
Rocky Enterprise Linux 9.2 Manual Pages on command 'pthread_setcancelstate.3'

$ man pthread_setcancelstate.3

PTHREAD_SETCANCELSTATE(3) Linux Programmer's Manual PTHREAD_SETCANCELSTATE(3)

NAME

 pthread_setcancelstate, pthread_setcanceltype - set cancelability state and type

SYNOPSIS

 #include <pthread.h>

 int pthread_setcancelstate(int state, int *oldstate);

 int pthread_setcanceltype(int type, int *oldtype);

 Compile and link with -pthread.

DESCRIPTION

 The pthread_setcancelstate() sets the cancelability state of the calling thread to the

 value given in state. The previous cancelability state of the thread is returned in the

 buffer pointed to by oldstate. The state argument must have one of the following values:

 PTHREAD_CANCEL_ENABLE

 The thread is cancelable. This is the default cancelability state in all new

 threads, including the initial thread. The thread's cancelability type determines

 when a cancelable thread will respond to a cancellation request.

 PTHREAD_CANCEL_DISABLE

 The thread is not cancelable. If a cancellation request is received, it is blocked

 until cancelability is enabled.

 The pthread_setcanceltype() sets the cancelability type of the calling thread to the value

 given in type. The previous cancelability type of the thread is returned in the buffer

 pointed to by oldtype. The type argument must have one of the following values:

 PTHREAD_CANCEL_DEFERRED Page 1/4

 A cancellation request is deferred until the thread next calls a function that is a

 cancellation point (see pthreads(7)). This is the default cancelability type in

 all new threads, including the initial thread.

 Even with deferred cancellation, a cancellation point in an asynchronous signal

 handler may still be acted upon and the effect is as if it was an asynchronous can?

 cellation.

 PTHREAD_CANCEL_ASYNCHRONOUS

 The thread can be canceled at any time. (Typically, it will be canceled immedi?

 ately upon receiving a cancellation request, but the system doesn't guarantee

 this.)

 The set-and-get operation performed by each of these functions is atomic with respect to

 other threads in the process calling the same function.

RETURN VALUE

 On success, these functions return 0; on error, they return a nonzero error number.

ERRORS

 The pthread_setcancelstate() can fail with the following error:

 EINVAL Invalid value for state.

 The pthread_setcanceltype() can fail with the following error:

 EINVAL Invalid value for type.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?pthread_setcancelstate(), ? Thread safety ? MT-Safe ?

 ?pthread_setcanceltype() ? ? ?

 ??

 ?pthread_setcancelstate(), ? Async-cancel-safety ? AC-Safe ?

 ?pthread_setcanceltype() ? ? ?

 ??

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

NOTES Page 2/4

 For details of what happens when a thread is canceled, see pthread_cancel(3).

 Briefly disabling cancelability is useful if a thread performs some critical action that

 must not be interrupted by a cancellation request. Beware of disabling cancelability for

 long periods, or around operations that may block for long periods, since that will render

 the thread unresponsive to cancellation requests.

 Asynchronous cancelability

 Setting the cancelability type to PTHREAD_CANCEL_ASYNCHRONOUS is rarely useful. Since the

 thread could be canceled at any time, it cannot safely reserve resources (e.g., allocating

 memory with malloc(3)), acquire mutexes, semaphores, or locks, and so on. Reserving re?

 sources is unsafe because the application has no way of knowing what the state of these

 resources is when the thread is canceled; that is, did cancellation occur before the re?

 sources were reserved, while they were reserved, or after they were released? Further?

 more, some internal data structures (e.g., the linked list of free blocks managed by the

 malloc(3) family of functions) may be left in an inconsistent state if cancellation occurs

 in the middle of the function call. Consequently, clean-up handlers cease to be useful.

 Functions that can be safely asynchronously canceled are called async-cancel-safe func?

 tions. POSIX.1-2001 and POSIX.1-2008 require only that pthread_cancel(3), pthread_set?

 cancelstate(), and pthread_setcanceltype() be async-cancel-safe. In general, other li?

 brary functions can't be safely called from an asynchronously cancelable thread.

 One of the few circumstances in which asynchronous cancelability is useful is for cancel?

 lation of a thread that is in a pure compute-bound loop.

 Portability notes

 The Linux threading implementations permit the oldstate argument of pthread_setcancel?

 state() to be NULL, in which case the information about the previous cancelability state

 is not returned to the caller. Many other implementations also permit a NULL oldstat ar?

 gument, but POSIX.1 does not specify this point, so portable applications should always

 specify a non-NULL value in oldstate. A precisely analogous set of statements applies for

 the oldtype argument of pthread_setcanceltype().

EXAMPLES

 See pthread_cancel(3).

SEE ALSO

 pthread_cancel(3), pthread_cleanup_push(3), pthread_testcancel(3), pthreads(7)

COLOPHON Page 3/4

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PTHREAD_SETCANCELSTATE(3)

Page 4/4

