
Rocky Enterprise Linux 9.2 Manual Pages on command 'pthreads.7'

$ man pthreads.7

PTHREADS(7) Linux Programmer's Manual PTHREADS(7)

NAME

 pthreads - POSIX threads

DESCRIPTION

 POSIX.1 specifies a set of interfaces (functions, header files) for threaded programming

 commonly known as POSIX threads, or Pthreads. A single process can contain multiple

 threads, all of which are executing the same program. These threads share the same global

 memory (data and heap segments), but each thread has its own stack (automatic variables).

 POSIX.1 also requires that threads share a range of other attributes (i.e., these at?

 tributes are process-wide rather than per-thread):

 - process ID

 - parent process ID

 - process group ID and session ID

 - controlling terminal

 - user and group IDs

 - open file descriptors

 - record locks (see fcntl(2))

 - signal dispositions

 - file mode creation mask (umask(2))

 - current directory (chdir(2)) and root directory (chroot(2))

 - interval timers (setitimer(2)) and POSIX timers (timer_create(2))

 - nice value (setpriority(2))

 - resource limits (setrlimit(2)) Page 1/18

 - measurements of the consumption of CPU time (times(2)) and resources (getrusage(2))

 As well as the stack, POSIX.1 specifies that various other attributes are distinct for

 each thread, including:

 - thread ID (the pthread_t data type)

 - signal mask (pthread_sigmask(3))

 - the errno variable

 - alternate signal stack (sigaltstack(2))

 - real-time scheduling policy and priority (sched(7))

 The following Linux-specific features are also per-thread:

 - capabilities (see capabilities(7))

 - CPU affinity (sched_setaffinity(2))

 Pthreads function return values

 Most pthreads functions return 0 on success, and an error number on failure. The error

 numbers that can be returned have the same meaning as the error numbers returned in errno

 by conventional system calls and C library functions. Note that the pthreads functions do

 not set errno. For each of the pthreads functions that can return an error, POSIX.1-2001

 specifies that the function can never fail with the error EINTR.

 Thread IDs

 Each of the threads in a process has a unique thread identifier (stored in the type

 pthread_t). This identifier is returned to the caller of pthread_create(3), and a thread

 can obtain its own thread identifier using pthread_self(3).

 Thread IDs are guaranteed to be unique only within a process. (In all pthreads functions

 that accept a thread ID as an argument, that ID by definition refers to a thread in the

 same process as the caller.)

 The system may reuse a thread ID after a terminated thread has been joined, or a detached

 thread has terminated. POSIX says: "If an application attempts to use a thread ID whose

 lifetime has ended, the behavior is undefined."

 Thread-safe functions

 A thread-safe function is one that can be safely (i.e., it will deliver the same results

 regardless of whether it is) called from multiple threads at the same time.

 POSIX.1-2001 and POSIX.1-2008 require that all functions specified in the standard shall

 be thread-safe, except for the following functions:

 asctime() Page 2/18

 basename()

 catgets()

 crypt()

 ctermid() if passed a non-NULL argument

 ctime()

 dbm_clearerr()

 dbm_close()

 dbm_delete()

 dbm_error()

 dbm_fetch()

 dbm_firstkey()

 dbm_nextkey()

 dbm_open()

 dbm_store()

 dirname()

 dlerror()

 drand48()

 ecvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]

 encrypt()

 endgrent()

 endpwent()

 endutxent()

 fcvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]

 ftw()

 gcvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]

 getc_unlocked()

 getchar_unlocked()

 getdate()

 getenv()

 getgrent()

 getgrgid()

 getgrnam()

 gethostbyaddr() [POSIX.1-2001 only (function removed in Page 3/18

 POSIX.1-2008)]

 gethostbyname() [POSIX.1-2001 only (function removed in

 POSIX.1-2008)]

 gethostent()

 getlogin()

 getnetbyaddr()

 getnetbyname()

 getnetent()

 getopt()

 getprotobyname()

 getprotobynumber()

 getprotoent()

 getpwent()

 getpwnam()

 getpwuid()

 getservbyname()

 getservbyport()

 getservent()

 getutxent()

 getutxid()

 getutxline()

 gmtime()

 hcreate()

 hdestroy()

 hsearch()

 inet_ntoa()

 l64a()

 lgamma()

 lgammaf()

 lgammal()

 localeconv()

 localtime()

 lrand48() Page 4/18

 mrand48()

 nftw()

 nl_langinfo()

 ptsname()

 putc_unlocked()

 putchar_unlocked()

 putenv()

 pututxline()

 rand()

 readdir()

 setenv()

 setgrent()

 setkey()

 setpwent()

 setutxent()

 strerror()

 strsignal() [Added in POSIX.1-2008]

 strtok()

 system() [Added in POSIX.1-2008]

 tmpnam() if passed a non-NULL argument

 ttyname()

 unsetenv()

 wcrtomb() if its final argument is NULL

 wcsrtombs() if its final argument is NULL

 wcstombs()

 wctomb()

 Async-cancel-safe functions

 An async-cancel-safe function is one that can be safely called in an application where

 asynchronous cancelability is enabled (see pthread_setcancelstate(3)).

 Only the following functions are required to be async-cancel-safe by POSIX.1-2001 and

 POSIX.1-2008:

 pthread_cancel()

 pthread_setcancelstate() Page 5/18

 pthread_setcanceltype()

 Cancellation points

 POSIX.1 specifies that certain functions must, and certain other functions may, be cancel?

 lation points. If a thread is cancelable, its cancelability type is deferred, and a can?

 cellation request is pending for the thread, then the thread is canceled when it calls a

 function that is a cancellation point.

 The following functions are required to be cancellation points by POSIX.1-2001 and/or

 POSIX.1-2008:

 accept()

 aio_suspend()

 clock_nanosleep()

 close()

 connect()

 creat()

 fcntl() F_SETLKW

 fdatasync()

 fsync()

 getmsg()

 getpmsg()

 lockf() F_LOCK

 mq_receive()

 mq_send()

 mq_timedreceive()

 mq_timedsend()

 msgrcv()

 msgsnd()

 msync()

 nanosleep()

 open()

 openat() [Added in POSIX.1-2008]

 pause()

 poll()

 pread() Page 6/18

 pselect()

 pthread_cond_timedwait()

 pthread_cond_wait()

 pthread_join()

 pthread_testcancel()

 putmsg()

 putpmsg()

 pwrite()

 read()

 readv()

 recv()

 recvfrom()

 recvmsg()

 select()

 sem_timedwait()

 sem_wait()

 send()

 sendmsg()

 sendto()

 sigpause() [POSIX.1-2001 only (moves to "may" list in POSIX.1-2008)]

 sigsuspend()

 sigtimedwait()

 sigwait()

 sigwaitinfo()

 sleep()

 system()

 tcdrain()

 usleep() [POSIX.1-2001 only (function removed in POSIX.1-2008)]

 wait()

 waitid()

 waitpid()

 write()

 writev() Page 7/18

 The following functions may be cancellation points according to POSIX.1-2001 and/or

 POSIX.1-2008:

 access()

 asctime()

 asctime_r()

 catclose()

 catgets()

 catopen()

 chmod() [Added in POSIX.1-2008]

 chown() [Added in POSIX.1-2008]

 closedir()

 closelog()

 ctermid()

 ctime()

 ctime_r()

 dbm_close()

 dbm_delete()

 dbm_fetch()

 dbm_nextkey()

 dbm_open()

 dbm_store()

 dlclose()

 dlopen()

 dprintf() [Added in POSIX.1-2008]

 endgrent()

 endhostent()

 endnetent()

 endprotoent()

 endpwent()

 endservent()

 endutxent()

 faccessat() [Added in POSIX.1-2008]

 fchmod() [Added in POSIX.1-2008] Page 8/18

 fchmodat() [Added in POSIX.1-2008]

 fchown() [Added in POSIX.1-2008]

 fchownat() [Added in POSIX.1-2008]

 fclose()

 fcntl() (for any value of cmd argument)

 fflush()

 fgetc()

 fgetpos()

 fgets()

 fgetwc()

 fgetws()

 fmtmsg()

 fopen()

 fpathconf()

 fprintf()

 fputc()

 fputs()

 fputwc()

 fputws()

 fread()

 freopen()

 fscanf()

 fseek()

 fseeko()

 fsetpos()

 fstat()

 fstatat() [Added in POSIX.1-2008]

 ftell()

 ftello()

 ftw()

 futimens() [Added in POSIX.1-2008]

 fwprintf()

 fwrite() Page 9/18

 fwscanf()

 getaddrinfo()

 getc()

 getc_unlocked()

 getchar()

 getchar_unlocked()

 getcwd()

 getdate()

 getdelim() [Added in POSIX.1-2008]

 getgrent()

 getgrgid()

 getgrgid_r()

 getgrnam()

 getgrnam_r()

 gethostbyaddr() [POSIX.1-2001 only (function removed in

 POSIX.1-2008)]

 gethostbyname() [POSIX.1-2001 only (function removed in

 POSIX.1-2008)]

 gethostent()

 gethostid()

 gethostname()

 getline() [Added in POSIX.1-2008]

 getlogin()

 getlogin_r()

 getnameinfo()

 getnetbyaddr()

 getnetbyname()

 getnetent()

 getopt() (if opterr is nonzero)

 getprotobyname()

 getprotobynumber()

 getprotoent()

 getpwent() Page 10/18

 getpwnam()

 getpwnam_r()

 getpwuid()

 getpwuid_r()

 gets()

 getservbyname()

 getservbyport()

 getservent()

 getutxent()

 getutxid()

 getutxline()

 getwc()

 getwchar()

 getwd() [POSIX.1-2001 only (function removed in POSIX.1-2008)]

 glob()

 iconv_close()

 iconv_open()

 ioctl()

 link()

 linkat() [Added in POSIX.1-2008]

 lio_listio() [Added in POSIX.1-2008]

 localtime()

 localtime_r()

 lockf() [Added in POSIX.1-2008]

 lseek()

 lstat()

 mkdir() [Added in POSIX.1-2008]

 mkdirat() [Added in POSIX.1-2008]

 mkdtemp() [Added in POSIX.1-2008]

 mkfifo() [Added in POSIX.1-2008]

 mkfifoat() [Added in POSIX.1-2008]

 mknod() [Added in POSIX.1-2008]

 mknodat() [Added in POSIX.1-2008] Page 11/18

 mkstemp()

 mktime()

 nftw()

 opendir()

 openlog()

 pathconf()

 pclose()

 perror()

 popen()

 posix_fadvise()

 posix_fallocate()

 posix_madvise()

 posix_openpt()

 posix_spawn()

 posix_spawnp()

 posix_trace_clear()

 posix_trace_close()

 posix_trace_create()

 posix_trace_create_withlog()

 posix_trace_eventtypelist_getnext_id()

 posix_trace_eventtypelist_rewind()

 posix_trace_flush()

 posix_trace_get_attr()

 posix_trace_get_filter()

 posix_trace_get_status()

 posix_trace_getnext_event()

 posix_trace_open()

 posix_trace_rewind()

 posix_trace_set_filter()

 posix_trace_shutdown()

 posix_trace_timedgetnext_event()

 posix_typed_mem_open()

 printf() Page 12/18

 psiginfo() [Added in POSIX.1-2008]

 psignal() [Added in POSIX.1-2008]

 pthread_rwlock_rdlock()

 pthread_rwlock_timedrdlock()

 pthread_rwlock_timedwrlock()

 pthread_rwlock_wrlock()

 putc()

 putc_unlocked()

 putchar()

 putchar_unlocked()

 puts()

 pututxline()

 putwc()

 putwchar()

 readdir()

 readdir_r()

 readlink() [Added in POSIX.1-2008]

 readlinkat() [Added in POSIX.1-2008]

 remove()

 rename()

 renameat() [Added in POSIX.1-2008]

 rewind()

 rewinddir()

 scandir() [Added in POSIX.1-2008]

 scanf()

 seekdir()

 semop()

 setgrent()

 sethostent()

 setnetent()

 setprotoent()

 setpwent()

 setservent() Page 13/18

 setutxent()

 sigpause() [Added in POSIX.1-2008]

 stat()

 strerror()

 strerror_r()

 strftime()

 symlink()

 symlinkat() [Added in POSIX.1-2008]

 sync()

 syslog()

 tmpfile()

 tmpnam()

 ttyname()

 ttyname_r()

 tzset()

 ungetc()

 ungetwc()

 unlink()

 unlinkat() [Added in POSIX.1-2008]

 utime() [Added in POSIX.1-2008]

 utimensat() [Added in POSIX.1-2008]

 utimes() [Added in POSIX.1-2008]

 vdprintf() [Added in POSIX.1-2008]

 vfprintf()

 vfwprintf()

 vprintf()

 vwprintf()

 wcsftime()

 wordexp()

 wprintf()

 wscanf()

 An implementation may also mark other functions not specified in the standard as cancella?

 tion points. In particular, an implementation is likely to mark any nonstandard function Page 14/18

 that may block as a cancellation point. (This includes most functions that can touch

 files.)

 It should be noted that even if an application is not using asynchronous cancellation,

 that calling a function from the above list from an asynchronous signal handler may cause

 the equivalent of asynchronous cancellation. The underlying user code may not expect

 asynchronous cancellation and the state of the user data may become inconsistent. There?

 fore signals should be used with caution when entering a region of deferred cancellation.

 Compiling on Linux

 On Linux, programs that use the Pthreads API should be compiled using cc -pthread.

 Linux implementations of POSIX threads

 Over time, two threading implementations have been provided by the GNU C library on Linux:

 LinuxThreads

 This is the original Pthreads implementation. Since glibc 2.4, this implementation

 is no longer supported.

 NPTL (Native POSIX Threads Library)

 This is the modern Pthreads implementation. By comparison with LinuxThreads, NPTL

 provides closer conformance to the requirements of the POSIX.1 specification and

 better performance when creating large numbers of threads. NPTL is available since

 glibc 2.3.2, and requires features that are present in the Linux 2.6 kernel.

 Both of these are so-called 1:1 implementations, meaning that each thread maps to a kernel

 scheduling entity. Both threading implementations employ the Linux clone(2) system call.

 In NPTL, thread synchronization primitives (mutexes, thread joining, and so on) are imple?

 mented using the Linux futex(2) system call.

 LinuxThreads

 The notable features of this implementation are the following:

 - In addition to the main (initial) thread, and the threads that the program creates us?

 ing pthread_create(3), the implementation creates a "manager" thread. This thread han?

 dles thread creation and termination. (Problems can result if this thread is inadver?

 tently killed.)

 - Signals are used internally by the implementation. On Linux 2.2 and later, the first

 three real-time signals are used (see also signal(7)). On older Linux kernels, SIGUSR1

 and SIGUSR2 are used. Applications must avoid the use of whichever set of signals is

 employed by the implementation. Page 15/18

 - Threads do not share process IDs. (In effect, LinuxThreads threads are implemented as

 processes which share more information than usual, but which do not share a common

 process ID.) LinuxThreads threads (including the manager thread) are visible as sepa?

 rate processes using ps(1).

 The LinuxThreads implementation deviates from the POSIX.1 specification in a number of

 ways, including the following:

 - Calls to getpid(2) return a different value in each thread.

 - Calls to getppid(2) in threads other than the main thread return the process ID of the

 manager thread; instead getppid(2) in these threads should return the same value as

 getppid(2) in the main thread.

 - When one thread creates a new child process using fork(2), any thread should be able to

 wait(2) on the child. However, the implementation allows only the thread that created

 the child to wait(2) on it.

 - When a thread calls execve(2), all other threads are terminated (as required by

 POSIX.1). However, the resulting process has the same PID as the thread that called

 execve(2): it should have the same PID as the main thread.

 - Threads do not share user and group IDs. This can cause complications with set-user-ID

 programs and can cause failures in Pthreads functions if an application changes its

 credentials using seteuid(2) or similar.

 - Threads do not share a common session ID and process group ID.

 - Threads do not share record locks created using fcntl(2).

 - The information returned by times(2) and getrusage(2) is per-thread rather than

 process-wide.

 - Threads do not share semaphore undo values (see semop(2)).

 - Threads do not share interval timers.

 - Threads do not share a common nice value.

 - POSIX.1 distinguishes the notions of signals that are directed to the process as a

 whole and signals that are directed to individual threads. According to POSIX.1, a

 process-directed signal (sent using kill(2), for example) should be handled by a sin?

 gle, arbitrarily selected thread within the process. LinuxThreads does not support the

 notion of process-directed signals: signals may be sent only to specific threads.

 - Threads have distinct alternate signal stack settings. However, a new thread's alter?

 nate signal stack settings are copied from the thread that created it, so that the Page 16/18

 threads initially share an alternate signal stack. (A new thread should start with no

 alternate signal stack defined. If two threads handle signals on their shared alter?

 nate signal stack at the same time, unpredictable program failures are likely to oc?

 cur.)

 NPTL

 With NPTL, all of the threads in a process are placed in the same thread group; all mem?

 bers of a thread group share the same PID. NPTL does not employ a manager thread.

 NPTL makes internal use of the first two real-time signals; these signals cannot be used

 in applications. See nptl(7) for further details.

 NPTL still has at least one nonconformance with POSIX.1:

 - Threads do not share a common nice value.

 Some NPTL nonconformances occur only with older kernels:

 - The information returned by times(2) and getrusage(2) is per-thread rather than

 process-wide (fixed in kernel 2.6.9).

 - Threads do not share resource limits (fixed in kernel 2.6.10).

 - Threads do not share interval timers (fixed in kernel 2.6.12).

 - Only the main thread is permitted to start a new session using setsid(2) (fixed in ker?

 nel 2.6.16).

 - Only the main thread is permitted to make the process into a process group leader using

 setpgid(2) (fixed in kernel 2.6.16).

 - Threads have distinct alternate signal stack settings. However, a new thread's alter?

 nate signal stack settings are copied from the thread that created it, so that the

 threads initially share an alternate signal stack (fixed in kernel 2.6.16).

 Note the following further points about the NPTL implementation:

 - If the stack size soft resource limit (see the description of RLIMIT_STACK in setr?

 limit(2)) is set to a value other than unlimited, then this value defines the default

 stack size for new threads. To be effective, this limit must be set before the program

 is executed, perhaps using the ulimit -s shell built-in command (limit stacksize in the

 C shell).

 Determining the threading implementation

 Since glibc 2.3.2, the getconf(1) command can be used to determine the system's threading

 implementation, for example:

 bash$ getconf GNU_LIBPTHREAD_VERSION Page 17/18

 NPTL 2.3.4

 With older glibc versions, a command such as the following should be sufficient to deter?

 mine the default threading implementation:

 bash$ $(ldd /bin/ls | grep libc.so | awk '{print $3}') | \

 egrep -i 'threads|nptl'

 Native POSIX Threads Library by Ulrich Drepper et al

 Selecting the threading implementation: LD_ASSUME_KERNEL

 On systems with a glibc that supports both LinuxThreads and NPTL (i.e., glibc 2.3.x), the

 LD_ASSUME_KERNEL environment variable can be used to override the dynamic linker's default

 choice of threading implementation. This variable tells the dynamic linker to assume that

 it is running on top of a particular kernel version. By specifying a kernel version that

 does not provide the support required by NPTL, we can force the use of LinuxThreads. (The

 most likely reason for doing this is to run a (broken) application that depends on some

 nonconformant behavior in LinuxThreads.) For example:

 bash$ $(LD_ASSUME_KERNEL=2.2.5 ldd /bin/ls | grep libc.so | \

 awk '{print $3}') | egrep -i 'threads|nptl'

 linuxthreads-0.10 by Xavier Leroy

SEE ALSO

 clone(2), fork(2), futex(2), gettid(2), proc(5), attributes(7), futex(7), nptl(7),

 sigevent(7), signal(7)

 Various Pthreads manual pages, for example: pthread_atfork(3), pthread_attr_init(3),

 pthread_cancel(3), pthread_cleanup_push(3), pthread_cond_signal(3), pthread_cond_wait(3),

 pthread_create(3), pthread_detach(3), pthread_equal(3), pthread_exit(3),

 pthread_key_create(3), pthread_kill(3), pthread_mutex_lock(3), pthread_mutex_unlock(3),

 pthread_mutexattr_destroy(3), pthread_mutexattr_init(3), pthread_once(3),

 pthread_spin_init(3), pthread_spin_lock(3), pthread_rwlockattr_setkind_np(3),

 pthread_setcancelstate(3), pthread_setcanceltype(3), pthread_setspecific(3),

 pthread_sigmask(3), pthread_sigqueue(3), and pthread_testcancel(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 PTHREADS(7) Page 18/18

