EINVAL, then it is definitely a group-stop.  (Other failure codes are possible,

       such as ESRCH ("no such process") if a SIGKILL killed the tracee.)

       If tracee was attached using PTRACE_SEIZE, group-stop is indicated  by  PTRACE_EVENT_STOP:

       status>>16  ==  PTRACE_EVENT_STOP.  This allows detection of group-stops without requiring

       an extra PTRACE_GETSIGINFO call. Page 16/32



       As of Linux 2.6.38, after the tracer sees the tracee ptrace-stop and until it restarts  or

       kills  it, the tracee will not run, and will not send notifications (except SIGKILL death)

       to the tracer, even if the tracer enters into another waitpid(2) call.

       The kernel behavior described in the previous paragraph causes a problem with  transparent

       handling  of  stopping  signals.   If the tracer restarts the tracee after group-stop, the

       stopping signal is effectively ignored?the tracee doesn't remain stopped, it runs.  If the

       tracer doesn't restart the tracee before entering into the next waitpid(2), future SIGCONT

       signals will not be reported to the tracer; this would cause the SIGCONT signals  to  have

       no effect on the tracee.

       Since  Linux  3.4,  there  is a method to overcome this problem: instead of PTRACE_CONT, a

       PTRACE_LISTEN command can be used to restart a tracee in a way where it does not  execute,

       but waits for a new event which it can report via waitpid(2) (such as when it is restarted

       by a SIGCONT).

   PTRACE_EVENT stops

       If the tracer sets PTRACE_O_TRACE_* options, the tracee  will  enter  ptrace-stops  called

       PTRACE_EVENT stops.

       PTRACE_EVENT stops are observed by the tracer as waitpid(2) returning with WIFSTOPPED(sta?

       tus), and WSTOPSIG(status) returns SIGTRAP (or for PTRACE_EVENT_STOP, returns the stopping

       signal  if tracee is in a group-stop).  An additional bit is set in the higher byte of the

       status word: the value status>>8 will be

           ((PTRACE_EVENT_foo<<8) | SIGTRAP).

       The following events exist:

       PTRACE_EVENT_VFORK

              Stop before return from vfork(2) or clone(2) with the CLONE_VFORK flag.   When  the

              tracee  is  continued  after  this stop, it will wait for child to exit/exec before

              continuing its execution (in other words, the usual behavior on vfork(2)).

       PTRACE_EVENT_FORK

              Stop before return from fork(2) or clone(2) with the exit signal set to SIGCHLD.

       PTRACE_EVENT_CLONE

              Stop before return from clone(2).

       PTRACE_EVENT_VFORK_DONE

              Stop before return from vfork(2) or clone(2) with the CLONE_VFORK flag,  but  after

              the child unblocked this tracee by exiting or execing. Page 17/32



       For  all four stops described above, the stop occurs in the parent (i.e., the tracee), not

       in the newly created thread.  PTRACE_GETEVENTMSG can be used to retrieve the new  thread's

       ID.

       PTRACE_EVENT_EXEC

              Stop before return from execve(2).  Since Linux 3.0, PTRACE_GETEVENTMSG returns the

              former thread ID.

       PTRACE_EVENT_EXIT

              Stop before exit (including death from exit_group(2)), signal death, or exit caused

              by  execve(2) in a multithreaded process.  PTRACE_GETEVENTMSG returns the exit sta?

              tus.  Registers can be examined (unlike when "real" exit happens).  The  tracee  is

              still alive; it needs to be PTRACE_CONTed or PTRACE_DETACHed to finish exiting.

       PTRACE_EVENT_STOP

              Stop  induced  by  PTRACE_INTERRUPT  command, or group-stop, or initial ptrace-stop

              when a new child is attached (only if attached using PTRACE_SEIZE).

       PTRACE_EVENT_SECCOMP

              Stop triggered by a seccomp(2) rule on tracee syscall entry when PTRACE_O_TRACESEC?

              COMP  has  been  set  by the tracer.  The seccomp event message data (from the SEC?

              COMP_RET_DATA  portion  of  the  seccomp  filter  rule)  can  be   retrieved   with

              PTRACE_GETEVENTMSG.   The semantics of this stop are described in detail in a sepa?

              rate section below.

       PTRACE_GETSIGINFO on PTRACE_EVENT stops returns SIGTRAP in si_signo, with si_code  set  to

       (event<<8) | SIGTRAP.

   Syscall-stops

       If the tracee was restarted by PTRACE_SYSCALL or PTRACE_SYSEMU, the tracee enters syscall-

       enter-stop just prior to entering any system call (which  will  not  be  executed  if  the

       restart  was using PTRACE_SYSEMU, regardless of any change made to registers at this point

       or how the tracee is restarted after this  stop).   No  matter  which  method  caused  the

       syscall-entry-stop,  if the tracer restarts the tracee with PTRACE_SYSCALL, the tracee en?

       ters syscall-exit-stop when the system call is finished, or if it is interrupted by a sig?

       nal.  (That is, signal-delivery-stop never happens between syscall-enter-stop and syscall-

       exit-stop; it happens after syscall-exit-stop.).  If the tracee  is  continued  using  any

       other  method  (including PTRACE_SYSEMU), no syscall-exit-stop occurs.  Note that all men?

       tions PTRACE_SYSEMU apply equally to PTRACE_SYSEMU_SINGLESTEP. Page 18/32



       However, even if the tracee was continued using PTRACE_SYSCALL, it is not guaranteed  that

       the  next  stop  will be a syscall-exit-stop.  Other possibilities are that the tracee may

       stop in a PTRACE_EVENT stop (including seccomp stops), exit (if  it  entered  _exit(2)  or

       exit_group(2)), be killed by SIGKILL, or die silently (if it is a thread group leader, the

       execve(2) happened in another thread, and that thread is not traced by  the  same  tracer;

       this situation is discussed later).

       Syscall-enter-stop  and syscall-exit-stop are observed by the tracer as waitpid(2) return?

       ing  with  WIFSTOPPED(status)  true,  and  WSTOPSIG(status)  giving   SIGTRAP.    If   the

       PTRACE_O_TRACESYSGOOD  option  was  set by the tracer, then WSTOPSIG(status) will give the

       value (SIGTRAP | 0x80).

       Syscall-stops can be distinguished from  signal-delivery-stop  with  SIGTRAP  by  querying

       PTRACE_GETSIGINFO for the following cases:

       si_code <= 0

              SIGTRAP  was  delivered  as  a result of a user-space action, for example, a system

              call (tgkill(2), kill(2), sigqueue(3), etc.), expiration of a POSIX  timer,  change

              of state on a POSIX message queue, or completion of an asynchronous I/O request.

       si_code == SI_KERNEL (0x80)

              SIGTRAP was sent by the kernel.

       si_code == SIGTRAP or si_code == (SIGTRAP|0x80)

              This is a syscall-stop.

       However,  syscall-stops  happen  very  often  (twice  per  system  call),  and  performing

       PTRACE_GETSIGINFO for every syscall-stop may be somewhat expensive.

       Some architectures allow the cases to be distinguished by examining registers.  For  exam?

       ple,  on x86, rax == -ENOSYS in syscall-enter-stop.  Since SIGTRAP (like any other signal)

       always happens after syscall-exit-stop, and  at  this  point  rax  almost  never  contains

       -ENOSYS,  the  SIGTRAP looks like "syscall-stop which is not syscall-enter-stop"; in other

       words, it looks like a "stray syscall-exit-stop" and can be detected this way.   But  such

       detection is fragile and is best avoided.

       Using  the  PTRACE_O_TRACESYSGOOD option is the recommended method to distinguish syscall-

       stops from other kinds of ptrace-stops, since it is reliable and does not incur a  perfor?

       mance penalty.

       Syscall-enter-stop  and  syscall-exit-stop  are  indistinguishable  from each other by the

       tracer.  The tracer needs to keep track of the sequence of ptrace-stops in  order  to  not Page 19/32



       misinterpret  syscall-enter-stop  as  syscall-exit-stop  or  vice  versa.   In  general, a

       syscall-enter-stop is always followed by  syscall-exit-stop,  PTRACE_EVENT  stop,  or  the

       tracee's  death;  no  other kinds of ptrace-stop can occur in between.  However, note that

       seccomp stops (see below) can cause syscall-exit-stops, without  preceding  syscall-entry-

       stops.   If  seccomp  is  in use, care needs to be taken not to misinterpret such stops as

       syscall-entry-stops.

       If  after  syscall-enter-stop,  the  tracer  uses  a   restarting   command   other   than

       PTRACE_SYSCALL, syscall-exit-stop is not generated.

       PTRACE_GETSIGINFO  on  syscall-stops returns SIGTRAP in si_signo, with si_code set to SIG?

       TRAP or (SIGTRAP|0x80).

   PTRACE_EVENT_SECCOMP stops (Linux 3.5 to 4.7)

       The behavior of PTRACE_EVENT_SECCOMP stops and  their  interaction  with  other  kinds  of

       ptrace  stops has changed between kernel versions.  This documents the behavior from their

       introduction until Linux 4.7 (inclusive).  The behavior in later kernel versions is  docu?

       mented in the next section.

       A  PTRACE_EVENT_SECCOMP  stop occurs whenever a SECCOMP_RET_TRACE rule is triggered.  This

       is independent of which methods was used to restart the  system  call.   Notably,  seccomp

       still  runs  even  if the tracee was restarted using PTRACE_SYSEMU and this system call is

       unconditionally skipped.

       Restarts from this stop will behave as if the stop had occurred right  before  the  system

       call  in  question.   In  particular,  both PTRACE_SYSCALL and PTRACE_SYSEMU will normally

       cause a subsequent syscall-entry-stop.  However, if  after  the  PTRACE_EVENT_SECCOMP  the

       system  call  number  is  negative, both the syscall-entry-stop and the system call itself

       will be skipped.  This  means  that  if  the  system  call  number  is  negative  after  a

       PTRACE_EVENT_SECCOMP  and  the tracee is restarted using PTRACE_SYSCALL, the next observed

       stop will be a syscall-exit-stop, rather than the syscall-entry-stop that might have  been

       expected.

   PTRACE_EVENT_SECCOMP stops (since Linux 4.8)

       Starting  with  Linux  4.8,  the  PTRACE_EVENT_SECCOMP stop was reordered to occur between

       syscall-entry-stop and syscall-exit-stop.  Note  that  seccomp  no  longer  runs  (and  no

       PTRACE_EVENT_SECCOMP will be reported) if the system call is skipped due to PTRACE_SYSEMU.

       Functionally,  a  PTRACE_EVENT_SECCOMP  stop  functions comparably to a syscall-entry-stop

       (i.e., continuations using PTRACE_SYSCALL will cause syscall-exit-stops, the  system  call Page 20/32



       number  may  be changed and any other modified registers are visible to the to-be-executed

       system call as well).  Note that there may be, but need not have been a preceding syscall-

       entry-stop.

       After  a  PTRACE_EVENT_SECCOMP  stop, seccomp will be rerun, with a SECCOMP_RET_TRACE rule

       now functioning the same as a SECCOMP_RET_ALLOW.  Specifically, this means that if  regis?

       ters  are  not modified during the PTRACE_EVENT_SECCOMP stop, the system call will then be

       allowed.

   PTRACE_SINGLESTEP stops

       [Details of these kinds of stops are yet to be documented.]

   Informational and restarting ptrace commands

       Most ptrace commands (all except PTRACE_ATTACH, PTRACE_SEIZE,  PTRACE_TRACEME,  PTRACE_IN?

       TERRUPT,  and  PTRACE_KILL) require the tracee to be in a ptrace-stop, otherwise they fail

       with ESRCH.

       When the tracee is in ptrace-stop, the tracer can read and write data to the tracee  using

       informational commands.  These commands leave the tracee in ptrace-stopped state:

           ptrace(PTRACE_PEEKTEXT/PEEKDATA/PEEKUSER, pid, addr, 0);

           ptrace(PTRACE_POKETEXT/POKEDATA/POKEUSER, pid, addr, long_val);

           ptrace(PTRACE_GETREGS/GETFPREGS, pid, 0, &struct);

           ptrace(PTRACE_SETREGS/SETFPREGS, pid, 0, &struct);

           ptrace(PTRACE_GETREGSET, pid, NT_foo, &iov);

           ptrace(PTRACE_SETREGSET, pid, NT_foo, &iov);

           ptrace(PTRACE_GETSIGINFO, pid, 0, &siginfo);

           ptrace(PTRACE_SETSIGINFO, pid, 0, &siginfo);

           ptrace(PTRACE_GETEVENTMSG, pid, 0, &long_var);

           ptrace(PTRACE_SETOPTIONS, pid, 0, PTRACE_O_flags);

       Note that some errors are not reported.  For example, setting signal information (siginfo)

       may have no effect in some ptrace-stops, yet the call may succeed (return 0  and  not  set

       errno);  querying  PTRACE_GETEVENTMSG  may succeed and return some random value if current

       ptrace-stop is not documented as returning a meaningful event message.

       The call

           ptrace(PTRACE_SETOPTIONS, pid, 0, PTRACE_O_flags);

       affects one tracee.  The tracee's current flags are replaced.  Flags are inherited by  new

       tracees created and "auto-attached" via active PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK, orPage 21/32



       PTRACE_O_TRACECLONE options.

       Another group of commands makes the ptrace-stopped tracee run.  They have the form:

           ptrace(cmd, pid, 0, sig);

       where cmd is PTRACE_CONT, PTRACE_LISTEN, PTRACE_DETACH, PTRACE_SYSCALL, PTRACE_SINGLESTEP,

       PTRACE_SYSEMU, or PTRACE_SYSEMU_SINGLESTEP.  If the tracee is in signal-delivery-stop, sig

       is the signal to be injected (if it is nonzero).  Otherwise, sig may  be  ignored.   (When

       restarting  a tracee from a ptrace-stop other than signal-delivery-stop, recommended prac?

       tice is to always pass 0 in sig.)

   Attaching and detaching

       A thread can be attached to the tracer using the call

           ptrace(PTRACE_ATTACH, pid, 0, 0);

       or

           ptrace(PTRACE_SEIZE, pid, 0, PTRACE_O_flags);

       PTRACE_ATTACH sends SIGSTOP to this thread.  If the tracer wants this SIGSTOP to  have  no

       effect, it needs to suppress it.  Note that if other signals are concurrently sent to this

       thread during attach, the tracer may see the tracee enter signal-delivery-stop with  other

       signal(s)  first!   The usual practice is to reinject these signals until SIGSTOP is seen,

       then suppress SIGSTOP injection.  The design bug here is that a ptrace attach and  a  con?

       currently delivered SIGSTOP may race and the concurrent SIGSTOP may be lost.

       Since attaching sends SIGSTOP and the tracer usually suppresses it, this may cause a stray

       EINTR return from the currently executing system call in the tracee, as described  in  the

       "Signal injection and suppression" section.

       Since Linux 3.4, PTRACE_SEIZE can be used instead of PTRACE_ATTACH.  PTRACE_SEIZE does not

       stop the attached process.  If you need to stop it after attach (or  at  any  other  time)

       without sending it any signals, use PTRACE_INTERRUPT command.

       The request

           ptrace(PTRACE_TRACEME, 0, 0, 0);

       turns  the  calling  thread  into  a  tracee.   The thread continues to run (doesn't enter

       ptrace-stop).  A common practice is to follow the PTRACE_TRACEME with

           raise(SIGSTOP);

       and allow the parent (which is our tracer now) to observe our signal-delivery-stop.

       If the PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK, or PTRACE_O_TRACECLONE options are in  ef?

       fect,  then  children  created by, respectively, vfork(2) or clone(2) with the CLONE_VFORK Page 22/32



       flag, fork(2) or clone(2) with the  exit  signal  set  to  SIGCHLD,  and  other  kinds  of

       clone(2),  are  automatically  attached  to  the  same  tracer  which traced their parent.

       SIGSTOP is delivered to the children, causing them  to  enter  signal-delivery-stop  after

       they exit the system call which created them.

       Detaching of the tracee is performed by:

           ptrace(PTRACE_DETACH, pid, 0, sig);

       PTRACE_DETACH is a restarting operation; therefore it requires the tracee to be in ptrace-

       stop.  If the tracee is in signal-delivery-stop, a signal can be injected.  Otherwise, the

       sig parameter may be silently ignored.

       If the tracee is running when the tracer wants to detach it, the usual solution is to send

       SIGSTOP (using tgkill(2), to make sure it goes to the correct thread), wait for the tracee

       to stop in signal-delivery-stop for SIGSTOP and then detach it (suppressing SIGSTOP injec?

       tion).  A design bug is that this can race with concurrent SIGSTOPs.  Another complication

       is  that  the tracee may enter other ptrace-stops and needs to be restarted and waited for

       again, until SIGSTOP is seen.  Yet another complication is to be sure that the  tracee  is

       not  already  ptrace-stopped,  because  no  signal  delivery  happens while it is?not even

       SIGSTOP.

       If the tracer dies, all tracees are automatically detached and restarted, unless they were

       in  group-stop.   Handling  of  restart  from  group-stop  is currently buggy, but the "as

       planned" behavior is to leave tracee stopped and waiting for SIGCONT.  If  the  tracee  is

       restarted from signal-delivery-stop, the pending signal is injected.

   execve(2) under ptrace

       When  one thread in a multithreaded process calls execve(2), the kernel destroys all other

       threads in the process, and resets the thread ID of the execing thread to the thread group

       ID (process ID).  (Or, to put things another way, when a multithreaded process does an ex?

       ecve(2), at completion of the call, it appears as though the  execve(2)  occurred  in  the

       thread group leader, regardless of which thread did the execve(2).)  This resetting of the

       thread ID looks very confusing to tracers:

       *  All other threads stop in PTRACE_EVENT_EXIT stop, if the PTRACE_O_TRACEEXIT option  was

          turned  on.   Then  all other threads except the thread group leader report death as if

          they exited via _exit(2) with exit code 0.

       *  The execing tracee changes its thread ID while it is in the execve(2).  (Remember,  un?

          der  ptrace,  the  "pid"  returned  from  waitpid(2),  or fed into ptrace calls, is the Page 23/32



          tracee's thread ID.)  That is, the tracee's thread ID is reset to be the  same  as  its

          process ID, which is the same as the thread group leader's thread ID.

       *  Then a PTRACE_EVENT_EXEC stop happens, if the PTRACE_O_TRACEEXEC option was turned on.

       *  If the thread group leader has reported its PTRACE_EVENT_EXIT stop by this time, it ap?

          pears to the tracer that the dead thread leader "reappears from nowhere".   (Note:  the

          thread group leader does not report death via WIFEXITED(status) until there is at least

          one other live thread.  This eliminates the possibility that the tracer will see it dy?

          ing  and then reappearing.)  If the thread group leader was still alive, for the tracer

          this may look as if thread group leader returns from a different system  call  than  it

          entered,  or  even  "returned  from  a system call even though it was not in any system

          call".  If the thread group leader was  not  traced  (or  was  traced  by  a  different

          tracer),  then  during  execve(2)  it  will  appear as if it has become a tracee of the

          tracer of the execing tracee.

       All of the above effects are the artifacts of the thread ID change in the tracee.

       The PTRACE_O_TRACEEXEC option is the recommended tool for  dealing  with  this  situation.

       First,  it enables PTRACE_EVENT_EXEC stop, which occurs before execve(2) returns.  In this

       stop, the tracer can use PTRACE_GETEVENTMSG to retrieve the  tracee's  former  thread  ID.

       (This  feature  was  introduced in Linux 3.0.)  Second, the PTRACE_O_TRACEEXEC option dis?

       ables legacy SIGTRAP generation on execve(2).

       When the tracer receives PTRACE_EVENT_EXEC stop notification, it is guaranteed that except

       this tracee and the thread group leader, no other threads from the process are alive.

       On  receiving  the PTRACE_EVENT_EXEC stop notification, the tracer should clean up all its

       internal data structures describing the threads of this process, and retain only one  data

       structure?one which describes the single still running tracee, with

           thread ID == thread group ID == process ID.

       Example: two threads call execve(2) at the same time:

       *** we get syscall-enter-stop in thread 1: **

       PID1 execve("/bin/foo", "foo" <unfinished ...>

       *** we issue PTRACE_SYSCALL for thread 1 **

       *** we get syscall-enter-stop in thread 2: **

       PID2 execve("/bin/bar", "bar" <unfinished ...>

       *** we issue PTRACE_SYSCALL for thread 2 **

       *** we get PTRACE_EVENT_EXEC for PID0, we issue PTRACE_SYSCALL ** Page 24/32



       *** we get syscall-exit-stop for PID0: **

       PID0 <... execve resumed> )             = 0

       If  the  PTRACE_O_TRACEEXEC  option  is  not  in effect for the execing tracee, and if the

       tracee was PTRACE_ATTACHed rather that PTRACE_SEIZEd, the kernel delivers an extra SIGTRAP

       to  the  tracee after execve(2) returns.  This is an ordinary signal (similar to one which

       can be generated by kill -TRAP), not a special kind of ptrace-stop.  Employing PTRACE_GET?

       SIGINFO for this signal returns si_code set to 0 (SI_USER).  This signal may be blocked by

       signal mask, and thus may be delivered (much) later.

       Usually, the tracer (for example, strace(1)) would not want to show this extra post-execve

       SIGTRAP  signal  to the user, and would suppress its delivery to the tracee (if SIGTRAP is

       set to SIG_DFL, it is a killing signal).  However, determining which SIGTRAP  to  suppress

       is  not  easy.   Setting the PTRACE_O_TRACEEXEC option or using PTRACE_SEIZE and thus sup?

       pressing this extra SIGTRAP is the recommended approach.

   Real parent

       The ptrace API (ab)uses the standard UNIX parent/child signaling  over  waitpid(2).   This

       used to cause the real parent of the process to stop receiving several kinds of waitpid(2)

       notifications when the child process is traced by some other process.

       Many of these bugs have been fixed, but as of Linux 2.6.38 several still exist;  see  BUGS

       below.

       As of Linux 2.6.38, the following is believed to work correctly:

       *  exit/death  by  signal  is reported first to the tracer, then, when the tracer consumes

          the waitpid(2) result, to the real parent (to the real parent only when the whole  mul?

          tithreaded process exits).  If the tracer and the real parent are the same process, the

          report is sent only once.

RETURN VALUE

       On success, the PTRACE_PEEK* requests return the  requested  data  (but  see  NOTES),  the

       PTRACE_SECCOMP_GET_FILTER  request  returns the number of instructions in the BPF program,

       and other requests return zero.

       On error, all requests return -1, and errno is set appropriately.   Since  the  value  re?

       turned  by a successful PTRACE_PEEK* request may be -1, the caller must clear errno before

       the call, and then check it afterward to determine whether or not an error occurred.

ERRORS

       EBUSY  (i386 only) There was an error with allocating or freeing a debug register. Page 25/32



       EFAULT There was an attempt to read from or write to an invalid area in  the  tracer's  or

              the tracee's memory, probably because the area wasn't mapped or accessible.  Unfor?

              tunately, under Linux, different variations of this fault will return EIO or EFAULT

              more or less arbitrarily.

       EINVAL An attempt was made to set an invalid option.

       EIO    request is invalid, or an attempt was made to read from or write to an invalid area

              in the tracer's or the tracee's memory, or there was a word-alignment violation, or

              an invalid signal was specified during a restart request.

       EPERM  The  specified  process cannot be traced.  This could be because the tracer has in?

              sufficient privileges (the required  capability  is  CAP_SYS_PTRACE);  unprivileged

              processes  cannot trace processes that they cannot send signals to or those running

              set-user-ID/set-group-ID programs, for obvious reasons.  Alternatively, the process

              may already be being traced, or (on kernels before 2.6.26) be init(1) (PID 1).

       ESRCH  The  specified  process  does  not  exist,  or is not currently being traced by the

              caller, or is not stopped (for requests that require a stopped tracee).

CONFORMING TO

       SVr4, 4.3BSD.

NOTES

       Although arguments to ptrace() are interpreted according to  the  prototype  given,  glibc

       currently  declares  ptrace() as a variadic function with only the request argument fixed.

       It is recommended to always supply four arguments, even if the  requested  operation  does

       not use them, setting unused/ignored arguments to 0L or (void *) 0.

       In Linux kernels before 2.6.26, init(1), the process with PID 1, may not be traced.

       A tracees parent continues to be the tracer even if that tracer calls execve(2).

       The layout of the contents of memory and the USER area are quite operating-system- and ar?

       chitecture-specific.  The offset supplied, and the data returned, might not entirely match

       with the definition of struct user.

       The size of a "word" is determined by the operating-system variant (e.g., for 32-bit Linux

       it is 32 bits).

       This page documents the way the ptrace() call works currently in Linux.  Its behavior dif?

       fers  significantly on other flavors of UNIX.  In any case, use of ptrace() is highly spe?

       cific to the operating system and architecture.

   Ptrace access mode checking Page 26/32



       Various parts of the kernel-user-space API (not just  ptrace()  operations),  require  so-

       called  "ptrace access mode" checks, whose outcome determines whether an operation is per?

       mitted (or, in a few cases, causes a "read" operation to return  sanitized  data).   These

       checks  are  performed in cases where one process can inspect sensitive information about,

       or in some cases modify the state of, another process.  The checks are  based  on  factors

       such as the credentials and capabilities of the two processes, whether or not the "target"

       process is dumpable, and the results of checks performed by  any  enabled  Linux  Security

       Module  (LSM)?for  example, SELinux, Yama, or Smack?and by the commoncap LSM (which is al?

       ways invoked).

       Prior to Linux 2.6.27, all access checks were of a single type.  Since Linux  2.6.27,  two

       access mode levels are distinguished:

       PTRACE_MODE_READ

              For "read" operations or other operations that are less dangerous, such as: get_ro?

              bust_list(2);   kcmp(2);   reading   /proc/[pid]/auxv,   /proc/[pid]/environ,    or

              /proc/[pid]/stat; or readlink(2) of a /proc/[pid]/ns/* file.

       PTRACE_MODE_ATTACH

              For  "write"  operations,  or  other  operations  that are more dangerous, such as:

              ptrace    attaching    (PTRACE_ATTACH)    to    another    process    or    calling

              process_vm_writev(2).  (PTRACE_MODE_ATTACH was effectively the default before Linux

              2.6.27.)

       Since Linux 4.5, the above access mode checks are combined (ORed) with one of the  follow?

       ing modifiers:

       PTRACE_MODE_FSCREDS

              Use the caller's filesystem UID and GID (see credentials(7)) or effective capabili?

              ties for LSM checks.

       PTRACE_MODE_REALCREDS

              Use the caller's real UID and GID or permitted capabilities for LSM  checks.   This

              was effectively the default before Linux 4.5.

       Because  combining  one  of the credential modifiers with one of the aforementioned access

       modes is typical, some macros are defined in the kernel sources for the combinations:

       PTRACE_MODE_READ_FSCREDS

              Defined as PTRACE_MODE_READ | PTRACE_MODE_FSCREDS.

       PTRACE_MODE_READ_REALCREDS Page 27/32



              Defined as PTRACE_MODE_READ | PTRACE_MODE_REALCREDS.

       PTRACE_MODE_ATTACH_FSCREDS

              Defined as PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS.

       PTRACE_MODE_ATTACH_REALCREDS

              Defined as PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS.

       One further modifier can be ORed with the access mode:

       PTRACE_MODE_NOAUDIT (since Linux 3.3)

              Don't audit this access mode check.  This modifier is employed  for  ptrace  access

              mode  checks  (such  as checks when reading /proc/[pid]/stat) that merely cause the

              output to be filtered or sanitized, rather than causing an error to be returned  to

              the  caller.   In  these  cases, accessing the file is not a security violation and

              there is no reason to generate a security audit record.  This  modifier  suppresses

              the generation of such an audit record for the particular access check.

       Note  that  all of the PTRACE_MODE_* constants described in this subsection are kernel-in?

       ternal, and not visible to user space.  The constant names are mentioned here in order  to

       label the various kinds of ptrace access mode checks that are performed for various system

       calls and accesses to various pseudofiles (e.g., under /proc).  These names  are  used  in

       other manual pages to provide a simple shorthand for labeling the different kernel checks.

       The  algorithm  employed  for  ptrace  access mode checking determines whether the calling

       process is allowed to perform the corresponding action on the  target  process.   (In  the

       case  of opening /proc/[pid] files, the "calling process" is the one opening the file, and

       the process with the corresponding PID is the "target process".)  The algorithm is as fol?

       lows:

       1. If the calling thread and the target thread are in the same thread group, access is al?

          ways allowed.

       2. If the access mode specifies PTRACE_MODE_FSCREDS, then, for the check in the next step,

          employ  the caller's filesystem UID and GID.  (As noted in credentials(7), the filesys?

          tem UID and GID almost always have the same values as the corresponding effective IDs.)

          Otherwise, the access mode specifies PTRACE_MODE_REALCREDS, so use  the  caller's  real

          UID  and  GID  for the checks in the next step.  (Most APIs that check the caller's UID

          and GID use the effective IDs.  For historical reasons, the PTRACE_MODE_REALCREDS check

          uses the real IDs instead.)

       3. Deny access if neither of the following is true: Page 28/32



          ? The real, effective, and saved-set user IDs of the target match the caller's user ID,

            and the real, effective, and saved-set group IDs of the  target  match  the  caller's

            group ID.

          ? The caller has the CAP_SYS_PTRACE capability in the user namespace of the target.

       4. Deny  access  if  the  target  process  "dumpable"  attribute  has a value other than 1

          (SUID_DUMP_USER; see the discussion of PR_SET_DUMPABLE in  prctl(2)),  and  the  caller

          does  not  have  the  CAP_SYS_PTRACE  capability  in  the  user namespace of the target

          process.

       5. The kernel LSM security_ptrace_access_check() interface is invoked to see if ptrace ac?

          cess  is  permitted.  The results depend on the LSM(s).  The implementation of this in?

          terface in the commoncap LSM performs the following steps:

          a) If the access mode includes PTRACE_MODE_FSCREDS, then use the caller's effective ca?

             pability   set  in  the  following  check;  otherwise  (the  access  mode  specifies

             PTRACE_MODE_REALCREDS, so) use the caller's permitted capability set.

          b) Deny access if neither of the following is true:

             ? The caller and the target process are in the same user namespace, and the caller's

               capabilities are a superset of the target process's permitted capabilities.

             ? The  caller  has  the CAP_SYS_PTRACE capability in the target process's user name?

               space.

             Note that the commoncap  LSM  does  not  distinguish  between  PTRACE_MODE_READ  and

             PTRACE_MODE_ATTACH.

       6. If access has not been denied by any of the preceding steps, then access is allowed.

   /proc/sys/kernel/yama/ptrace_scope

       On  systems with the Yama Linux Security Module (LSM) installed (i.e., the kernel was con?

       figured with CONFIG_SECURITY_YAMA), the /proc/sys/kernel/yama/ptrace_scope file (available

       since Linux 3.4) can be used to restrict the ability to trace a process with ptrace() (and

       thus also the ability to use tools such as strace(1) and gdb(1)).  The goal  of  such  re?

       strictions is to prevent attack escalation whereby a compromised process can ptrace-attach

       to other sensitive processes (e.g., a GPG agent or an SSH session) owned by  the  user  in

       order to gain additional credentials that may exist in memory and thus expand the scope of

       the attack.

       More precisely, the Yama LSM limits two types of operations:

       *  Any operation that performs a ptrace access mode PTRACE_MODE_ATTACH check?for  example, Page 29/32



          ptrace() PTRACE_ATTACH.  (See the "Ptrace access mode checking" discussion above.)

       *  ptrace() PTRACE_TRACEME.

       A   process   that  has  the  CAP_SYS_PTRACE  capability  can  update  the  /proc/sys/ker?

       nel/yama/ptrace_scope file with one of the following values:

       0 ("classic ptrace permissions")

              No additional restrictions on operations  that  perform  PTRACE_MODE_ATTACH  checks

              (beyond those imposed by the commoncap and other LSMs).

              The use of PTRACE_TRACEME is unchanged.

       1 ("restricted ptrace") [default value]

              When  performing an operation that requires a PTRACE_MODE_ATTACH check, the calling

              process must either have the CAP_SYS_PTRACE capability in the user namespace of the

              target  process  or it must have a predefined relationship with the target process.

              By default, the predefined relationship is that the target process must  be  a  de?

              scendant of the caller.

              A target process can employ the prctl(2) PR_SET_PTRACER operation to declare an ad?

              ditional PID that is allowed to perform PTRACE_MODE_ATTACH operations on  the  tar?

              get.   See  the kernel source file Documentation/admin-guide/LSM/Yama.rst (or Docu?

              mentation/security/Yama.txt before Linux 4.13) for further details.

              The use of PTRACE_TRACEME is unchanged.

       2 ("admin-only attach")

              Only processes with the CAP_SYS_PTRACE capability in the user namespace of the tar?

              get process may perform PTRACE_MODE_ATTACH operations or trace children that employ

              PTRACE_TRACEME.

       3 ("no attach")

              No process may perform PTRACE_MODE_ATTACH operations or trace children that  employ

              PTRACE_TRACEME.

              Once this value has been written to the file, it cannot be changed.

       With  respect  to  values 1 and 2, note that creating a new user namespace effectively re?

       moves the protection offered by Yama.  This is because a process in the parent user  name?

       space  whose effective UID matches the UID of the creator of a child namespace has all ca?

       pabilities (including CAP_SYS_PTRACE) when performing operations  within  the  child  user

       namespace  (and  further-removed  descendants  of  that  namespace).  Consequently, when a

       process tries to use user namespaces to sandbox itself, it inadvertently weakens the  pro? Page 30/32



       tections offered by the Yama LSM.

   C library/kernel differences

       At  the  system  call level, the PTRACE_PEEKTEXT, PTRACE_PEEKDATA, and PTRACE_PEEKUSER re?

       quests have a different API: they store the result at the address specified  by  the  data

       parameter,  and  the  return value is the error flag.  The glibc wrapper function provides

       the API given in DESCRIPTION above, with the result being returned via the function return

       value.

BUGS

       On  hosts  with  2.6  kernel headers, PTRACE_SETOPTIONS is declared with a different value

       than the one for 2.4.  This leads to applications compiled with 2.6 kernel headers failing

       when  run  on  2.4  kernels.  This can be worked around by redefining PTRACE_SETOPTIONS to

       PTRACE_OLDSETOPTIONS, if that is defined.

       Group-stop notifications are sent to the tracer, but not to real parent.   Last  confirmed

       on 2.6.38.6.

       If a thread group leader is traced and exits by calling _exit(2), a PTRACE_EVENT_EXIT stop

       will happen for it (if requested), but the subsequent WIFEXITED notification will  not  be

       delivered until all other threads exit.  As explained above, if one of other threads calls

       execve(2), the death of the thread group leader will never be  reported.   If  the  execed

       thread  is  not traced by this tracer, the tracer will never know that execve(2) happened.

       One possible workaround is to PTRACE_DETACH the thread group leader instead of  restarting

       it in this case.  Last confirmed on 2.6.38.6.

       A  SIGKILL  signal  may  still  cause a PTRACE_EVENT_EXIT stop before actual signal death.

       This may be changed in the future; SIGKILL is meant to always immediately kill tasks  even

       under ptrace.  Last confirmed on Linux 3.13.

       Some  system  calls  return  with EINTR if a signal was sent to a tracee, but delivery was

       suppressed by the tracer.  (This is very typical operation: it is usually done  by  debug?

       gers  on every attach, in order to not introduce a bogus SIGSTOP).  As of Linux 3.2.9, the

       following system calls are affected (this list is likely incomplete):  epoll_wait(2),  and

       read(2)  from  an  inotify(7) file descriptor.  The usual symptom of this bug is that when

       you attach to a quiescent process with the command

           strace -p <process-ID>

       then, instead of the usual and expected one-line output such as

           restart_syscall(<... resuming interrupted call ...>_ Page 31/32



       or

           select(6, [5], NULL, [5], NULL_

       ('_' denotes the cursor position), you observe more than one line.  For example:

               clock_gettime(CLOCK_MONOTONIC, {15370, 690928118}) = 0

               epoll_wait(4,_

       What is not visible here is that the process was blocked in epoll_wait(2) before strace(1)

       has attached to it.  Attaching caused epoll_wait(2) to return to user space with the error

       EINTR.  In this particular case, the program reacted to  EINTR  by  checking  the  current

       time,  and then executing epoll_wait(2) again.  (Programs which do not expect such "stray"

       EINTR errors may behave in an unintended way upon an strace(1) attach.)

       Contrary to the normal rules, the glibc wrapper for ptrace() can set errno to zero.

SEE ALSO

       gdb(1), ltrace(1), strace(1), clone(2),  execve(2),  fork(2),  gettid(2),  prctl(2),  sec?

       comp(2),  sigaction(2),  tgkill(2),  vfork(2),  waitpid(2), exec(3), capabilities(7), sig?

       nal(7)

COLOPHON

       This page is part of release 5.10 of the Linux man-pages project.  A  description  of  the

       project,  information  about  reporting  bugs, and the latest version of this page, can be

       found at https://www.kernel.org/doc/man-pages/.

Linux                                       2020-06-09                                  PTRACE(2)

Page 32/32


