
Rocky Enterprise Linux 9.2 Manual Pages on command 'pthread_cleanup_pop.3'

$ man pthread_cleanup_pop.3

PTHREAD_CLEANUP_PUSH(3) Linux Programmer's Manual PTHREAD_CLEANUP_PUSH(3)

NAME

 pthread_cleanup_push, pthread_cleanup_pop - push and pop thread cancellation clean-up han?

 dlers

SYNOPSIS

 #include <pthread.h>

 void pthread_cleanup_push(void (*routine)(void *),

 void *arg);

 void pthread_cleanup_pop(int execute);

 Compile and link with -pthread.

DESCRIPTION

 These functions manipulate the calling thread's stack of thread-cancellation clean-up han?

 dlers. A clean-up handler is a function that is automatically executed when a thread is

 canceled (or in various other circumstances described below); it might, for example, un?

 lock a mutex so that it becomes available to other threads in the process.

 The pthread_cleanup_push() function pushes routine onto the top of the stack of clean-up

 handlers. When routine is later invoked, it will be given arg as its argument.

 The pthread_cleanup_pop() function removes the routine at the top of the stack of clean-up

 handlers, and optionally executes it if execute is nonzero.

 A cancellation clean-up handler is popped from the stack and executed in the following

 circumstances:

 1. When a thread is canceled, all of the stacked clean-up handlers are popped and executed

 in the reverse of the order in which they were pushed onto the stack. Page 1/6

 2. When a thread terminates by calling pthread_exit(3), all clean-up handlers are executed

 as described in the preceding point. (Clean-up handlers are not called if the thread

 terminates by performing a return from the thread start function.)

 3. When a thread calls pthread_cleanup_pop() with a nonzero execute argument, the top-most

 clean-up handler is popped and executed.

 POSIX.1 permits pthread_cleanup_push() and pthread_cleanup_pop() to be implemented as

 macros that expand to text containing '{' and '}', respectively. For this reason, the

 caller must ensure that calls to these functions are paired within the same function, and

 at the same lexical nesting level. (In other words, a clean-up handler is established

 only during the execution of a specified section of code.)

 Calling longjmp(3) (siglongjmp(3)) produces undefined results if any call has been made to

 pthread_cleanup_push() or pthread_cleanup_pop() without the matching call of the pair

 since the jump buffer was filled by setjmp(3) (sigsetjmp(3)). Likewise, calling

 longjmp(3) (siglongjmp(3)) from inside a clean-up handler produces undefined results un?

 less the jump buffer was also filled by setjmp(3) (sigsetjmp(3)) inside the handler.

RETURN VALUE

 These functions do not return a value.

ERRORS

 There are no errors.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?pthread_cleanup_push(), ? Thread safety ? MT-Safe ?

 ?pthread_cleanup_pop() ? ? ?

 ??

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

NOTES

 On Linux, the pthread_cleanup_push() and pthread_cleanup_pop() functions are implemented

 as macros that expand to text containing '{' and '}', respectively. This means that vari?

 ables declared within the scope of paired calls to these functions will be visible within Page 2/6

 only that scope.

 POSIX.1 says that the effect of using return, break, continue, or goto to prematurely

 leave a block bracketed pthread_cleanup_push() and pthread_cleanup_pop() is undefined.

 Portable applications should avoid doing this.

EXAMPLES

 The program below provides a simple example of the use of the functions described in this

 page. The program creates a thread that executes a loop bracketed by

 pthread_cleanup_push() and pthread_cleanup_pop(). This loop increments a global variable,

 cnt, once each second. Depending on what command-line arguments are supplied, the main

 thread sends the other thread a cancellation request, or sets a global variable that

 causes the other thread to exit its loop and terminate normally (by doing a return).

 In the following shell session, the main thread sends a cancellation request to the other

 thread:

 $./a.out

 New thread started

 cnt = 0

 cnt = 1

 Canceling thread

 Called clean-up handler

 Thread was canceled; cnt = 0

 From the above, we see that the thread was canceled, and that the cancellation clean-up

 handler was called and it reset the value of the global variable cnt to 0.

 In the next run, the main program sets a global variable that causes other thread to ter?

 minate normally:

 $./a.out x

 New thread started

 cnt = 0

 cnt = 1

 Thread terminated normally; cnt = 2

 From the above, we see that the clean-up handler was not executed (because cleanup_pop_arg

 was 0), and therefore the value of cnt was not reset.

 In the next run, the main program sets a global variable that causes the other thread to

 terminate normally, and supplies a nonzero value for cleanup_pop_arg: Page 3/6

 $./a.out x 1

 New thread started

 cnt = 0

 cnt = 1

 Called clean-up handler

 Thread terminated normally; cnt = 0

 In the above, we see that although the thread was not canceled, the clean-up handler was

 executed, because the argument given to pthread_cleanup_pop() was nonzero.

 Program source

 #include <pthread.h>

 #include <sys/types.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <errno.h>

 #define handle_error_en(en, msg) \

 do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

 static int done = 0;

 static int cleanup_pop_arg = 0;

 static int cnt = 0;

 static void

 cleanup_handler(void *arg)

 {

 printf("Called clean-up handler\n");

 cnt = 0;

 }

 static void *

 thread_start(void *arg)

 {

 time_t start, curr;

 printf("New thread started\n");

 pthread_cleanup_push(cleanup_handler, NULL);

 curr = start = time(NULL); Page 4/6

 while (!done) {

 pthread_testcancel(); /* A cancellation point */

 if (curr < time(NULL)) {

 curr = time(NULL);

 printf("cnt = %d\n", cnt); /* A cancellation point */

 cnt++;

 }

 }

 pthread_cleanup_pop(cleanup_pop_arg);

 return NULL;

 }

 int

 main(int argc, char *argv[])

 {

 pthread_t thr;

 int s;

 void *res;

 s = pthread_create(&thr, NULL, thread_start, NULL);

 if (s != 0)

 handle_error_en(s, "pthread_create");

 sleep(2); /* Allow new thread to run a while */

 if (argc > 1) {

 if (argc > 2)

 cleanup_pop_arg = atoi(argv[2]);

 done = 1;

 } else {

 printf("Canceling thread\n");

 s = pthread_cancel(thr);

 if (s != 0)

 handle_error_en(s, "pthread_cancel");

 }

 s = pthread_join(thr, &res);

 if (s != 0) Page 5/6

 handle_error_en(s, "pthread_join");

 if (res == PTHREAD_CANCELED)

 printf("Thread was canceled; cnt = %d\n", cnt);

 else

 printf("Thread terminated normally; cnt = %d\n", cnt);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 pthread_cancel(3), pthread_cleanup_push_defer_np(3), pthread_setcancelstate(3),

 pthread_testcancel(3), pthreads(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PTHREAD_CLEANUP_PUSH(3)

Page 6/6

