
Rocky Enterprise Linux 9.2 Manual Pages on command 'procfs.5'

$ man procfs.5

PROC(5) Linux Programmer's Manual PROC(5)

NAME

 proc - process information pseudo-filesystem

DESCRIPTION

 The proc filesystem is a pseudo-filesystem which provides an interface to kernel data

 structures. It is commonly mounted at /proc. Typically, it is mounted automatically by

 the system, but it can also be mounted manually using a command such as:

 mount -t proc proc /proc

 Most of the files in the proc filesystem are read-only, but some files are writable, al?

 lowing kernel variables to be changed.

 Mount options

 The proc filesystem supports the following mount options:

 hidepid=n (since Linux 3.3)

 This option controls who can access the information in /proc/[pid] directories.

 The argument, n, is one of the following values:

 0 Everybody may access all /proc/[pid] directories. This is the traditional be?

 havior, and the default if this mount option is not specified.

 1 Users may not access files and subdirectories inside any /proc/[pid] directo?

 ries but their own (the /proc/[pid] directories themselves remain visible).

 Sensitive files such as /proc/[pid]/cmdline and /proc/[pid]/status are now pro?

 tected against other users. This makes it impossible to learn whether any user

 is running a specific program (so long as the program doesn't otherwise reveal

 itself by its behavior). Page 1/91

 2 As for mode 1, but in addition the /proc/[pid] directories belonging to other

 users become invisible. This means that /proc/[pid] entries can no longer be

 used to discover the PIDs on the system. This doesn't hide the fact that a

 process with a specific PID value exists (it can be learned by other means, for

 example, by "kill -0 $PID"), but it hides a process's UID and GID, which could

 otherwise be learned by employing stat(2) on a /proc/[pid] directory. This

 greatly complicates an attacker's task of gathering information about running

 processes (e.g., discovering whether some daemon is running with elevated priv?

 ileges, whether another user is running some sensitive program, whether other

 users are running any program at all, and so on).

 gid=gid (since Linux 3.3)

 Specifies the ID of a group whose members are authorized to learn process informa?

 tion otherwise prohibited by hidepid (i.e., users in this group behave as though

 /proc was mounted with hidepid=0). This group should be used instead of approaches

 such as putting nonroot users into the sudoers(5) file.

 Overview

 Underneath /proc, there are the following general groups of files and subdirectories:

 /proc/[pid] subdirectories

 Each one of these subdirectories contains files and subdirectories exposing infor?

 mation about the process with the corresponding process ID.

 Underneath each of the /proc/[pid] directories, a task subdirectory contains subdi?

 rectories of the form task/[tid], which contain corresponding information about

 each of the threads in the process, where tid is the kernel thread ID of the

 thread.

 The /proc/[pid] subdirectories are visible when iterating through /proc with get?

 dents(2) (and thus are visible when one uses ls(1) to view the contents of /proc).

 /proc/[tid] subdirectories

 Each one of these subdirectories contains files and subdirectories exposing infor?

 mation about the thread with the corresponding thread ID. The contents of these

 directories are the same as the corresponding /proc/[pid]/task/[tid] directories.

 The /proc/[tid] subdirectories are not visible when iterating through /proc with

 getdents(2) (and thus are not visible when one uses ls(1) to view the contents of

 /proc). Page 2/91

 /proc/self

 When a process accesses this magic symbolic link, it resolves to the process's own

 /proc/[pid] directory.

 /proc/thread-self

 When a thread accesses this magic symbolic link, it resolves to the process's own

 /proc/self/task/[tid] directory.

 /proc/[a-z]*

 Various other files and subdirectories under /proc expose system-wide information.

 All of the above are described in more detail below.

 Files and directories

 The following list provides details of many of the files and directories under the /proc

 hierarchy.

 /proc/[pid]

 There is a numerical subdirectory for each running process; the subdirectory is

 named by the process ID. Each /proc/[pid] subdirectory contains the pseudo-files

 and directories described below.

 The files inside each /proc/[pid] directory are normally owned by the effective

 user and effective group ID of the process. However, as a security measure, the

 ownership is made root:root if the process's "dumpable" attribute is set to a value

 other than 1.

 Before Linux 4.11, root:root meant the "global" root user ID and group ID (i.e.,

 UID 0 and GID 0 in the initial user namespace). Since Linux 4.11, if the process

 is in a noninitial user namespace that has a valid mapping for user (group) ID 0

 inside the namespace, then the user (group) ownership of the files under

 /proc/[pid] is instead made the same as the root user (group) ID of the namespace.

 This means that inside a container, things work as expected for the container

 "root" user.

 The process's "dumpable" attribute may change for the following reasons:

 * The attribute was explicitly set via the prctl(2) PR_SET_DUMPABLE operation.

 * The attribute was reset to the value in the file /proc/sys/fs/suid_dumpable (de?

 scribed below), for the reasons described in prctl(2).

 Resetting the "dumpable" attribute to 1 reverts the ownership of the /proc/[pid]/*

 files to the process's effective UID and GID. Note, however, that if the effective Page 3/91

 UID or GID is subsequently modified, then the "dumpable" attribute may be reset, as

 described in prctl(2). Therefore, it may be desirable to reset the "dumpable" at?

 tribute after making any desired changes to the process's effective UID or GID.

 /proc/[pid]/attr

 The files in this directory provide an API for security modules. The contents of

 this directory are files that can be read and written in order to set security-re?

 lated attributes. This directory was added to support SELinux, but the intention

 was that the API be general enough to support other security modules. For the pur?

 pose of explanation, examples of how SELinux uses these files are provided below.

 This directory is present only if the kernel was configured with CONFIG_SECURITY.

 /proc/[pid]/attr/current (since Linux 2.6.0)

 The contents of this file represent the current security attributes of the process.

 In SELinux, this file is used to get the security context of a process. Prior to

 Linux 2.6.11, this file could not be used to set the security context (a write was

 always denied), since SELinux limited process security transitions to execve(2)

 (see the description of /proc/[pid]/attr/exec, below). Since Linux 2.6.11, SELinux

 lifted this restriction and began supporting "set" operations via writes to this

 node if authorized by policy, although use of this operation is only suitable for

 applications that are trusted to maintain any desired separation between the old

 and new security contexts.

 Prior to Linux 2.6.28, SELinux did not allow threads within a multithreaded process

 to set their security context via this node as it would yield an inconsistency

 among the security contexts of the threads sharing the same memory space. Since

 Linux 2.6.28, SELinux lifted this restriction and began supporting "set" operations

 for threads within a multithreaded process if the new security context is bounded

 by the old security context, where the bounded relation is defined in policy and

 guarantees that the new security context has a subset of the permissions of the old

 security context.

 Other security modules may choose to support "set" operations via writes to this

 node.

 /proc/[pid]/attr/exec (since Linux 2.6.0)

 This file represents the attributes to assign to the process upon a subsequent ex?

 ecve(2). Page 4/91

 In SELinux, this is needed to support role/domain transitions, and execve(2) is the

 preferred point to make such transitions because it offers better control over the

 initialization of the process in the new security label and the inheritance of

 state. In SELinux, this attribute is reset on execve(2) so that the new program

 reverts to the default behavior for any execve(2) calls that it may make. In

 SELinux, a process can set only its own /proc/[pid]/attr/exec attribute.

 /proc/[pid]/attr/fscreate (since Linux 2.6.0)

 This file represents the attributes to assign to files created by subsequent calls

 to open(2), mkdir(2), symlink(2), and mknod(2)

 SELinux employs this file to support creation of a file (using the aforementioned

 system calls) in a secure state, so that there is no risk of inappropriate access

 being obtained between the time of creation and the time that attributes are set.

 In SELinux, this attribute is reset on execve(2), so that the new program reverts

 to the default behavior for any file creation calls it may make, but the attribute

 will persist across multiple file creation calls within a program unless it is ex?

 plicitly reset. In SELinux, a process can set only its own /proc/[pid]/attr/fscre?

 ate attribute.

 /proc/[pid]/attr/keycreate (since Linux 2.6.18)

 If a process writes a security context into this file, all subsequently created

 keys (add_key(2)) will be labeled with this context. For further information, see

 the kernel source file Documentation/security/keys/core.rst (or file Documenta?

 tion/security/keys.txt on Linux between 3.0 and 4.13, or Documentation/keys.txt be?

 fore Linux 3.0).

 /proc/[pid]/attr/prev (since Linux 2.6.0)

 This file contains the security context of the process before the last execve(2);

 that is, the previous value of /proc/[pid]/attr/current.

 /proc/[pid]/attr/socketcreate (since Linux 2.6.18)

 If a process writes a security context into this file, all subsequently created

 sockets will be labeled with this context.

 /proc/[pid]/autogroup (since Linux 2.6.38)

 See sched(7).

 /proc/[pid]/auxv (since 2.6.0)

 This contains the contents of the ELF interpreter information passed to the process Page 5/91

 at exec time. The format is one unsigned long ID plus one unsigned long value for

 each entry. The last entry contains two zeros. See also getauxval(3).

 Permission to access this file is governed by a ptrace access mode

 PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 /proc/[pid]/cgroup (since Linux 2.6.24)

 See cgroups(7).

 /proc/[pid]/clear_refs (since Linux 2.6.22)

 This is a write-only file, writable only by owner of the process.

 The following values may be written to the file:

 1 (since Linux 2.6.22)

 Reset the PG_Referenced and ACCESSED/YOUNG bits for all the pages associated

 with the process. (Before kernel 2.6.32, writing any nonzero value to this

 file had this effect.)

 2 (since Linux 2.6.32)

 Reset the PG_Referenced and ACCESSED/YOUNG bits for all anonymous pages as?

 sociated with the process.

 3 (since Linux 2.6.32)

 Reset the PG_Referenced and ACCESSED/YOUNG bits for all file-mapped pages

 associated with the process.

 Clearing the PG_Referenced and ACCESSED/YOUNG bits provides a method to measure ap?

 proximately how much memory a process is using. One first inspects the values in

 the "Referenced" fields for the VMAs shown in /proc/[pid]/smaps to get an idea of

 the memory footprint of the process. One then clears the PG_Referenced and AC?

 CESSED/YOUNG bits and, after some measured time interval, once again inspects the

 values in the "Referenced" fields to get an idea of the change in memory footprint

 of the process during the measured interval. If one is interested only in inspect?

 ing the selected mapping types, then the value 2 or 3 can be used instead of 1.

 Further values can be written to affect different properties:

 4 (since Linux 3.11)

 Clear the soft-dirty bit for all the pages associated with the process.

 This is used (in conjunction with /proc/[pid]/pagemap) by the check-point

 restore system to discover which pages of a process have been dirtied since

 the file /proc/[pid]/clear_refs was written to. Page 6/91

 5 (since Linux 4.0)

 Reset the peak resident set size ("high water mark") to the process's cur?

 rent resident set size value.

 Writing any value to /proc/[pid]/clear_refs other than those listed above has no

 effect.

 The /proc/[pid]/clear_refs file is present only if the CONFIG_PROC_PAGE_MONITOR

 kernel configuration option is enabled.

 /proc/[pid]/cmdline

 This read-only file holds the complete command line for the process, unless the

 process is a zombie. In the latter case, there is nothing in this file: that is, a

 read on this file will return 0 characters. The command-line arguments appear in

 this file as a set of strings separated by null bytes ('\0'), with a further null

 byte after the last string.

 If, after an execve(2), the process modifies its argv strings, those changes will

 show up here. This is not the same thing as modifying the argv array.

 Furthermore, a process may change the memory location that this file refers via

 prctl(2) operations such as PR_SET_MM_ARG_START.

 Think of this file as the command line that the process wants you to see.

 /proc/[pid]/comm (since Linux 2.6.33)

 This file exposes the process's comm value?that is, the command name associated

 with the process. Different threads in the same process may have different comm

 values, accessible via /proc/[pid]/task/[tid]/comm. A thread may modify its comm

 value, or that of any of other thread in the same thread group (see the discussion

 of CLONE_THREAD in clone(2)), by writing to the file /proc/self/task/[tid]/comm.

 Strings longer than TASK_COMM_LEN (16) characters (including the terminating null

 byte) are silently truncated.

 This file provides a superset of the prctl(2) PR_SET_NAME and PR_GET_NAME opera?

 tions, and is employed by pthread_setname_np(3) when used to rename threads other

 than the caller. The value in this file is used for the %e specifier in

 /proc/sys/kernel/core_pattern; see core(5).

 /proc/[pid]/coredump_filter (since Linux 2.6.23)

 See core(5).

 /proc/[pid]/cpuset (since Linux 2.6.12) Page 7/91

 See cpuset(7).

 /proc/[pid]/cwd

 This is a symbolic link to the current working directory of the process. To find

 out the current working directory of process 20, for instance, you can do this:

 $ cd /proc/20/cwd; pwd -P

 In a multithreaded process, the contents of this symbolic link are not available if

 the main thread has already terminated (typically by calling pthread_exit(3)).

 Permission to dereference or read (readlink(2)) this symbolic link is governed by a

 ptrace access mode PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 /proc/[pid]/environ

 This file contains the initial environment that was set when the currently execut?

 ing program was started via execve(2). The entries are separated by null bytes

 ('\0'), and there may be a null byte at the end. Thus, to print out the environ?

 ment of process 1, you would do:

 $ cat /proc/1/environ | tr '\000' '\n'

 If, after an execve(2), the process modifies its environment (e.g., by calling

 functions such as putenv(3) or modifying the environ(7) variable directly), this

 file will not reflect those changes.

 Furthermore, a process may change the memory location that this file refers via

 prctl(2) operations such as PR_SET_MM_ENV_START.

 Permission to access this file is governed by a ptrace access mode

 PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 /proc/[pid]/exe

 Under Linux 2.2 and later, this file is a symbolic link containing the actual path?

 name of the executed command. This symbolic link can be dereferenced normally; at?

 tempting to open it will open the executable. You can even type /proc/[pid]/exe to

 run another copy of the same executable that is being run by process [pid]. If the

 pathname has been unlinked, the symbolic link will contain the string '(deleted)'

 appended to the original pathname. In a multithreaded process, the contents of

 this symbolic link are not available if the main thread has already terminated

 (typically by calling pthread_exit(3)).

 Permission to dereference or read (readlink(2)) this symbolic link is governed by a

 ptrace access mode PTRACE_MODE_READ_FSCREDS check; see ptrace(2). Page 8/91

 Under Linux 2.0 and earlier, /proc/[pid]/exe is a pointer to the binary which was

 executed, and appears as a symbolic link. A readlink(2) call on this file under

 Linux 2.0 returns a string in the format:

 [device]:inode

 For example, [0301]:1502 would be inode 1502 on device major 03 (IDE, MFM, etc.

 drives) minor 01 (first partition on the first drive).

 find(1) with the -inum option can be used to locate the file.

 /proc/[pid]/fd/

 This is a subdirectory containing one entry for each file which the process has

 open, named by its file descriptor, and which is a symbolic link to the actual

 file. Thus, 0 is standard input, 1 standard output, 2 standard error, and so on.

 For file descriptors for pipes and sockets, the entries will be symbolic links

 whose content is the file type with the inode. A readlink(2) call on this file re?

 turns a string in the format:

 type:[inode]

 For example, socket:[2248868] will be a socket and its inode is 2248868. For sock?

 ets, that inode can be used to find more information in one of the files under

 /proc/net/.

 For file descriptors that have no corresponding inode (e.g., file descriptors pro?

 duced by bpf(2), epoll_create(2), eventfd(2), inotify_init(2), perf_event_open(2),

 signalfd(2), timerfd_create(2), and userfaultfd(2)), the entry will be a symbolic

 link with contents of the form

 anon_inode:<file-type>

 In many cases (but not all), the file-type is surrounded by square brackets.

 For example, an epoll file descriptor will have a symbolic link whose content is

 the string anon_inode:[eventpoll].

 In a multithreaded process, the contents of this directory are not available if the

 main thread has already terminated (typically by calling pthread_exit(3)).

 Programs that take a filename as a command-line argument, but don't take input from

 standard input if no argument is supplied, and programs that write to a file named

 as a command-line argument, but don't send their output to standard output if no

 argument is supplied, can nevertheless be made to use standard input or standard

 output by using /proc/[pid]/fd files as command-line arguments. For example, as? Page 9/91

 suming that -i is the flag designating an input file and -o is the flag designating

 an output file:

 $ foobar -i /proc/self/fd/0 -o /proc/self/fd/1 ...

 and you have a working filter.

 /proc/self/fd/N is approximately the same as /dev/fd/N in some UNIX and UNIX-like

 systems. Most Linux MAKEDEV scripts symbolically link /dev/fd to /proc/self/fd, in

 fact.

 Most systems provide symbolic links /dev/stdin, /dev/stdout, and /dev/stderr, which

 respectively link to the files 0, 1, and 2 in /proc/self/fd. Thus the example com?

 mand above could be written as:

 $ foobar -i /dev/stdin -o /dev/stdout ...

 Permission to dereference or read (readlink(2)) the symbolic links in this direc?

 tory is governed by a ptrace access mode PTRACE_MODE_READ_FSCREDS check; see

 ptrace(2).

 Note that for file descriptors referring to inodes (pipes and sockets, see above),

 those inodes still have permission bits and ownership information distinct from

 those of the /proc/[pid]/fd entry, and that the owner may differ from the user and

 group IDs of the process. An unprivileged process may lack permissions to open

 them, as in this example:

 $ echo test | sudo -u nobody cat

 test

 $ echo test | sudo -u nobody cat /proc/self/fd/0

 cat: /proc/self/fd/0: Permission denied

 File descriptor 0 refers to the pipe created by the shell and owned by that shell's

 user, which is not nobody, so cat does not have permission to create a new file de?

 scriptor to read from that inode, even though it can still read from its existing

 file descriptor 0.

 /proc/[pid]/fdinfo/ (since Linux 2.6.22)

 This is a subdirectory containing one entry for each file which the process has

 open, named by its file descriptor. The files in this directory are readable only

 by the owner of the process. The contents of each file can be read to obtain in?

 formation about the corresponding file descriptor. The content depends on the type

 of file referred to by the corresponding file descriptor. Page 10/91

 For regular files and directories, we see something like:

 $ cat /proc/12015/fdinfo/4

 pos: 1000

 flags: 01002002

 mnt_id: 21

 The fields are as follows:

 pos This is a decimal number showing the file offset.

 flags This is an octal number that displays the file access mode and file status

 flags (see open(2)). If the close-on-exec file descriptor flag is set, then

 flags will also include the value O_CLOEXEC.

 Before Linux 3.1, this field incorrectly displayed the setting of O_CLOEXEC

 at the time the file was opened, rather than the current setting of the

 close-on-exec flag.

 mnt_id This field, present since Linux 3.15, is the ID of the mount point contain?

 ing this file. See the description of /proc/[pid]/mountinfo.

 For eventfd file descriptors (see eventfd(2)), we see (since Linux 3.8) the follow?

 ing fields:

 pos: 0

 flags: 02

 mnt_id: 10

 eventfd-count: 40

 eventfd-count is the current value of the eventfd counter, in hexadecimal.

 For epoll file descriptors (see epoll(7)), we see (since Linux 3.8) the following

 fields:

 pos: 0

 flags: 02

 mnt_id: 10

 tfd: 9 events: 19 data: 74253d2500000009

 tfd: 7 events: 19 data: 74253d2500000007

 Each of the lines beginning tfd describes one of the file descriptors being moni?

 tored via the epoll file descriptor (see epoll_ctl(2) for some details). The tfd

 field is the number of the file descriptor. The events field is a hexadecimal mask

 of the events being monitored for this file descriptor. The data field is the data Page 11/91

 value associated with this file descriptor.

 For signalfd file descriptors (see signalfd(2)), we see (since Linux 3.8) the fol?

 lowing fields:

 pos: 0

 flags: 02

 mnt_id: 10

 sigmask: 0000000000000006

 sigmask is the hexadecimal mask of signals that are accepted via this signalfd file

 descriptor. (In this example, bits 2 and 3 are set, corresponding to the signals

 SIGINT and SIGQUIT; see signal(7).)

 For inotify file descriptors (see inotify(7)), we see (since Linux 3.8) the follow?

 ing fields:

 pos: 0

 flags: 00

 mnt_id: 11

 inotify wd:2 ino:7ef82a sdev:800001 mask:800afff ignored_mask:0 fhandle-bytes:8 fhandle-type:1

f_handle:2af87e00220ffd73

 inotify wd:1 ino:192627 sdev:800001 mask:800afff ignored_mask:0 fhandle-bytes:8 fhandle-type:1

f_handle:27261900802dfd73

 Each of the lines beginning with "inotify" displays information about one file or

 directory that is being monitored. The fields in this line are as follows:

 wd A watch descriptor number (in decimal).

 ino The inode number of the target file (in hexadecimal).

 sdev The ID of the device where the target file resides (in hexadecimal).

 mask The mask of events being monitored for the target file (in hexadecimal).

 If the kernel was built with exportfs support, the path to the target file is ex?

 posed as a file handle, via three hexadecimal fields: fhandle-bytes, fhandle-type,

 and f_handle.

 For fanotify file descriptors (see fanotify(7)), we see (since Linux 3.8) the fol?

 lowing fields:

 pos: 0

 flags: 02

 mnt_id: 11 Page 12/91

 fanotify flags:0 event-flags:88002

 fanotify ino:19264f sdev:800001 mflags:0 mask:1 ignored_mask:0 fhandle-bytes:8 fhandle-type:1

f_handle:4f261900a82dfd73

 The fourth line displays information defined when the fanotify group was created

 via fanotify_init(2):

 flags The flags argument given to fanotify_init(2) (expressed in hexadecimal).

 event-flags

 The event_f_flags argument given to fanotify_init(2) (expressed in hexadeci?

 mal).

 Each additional line shown in the file contains information about one of the marks

 in the fanotify group. Most of these fields are as for inotify, except:

 mflags The flags associated with the mark (expressed in hexadecimal).

 mask The events mask for this mark (expressed in hexadecimal).

 ignored_mask

 The mask of events that are ignored for this mark (expressed in hexadeci?

 mal).

 For details on these fields, see fanotify_mark(2).

 For timerfd file descriptors (see timerfd(2)), we see (since Linux 3.17) the fol?

 lowing fields:

 pos: 0

 flags: 02004002

 mnt_id: 13

 clockid: 0

 ticks: 0

 settime flags: 03

 it_value: (7695568592, 640020877)

 it_interval: (0, 0)

 clockid

 This is the numeric value of the clock ID (corresponding to one of the

 CLOCK_* constants defined via <time.h>) that is used to mark the progress of

 the timer (in this example, 0 is CLOCK_REALTIME).

 ticks This is the number of timer expirations that have occurred, (i.e., the value

 that read(2) on it would return). Page 13/91

 settime flags

 This field lists the flags with which the timerfd was last armed (see

 timerfd_settime(2)), in octal (in this example, both TFD_TIMER_ABSTIME and

 TFD_TIMER_CANCEL_ON_SET are set).

 it_value

 This field contains the amount of time until the timer will next expire, ex?

 pressed in seconds and nanoseconds. This is always expressed as a relative

 value, regardless of whether the timer was created using the TFD_TIMER_AB?

 STIME flag.

 it_interval

 This field contains the interval of the timer, in seconds and nanoseconds.

 (The it_value and it_interval fields contain the values that timerfd_get?

 time(2) on this file descriptor would return.)

 /proc/[pid]/gid_map (since Linux 3.5)

 See user_namespaces(7).

 /proc/[pid]/io (since kernel 2.6.20)

 This file contains I/O statistics for the process, for example:

 # cat /proc/3828/io

 rchar: 323934931

 wchar: 323929600

 syscr: 632687

 syscw: 632675

 read_bytes: 0

 write_bytes: 323932160

 cancelled_write_bytes: 0

 The fields are as follows:

 rchar: characters read

 The number of bytes which this task has caused to be read from storage.

 This is simply the sum of bytes which this process passed to read(2) and

 similar system calls. It includes things such as terminal I/O and is unaf?

 fected by whether or not actual physical disk I/O was required (the read

 might have been satisfied from pagecache).

 wchar: characters written Page 14/91

 The number of bytes which this task has caused, or shall cause to be written

 to disk. Similar caveats apply here as with rchar.

 syscr: read syscalls

 Attempt to count the number of read I/O operations?that is, system calls

 such as read(2) and pread(2).

 syscw: write syscalls

 Attempt to count the number of write I/O operations?that is, system calls

 such as write(2) and pwrite(2).

 read_bytes: bytes read

 Attempt to count the number of bytes which this process really did cause to

 be fetched from the storage layer. This is accurate for block-backed

 filesystems.

 write_bytes: bytes written

 Attempt to count the number of bytes which this process caused to be sent to

 the storage layer.

 cancelled_write_bytes:

 The big inaccuracy here is truncate. If a process writes 1 MB to a file and

 then deletes the file, it will in fact perform no writeout. But it will

 have been accounted as having caused 1 MB of write. In other words: this

 field represents the number of bytes which this process caused to not hap?

 pen, by truncating pagecache. A task can cause "negative" I/O too. If this

 task truncates some dirty pagecache, some I/O which another task has been

 accounted for (in its write_bytes) will not be happening.

 Note: In the current implementation, things are a bit racy on 32-bit systems: if

 process A reads process B's /proc/[pid]/io while process B is updating one of these

 64-bit counters, process A could see an intermediate result.

 Permission to access this file is governed by a ptrace access mode

 PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 /proc/[pid]/limits (since Linux 2.6.24)

 This file displays the soft limit, hard limit, and units of measurement for each of

 the process's resource limits (see getrlimit(2)). Up to and including Linux

 2.6.35, this file is protected to allow reading only by the real UID of the

 process. Since Linux 2.6.36, this file is readable by all users on the system. Page 15/91

 /proc/[pid]/map_files/ (since kernel 3.3)

 This subdirectory contains entries corresponding to memory-mapped files (see

 mmap(2)). Entries are named by memory region start and end address pair (expressed

 as hexadecimal numbers), and are symbolic links to the mapped files themselves.

 Here is an example, with the output wrapped and reformatted to fit on an 80-column

 display:

 # ls -l /proc/self/map_files/

 lr--------. 1 root root 64 Apr 16 21:31

 3252e00000-3252e20000 -> /usr/lib64/ld-2.15.so

 ...

 Although these entries are present for memory regions that were mapped with the

 MAP_FILE flag, the way anonymous shared memory (regions created with the MAP_ANON |

 MAP_SHARED flags) is implemented in Linux means that such regions also appear on

 this directory. Here is an example where the target file is the deleted /dev/zero

 one:

 lrw-------. 1 root root 64 Apr 16 21:33

 7fc075d2f000-7fc075e6f000 -> /dev/zero (deleted)

 Permission to access this file is governed by a ptrace access mode

 PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 Until kernel version 4.3, this directory appeared only if the CONFIG_CHECKPOINT_RE?

 STORE kernel configuration option was enabled.

 Capabilities are required to read the contents of the symbolic links in this direc?

 tory: before Linux 5.9, the reading process requires CAP_SYS_ADMIN in the initial

 user namespace; since Linux 5.9, the reading process must have either CAP_SYS_ADMIN

 or CAP_CHECKPOINT_RESTORE in the user namespace where it resides.

 /proc/[pid]/maps

 A file containing the currently mapped memory regions and their access permissions.

 See mmap(2) for some further information about memory mappings.

 Permission to access this file is governed by a ptrace access mode

 PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 The format of the file is:

 address perms offset dev inode pathname

 00400000-00452000 r-xp 00000000 08:02 173521 /usr/bin/dbus-daemon Page 16/91

 00651000-00652000 r--p 00051000 08:02 173521 /usr/bin/dbus-daemon

 00652000-00655000 rw-p 00052000 08:02 173521 /usr/bin/dbus-daemon

 00e03000-00e24000 rw-p 00000000 00:00 0 [heap]

 00e24000-011f7000 rw-p 00000000 00:00 0 [heap]

 ...

 35b1800000-35b1820000 r-xp 00000000 08:02 135522 /usr/lib64/ld-2.15.so

 35b1a1f000-35b1a20000 r--p 0001f000 08:02 135522 /usr/lib64/ld-2.15.so

 35b1a20000-35b1a21000 rw-p 00020000 08:02 135522 /usr/lib64/ld-2.15.so

 35b1a21000-35b1a22000 rw-p 00000000 00:00 0

 35b1c00000-35b1dac000 r-xp 00000000 08:02 135870 /usr/lib64/libc-2.15.so

 35b1dac000-35b1fac000 ---p 001ac000 08:02 135870 /usr/lib64/libc-2.15.so

 35b1fac000-35b1fb0000 r--p 001ac000 08:02 135870 /usr/lib64/libc-2.15.so

 35b1fb0000-35b1fb2000 rw-p 001b0000 08:02 135870 /usr/lib64/libc-2.15.so

 ...

 f2c6ff8c000-7f2c7078c000 rw-p 00000000 00:00 0 [stack:986]

 ...

 7fffb2c0d000-7fffb2c2e000 rw-p 00000000 00:00 0 [stack]

 7fffb2d48000-7fffb2d49000 r-xp 00000000 00:00 0 [vdso]

 The address field is the address space in the process that the mapping occupies.

 The perms field is a set of permissions:

 r = read

 w = write

 x = execute

 s = shared

 p = private (copy on write)

 The offset field is the offset into the file/whatever; dev is the device (major:mi?

 nor); inode is the inode on that device. 0 indicates that no inode is associated

 with the memory region, as would be the case with BSS (uninitialized data).

 The pathname field will usually be the file that is backing the mapping. For ELF

 files, you can easily coordinate with the offset field by looking at the Offset

 field in the ELF program headers (readelf -l).

 There are additional helpful pseudo-paths:

 [stack] Page 17/91

 The initial process's (also known as the main thread's) stack.

 [stack:<tid>] (from Linux 3.4 to 4.4)

 A thread's stack (where the <tid> is a thread ID). It corresponds to the

 /proc/[pid]/task/[tid]/ path. This field was removed in Linux 4.5, since

 providing this information for a process with large numbers of threads is

 expensive.

 [vdso] The virtual dynamically linked shared object. See vdso(7).

 [heap] The process's heap.

 If the pathname field is blank, this is an anonymous mapping as obtained via

 mmap(2). There is no easy way to coordinate this back to a process's source, short

 of running it through gdb(1), strace(1), or similar.

 pathname is shown unescaped except for newline characters, which are replaced with

 an octal escape sequence. As a result, it is not possible to determine whether the

 original pathname contained a newline character or the literal \012 character se?

 quence.

 If the mapping is file-backed and the file has been deleted, the string "

 (deleted)" is appended to the pathname. Note that this is ambiguous too.

 Under Linux 2.0, there is no field giving pathname.

 /proc/[pid]/mem

 This file can be used to access the pages of a process's memory through open(2),

 read(2), and lseek(2).

 Permission to access this file is governed by a ptrace access mode PTRACE_MODE_AT?

 TACH_FSCREDS check; see ptrace(2).

 /proc/[pid]/mountinfo (since Linux 2.6.26)

 This file contains information about mount points in the process's mount namespace

 (see mount_namespaces(7)). It supplies various information (e.g., propagation

 state, root of mount for bind mounts, identifier for each mount and its parent)

 that is missing from the (older) /proc/[pid]/mounts file, and fixes various other

 problems with that file (e.g., nonextensibility, failure to distinguish per-mount

 versus per-superblock options).

 The file contains lines of the form:

 36 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue

 (1)(2)(3) (4) (5) (6) (7) (8) (9) (10) (11) Page 18/91

 The numbers in parentheses are labels for the descriptions below:

 (1) mount ID: a unique ID for the mount (may be reused after umount(2)).

 (2) parent ID: the ID of the parent mount (or of self for the root of this mount

 namespace's mount tree).

 If a new mount is stacked on top of a previous existing mount (so that it

 hides the existing mount) at pathname P, then the parent of the new mount is

 the previous mount at that location. Thus, when looking at all the mounts

 stacked at a particular location, the top-most mount is the one that is not

 the parent of any other mount at the same location. (Note, however, that this

 top-most mount will be accessible only if the longest path subprefix of P that

 is a mount point is not itself hidden by a stacked mount.)

 If the parent mount point lies outside the process's root directory (see ch?

 root(2)), the ID shown here won't have a corresponding record in mountinfo

 whose mount ID (field 1) matches this parent mount ID (because mount points

 that lie outside the process's root directory are not shown in mountinfo). As

 a special case of this point, the process's root mount point may have a parent

 mount (for the initramfs filesystem) that lies outside the process's root di?

 rectory, and an entry for that mount point will not appear in mountinfo.

 (3) major:minor: the value of st_dev for files on this filesystem (see stat(2)).

 (4) root: the pathname of the directory in the filesystem which forms the root of

 this mount.

 (5) mount point: the pathname of the mount point relative to the process's root

 directory.

 (6) mount options: per-mount options (see mount(2)).

 (7) optional fields: zero or more fields of the form "tag[:value]"; see below.

 (8) separator: the end of the optional fields is marked by a single hyphen.

 (9) filesystem type: the filesystem type in the form "type[.subtype]".

 (10) mount source: filesystem-specific information or "none".

 (11) super options: per-superblock options (see mount(2)).

 Currently, the possible optional fields are shared, master, propagate_from, and un?

 bindable. See mount_namespaces(7) for a description of these fields. Parsers

 should ignore all unrecognized optional fields.

 For more information on mount propagation see: Documentation/filesystems/sharedsub? Page 19/91

 tree.txt in the Linux kernel source tree.

 /proc/[pid]/mounts (since Linux 2.4.19)

 This file lists all the filesystems currently mounted in the process's mount name?

 space (see mount_namespaces(7)). The format of this file is documented in

 fstab(5).

 Since kernel version 2.6.15, this file is pollable: after opening the file for

 reading, a change in this file (i.e., a filesystem mount or unmount) causes se?

 lect(2) to mark the file descriptor as having an exceptional condition, and poll(2)

 and epoll_wait(2) mark the file as having a priority event (POLLPRI). (Before

 Linux 2.6.30, a change in this file was indicated by the file descriptor being

 marked as readable for select(2), and being marked as having an error condition for

 poll(2) and epoll_wait(2).)

 /proc/[pid]/mountstats (since Linux 2.6.17)

 This file exports information (statistics, configuration information) about the

 mount points in the process's mount namespace (see mount_namespaces(7)). Lines in

 this file have the form:

 device /dev/sda7 mounted on /home with fstype ext3 [stats]

 (1) (2) (3) (4)

 The fields in each line are:

 (1) The name of the mounted device (or "nodevice" if there is no corresponding de?

 vice).

 (2) The mount point within the filesystem tree.

 (3) The filesystem type.

 (4) Optional statistics and configuration information. Currently (as at Linux

 2.6.26), only NFS filesystems export information via this field.

 This file is readable only by the owner of the process.

 /proc/[pid]/net (since Linux 2.6.25)

 See the description of /proc/net.

 /proc/[pid]/ns/ (since Linux 3.0)

 This is a subdirectory containing one entry for each namespace that supports being

 manipulated by setns(2). For more information, see namespaces(7).

 /proc/[pid]/numa_maps (since Linux 2.6.14)

 See numa(7). Page 20/91

 /proc/[pid]/oom_adj (since Linux 2.6.11)

 This file can be used to adjust the score used to select which process should be

 killed in an out-of-memory (OOM) situation. The kernel uses this value for a bit-

 shift operation of the process's oom_score value: valid values are in the range -16

 to +15, plus the special value -17, which disables OOM-killing altogether for this

 process. A positive score increases the likelihood of this process being killed by

 the OOM-killer; a negative score decreases the likelihood.

 The default value for this file is 0; a new process inherits its parent's oom_adj

 setting. A process must be privileged (CAP_SYS_RESOURCE) to update this file.

 Since Linux 2.6.36, use of this file is deprecated in favor of

 /proc/[pid]/oom_score_adj.

 /proc/[pid]/oom_score (since Linux 2.6.11)

 This file displays the current score that the kernel gives to this process for the

 purpose of selecting a process for the OOM-killer. A higher score means that the

 process is more likely to be selected by the OOM-killer. The basis for this score

 is the amount of memory used by the process, with increases (+) or decreases (-)

 for factors including:

 * whether the process is privileged (-).

 Before kernel 2.6.36 the following factors were also used in the calculation of

 oom_score:

 * whether the process creates a lot of children using fork(2) (+);

 * whether the process has been running a long time, or has used a lot of CPU time

 (-);

 * whether the process has a low nice value (i.e., > 0) (+); and

 * whether the process is making direct hardware access (-).

 The oom_score also reflects the adjustment specified by the oom_score_adj or

 oom_adj setting for the process.

 /proc/[pid]/oom_score_adj (since Linux 2.6.36)

 This file can be used to adjust the badness heuristic used to select which process

 gets killed in out-of-memory conditions.

 The badness heuristic assigns a value to each candidate task ranging from 0 (never

 kill) to 1000 (always kill) to determine which process is targeted. The units are

 roughly a proportion along that range of allowed memory the process may allocate Page 21/91

 from, based on an estimation of its current memory and swap use. For example, if a

 task is using all allowed memory, its badness score will be 1000. If it is using

 half of its allowed memory, its score will be 500.

 There is an additional factor included in the badness score: root processes are

 given 3% extra memory over other tasks.

 The amount of "allowed" memory depends on the context in which the OOM-killer was

 called. If it is due to the memory assigned to the allocating task's cpuset being

 exhausted, the allowed memory represents the set of mems assigned to that cpuset

 (see cpuset(7)). If it is due to a mempolicy's node(s) being exhausted, the al?

 lowed memory represents the set of mempolicy nodes. If it is due to a memory limit

 (or swap limit) being reached, the allowed memory is that configured limit. Fi?

 nally, if it is due to the entire system being out of memory, the allowed memory

 represents all allocatable resources.

 The value of oom_score_adj is added to the badness score before it is used to de?

 termine which task to kill. Acceptable values range from -1000 (OOM_SCORE_ADJ_MIN)

 to +1000 (OOM_SCORE_ADJ_MAX). This allows user space to control the preference for

 OOM-killing, ranging from always preferring a certain task or completely disabling

 it from OOM killing. The lowest possible value, -1000, is equivalent to disabling

 OOM-killing entirely for that task, since it will always report a badness score of

 0.

 Consequently, it is very simple for user space to define the amount of memory to

 consider for each task. Setting an oom_score_adj value of +500, for example, is

 roughly equivalent to allowing the remainder of tasks sharing the same system,

 cpuset, mempolicy, or memory controller resources to use at least 50% more memory.

 A value of -500, on the other hand, would be roughly equivalent to discounting 50%

 of the task's allowed memory from being considered as scoring against the task.

 For backward compatibility with previous kernels, /proc/[pid]/oom_adj can still be

 used to tune the badness score. Its value is scaled linearly with oom_score_adj.

 Writing to /proc/[pid]/oom_score_adj or /proc/[pid]/oom_adj will change the other

 with its scaled value.

 The choom(1) program provides a command-line interface for adjusting the

 oom_score_adj value of a running process or a newly executed command.

 /proc/[pid]/pagemap (since Linux 2.6.25) Page 22/91

 This file shows the mapping of each of the process's virtual pages into physical

 page frames or swap area. It contains one 64-bit value for each virtual page, with

 the bits set as follows:

 63 If set, the page is present in RAM.

 62 If set, the page is in swap space

 61 (since Linux 3.5)

 The page is a file-mapped page or a shared anonymous page.

 60?57 (since Linux 3.11)

 Zero

 56 (since Linux 4.2)

 The page is exclusively mapped.

 55 (since Linux 3.11)

 PTE is soft-dirty (see the kernel source file Documentation/ad?

 min-guide/mm/soft-dirty.rst).

 54?0 If the page is present in RAM (bit 63), then these bits provide the page

 frame number, which can be used to index /proc/kpageflags and /proc/kpage?

 count. If the page is present in swap (bit 62), then bits 4?0 give the swap

 type, and bits 54?5 encode the swap offset.

 Before Linux 3.11, bits 60?55 were used to encode the base-2 log of the page size.

 To employ /proc/[pid]/pagemap efficiently, use /proc/[pid]/maps to determine which

 areas of memory are actually mapped and seek to skip over unmapped regions.

 The /proc/[pid]/pagemap file is present only if the CONFIG_PROC_PAGE_MONITOR kernel

 configuration option is enabled.

 Permission to access this file is governed by a ptrace access mode

 PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 /proc/[pid]/personality (since Linux 2.6.28)

 This read-only file exposes the process's execution domain, as set by personal?

 ity(2). The value is displayed in hexadecimal notation.

 Permission to access this file is governed by a ptrace access mode PTRACE_MODE_AT?

 TACH_FSCREDS check; see ptrace(2).

 /proc/[pid]/root

 UNIX and Linux support the idea of a per-process root of the filesystem, set by the

 chroot(2) system call. This file is a symbolic link that points to the process's Page 23/91

 root directory, and behaves in the same way as exe, and fd/*.

 Note however that this file is not merely a symbolic link. It provides the same

 view of the filesystem (including namespaces and the set of per-process mounts) as

 the process itself. An example illustrates this point. In one terminal, we start

 a shell in new user and mount namespaces, and in that shell we create some new

 mount points:

 $ PS1='sh1# ' unshare -Urnm

 sh1# mount -t tmpfs tmpfs /etc # Mount empty tmpfs at /etc

 sh1# mount --bind /usr /dev # Mount /usr at /dev

 sh1# echo $$

 27123

 In a second terminal window, in the initial mount namespace, we look at the con?

 tents of the corresponding mounts in the initial and new namespaces:

 $ PS1='sh2# ' sudo sh

 sh2# ls /etc | wc -l # In initial NS

 309

 sh2# ls /proc/27123/root/etc | wc -l # /etc in other NS

 0 # The empty tmpfs dir

 sh2# ls /dev | wc -l # In initial NS

 205

 sh2# ls /proc/27123/root/dev | wc -l # /dev in other NS

 11 # Actually bind

 # mounted to /usr

 sh2# ls /usr | wc -l # /usr in initial NS

 11

 In a multithreaded process, the contents of the /proc/[pid]/root symbolic link are

 not available if the main thread has already terminated (typically by calling

 pthread_exit(3)).

 Permission to dereference or read (readlink(2)) this symbolic link is governed by a

 ptrace access mode PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 /proc/[pid]/seccomp (Linux 2.6.12 to 2.6.22)

 This file can be used to read and change the process's secure computing (seccomp)

 mode setting. It contains the value 0 if the process is not in seccomp mode, and 1 Page 24/91

 if the process is in strict seccomp mode (see seccomp(2)). Writing 1 to this file

 places the process irreversibly in strict seccomp mode. (Further attempts to write

 to the file fail with the EPERM error.)

 In Linux 2.6.23, this file went away, to be replaced by the prctl(2) PR_GET_SECCOMP

 and PR_SET_SECCOMP operations (and later by seccomp(2) and the Seccomp field in

 /proc/[pid]/status).

 /proc/[pid]/setgroups (since Linux 3.19)

 See user_namespaces(7).

 /proc/[pid]/smaps (since Linux 2.6.14)

 This file shows memory consumption for each of the process's mappings. (The

 pmap(1) command displays similar information, in a form that may be easier for

 parsing.) For each mapping there is a series of lines such as the following:

 00400000-0048a000 r-xp 00000000 fd:03 960637 /bin/bash

 Size: 552 kB

 Rss: 460 kB

 Pss: 100 kB

 Shared_Clean: 452 kB

 Shared_Dirty: 0 kB

 Private_Clean: 8 kB

 Private_Dirty: 0 kB

 Referenced: 460 kB

 Anonymous: 0 kB

 AnonHugePages: 0 kB

 ShmemHugePages: 0 kB

 ShmemPmdMapped: 0 kB

 Swap: 0 kB

 KernelPageSize: 4 kB

 MMUPageSize: 4 kB

 KernelPageSize: 4 kB

 MMUPageSize: 4 kB

 Locked: 0 kB

 ProtectionKey: 0

 VmFlags: rd ex mr mw me dw Page 25/91

 The first of these lines shows the same information as is displayed for the mapping

 in /proc/[pid]/maps. The following lines show the size of the mapping, the amount

 of the mapping that is currently resident in RAM ("Rss"), the process's propor?

 tional share of this mapping ("Pss"), the number of clean and dirty shared pages in

 the mapping, and the number of clean and dirty private pages in the mapping. "Ref?

 erenced" indicates the amount of memory currently marked as referenced or accessed.

 "Anonymous" shows the amount of memory that does not belong to any file. "Swap"

 shows how much would-be-anonymous memory is also used, but out on swap.

 The "KernelPageSize" line (available since Linux 2.6.29) is the page size used by

 the kernel to back the virtual memory area. This matches the size used by the MMU

 in the majority of cases. However, one counter-example occurs on PPC64 kernels

 whereby a kernel using 64 kB as a base page size may still use 4 kB pages for the

 MMU on older processors. To distinguish the two attributes, the "MMUPageSize" line

 (also available since Linux 2.6.29) reports the page size used by the MMU.

 The "Locked" indicates whether the mapping is locked in memory or not.

 The "ProtectionKey" line (available since Linux 4.9, on x86 only) contains the mem?

 ory protection key (see pkeys(7)) associated with the virtual memory area. This

 entry is present only if the kernel was built with the CONFIG_X86_INTEL_MEMORY_PRO?

 TECTION_KEYS configuration option (since Linux 4.6).

 The "VmFlags" line (available since Linux 3.8) represents the kernel flags associ?

 ated with the virtual memory area, encoded using the following two-letter codes:

 rd - readable

 wr - writable

 ex - executable

 sh - shared

 mr - may read

 mw - may write

 me - may execute

 ms - may share

 gd - stack segment grows down

 pf - pure PFN range

 dw - disabled write to the mapped file

 lo - pages are locked in memory Page 26/91

 io - memory mapped I/O area

 sr - sequential read advise provided

 rr - random read advise provided

 dc - do not copy area on fork

 de - do not expand area on remapping

 ac - area is accountable

 nr - swap space is not reserved for the area

 ht - area uses huge tlb pages

 sf - perform synchronous page faults (since Linux 4.15)

 nl - non-linear mapping (removed in Linux 4.0)

 ar - architecture specific flag

 wf - wipe on fork (since Linux 4.14)

 dd - do not include area into core dump

 sd - soft-dirty flag (since Linux 3.13)

 mm - mixed map area

 hg - huge page advise flag

 nh - no-huge page advise flag

 mg - mergeable advise flag

 um - userfaultfd missing pages tracking (since Linux 4.3)

 uw - userfaultfd wprotect pages tracking (since Linux 4.3)

 The /proc/[pid]/smaps file is present only if the CONFIG_PROC_PAGE_MONITOR kernel

 configuration option is enabled.

 /proc/[pid]/stack (since Linux 2.6.29)

 This file provides a symbolic trace of the function calls in this process's kernel

 stack. This file is provided only if the kernel was built with the CONFIG_STACK?

 TRACE configuration option.

 Permission to access this file is governed by a ptrace access mode PTRACE_MODE_AT?

 TACH_FSCREDS check; see ptrace(2).

 /proc/[pid]/stat

 Status information about the process. This is used by ps(1). It is defined in the

 kernel source file fs/proc/array.c.

 The fields, in order, with their proper scanf(3) format specifiers, are listed be?

 low. Whether or not certain of these fields display valid information is governed Page 27/91

 by a ptrace access mode PTRACE_MODE_READ_FSCREDS | PTRACE_MODE_NOAUDIT check (refer

 to ptrace(2)). If the check denies access, then the field value is displayed as 0.

 The affected fields are indicated with the marking [PT].

 (1) pid %d

 The process ID.

 (2) comm %s

 The filename of the executable, in parentheses. Strings longer than

 TASK_COMM_LEN (16) characters (including the terminating null byte) are

 silently truncated. This is visible whether or not the executable is

 swapped out.

 (3) state %c

 One of the following characters, indicating process state:

 R Running

 S Sleeping in an interruptible wait

 D Waiting in uninterruptible disk sleep

 Z Zombie

 T Stopped (on a signal) or (before Linux 2.6.33) trace stopped

 t Tracing stop (Linux 2.6.33 onward)

 W Paging (only before Linux 2.6.0)

 X Dead (from Linux 2.6.0 onward)

 x Dead (Linux 2.6.33 to 3.13 only)

 K Wakekill (Linux 2.6.33 to 3.13 only)

 W Waking (Linux 2.6.33 to 3.13 only)

 P Parked (Linux 3.9 to 3.13 only)

 (4) ppid %d

 The PID of the parent of this process.

 (5) pgrp %d

 The process group ID of the process.

 (6) session %d

 The session ID of the process.

 (7) tty_nr %d

 The controlling terminal of the process. (The minor device number is con?

 tained in the combination of bits 31 to 20 and 7 to 0; the major device num? Page 28/91

 ber is in bits 15 to 8.)

 (8) tpgid %d

 The ID of the foreground process group of the controlling terminal of the

 process.

 (9) flags %u

 The kernel flags word of the process. For bit meanings, see the PF_* de?

 fines in the Linux kernel source file include/linux/sched.h. Details depend

 on the kernel version.

 The format for this field was %lu before Linux 2.6.

 (10) minflt %lu

 The number of minor faults the process has made which have not required

 loading a memory page from disk.

 (11) cminflt %lu

 The number of minor faults that the process's waited-for children have made.

 (12) majflt %lu

 The number of major faults the process has made which have required loading

 a memory page from disk.

 (13) cmajflt %lu

 The number of major faults that the process's waited-for children have made.

 (14) utime %lu

 Amount of time that this process has been scheduled in user mode, measured

 in clock ticks (divide by sysconf(_SC_CLK_TCK)). This includes guest time,

 guest_time (time spent running a virtual CPU, see below), so that applica?

 tions that are not aware of the guest time field do not lose that time from

 their calculations.

 (15) stime %lu

 Amount of time that this process has been scheduled in kernel mode, measured

 in clock ticks (divide by sysconf(_SC_CLK_TCK)).

 (16) cutime %ld

 Amount of time that this process's waited-for children have been scheduled

 in user mode, measured in clock ticks (divide by sysconf(_SC_CLK_TCK)).

 (See also times(2).) This includes guest time, cguest_time (time spent run?

 ning a virtual CPU, see below). Page 29/91

 (17) cstime %ld

 Amount of time that this process's waited-for children have been scheduled

 in kernel mode, measured in clock ticks (divide by sysconf(_SC_CLK_TCK)).

 (18) priority %ld

 (Explanation for Linux 2.6) For processes running a real-time scheduling

 policy (policy below; see sched_setscheduler(2)), this is the negated sched?

 uling priority, minus one; that is, a number in the range -2 to -100, corre?

 sponding to real-time priorities 1 to 99. For processes running under a

 non-real-time scheduling policy, this is the raw nice value (setpriority(2))

 as represented in the kernel. The kernel stores nice values as numbers in

 the range 0 (high) to 39 (low), corresponding to the user-visible nice range

 of -20 to 19.

 Before Linux 2.6, this was a scaled value based on the scheduler weighting

 given to this process.

 (19) nice %ld

 The nice value (see setpriority(2)), a value in the range 19 (low priority)

 to -20 (high priority).

 (20) num_threads %ld

 Number of threads in this process (since Linux 2.6). Before kernel 2.6,

 this field was hard coded to 0 as a placeholder for an earlier removed

 field.

 (21) itrealvalue %ld

 The time in jiffies before the next SIGALRM is sent to the process due to an

 interval timer. Since kernel 2.6.17, this field is no longer maintained,

 and is hard coded as 0.

 (22) starttime %llu

 The time the process started after system boot. In kernels before Linux

 2.6, this value was expressed in jiffies. Since Linux 2.6, the value is ex?

 pressed in clock ticks (divide by sysconf(_SC_CLK_TCK)).

 The format for this field was %lu before Linux 2.6.

 (23) vsize %lu

 Virtual memory size in bytes.

 (24) rss %ld Page 30/91

 Resident Set Size: number of pages the process has in real memory. This is

 just the pages which count toward text, data, or stack space. This does not

 include pages which have not been demand-loaded in, or which are swapped

 out. This value is inaccurate; see /proc/[pid]/statm below.

 (25) rsslim %lu

 Current soft limit in bytes on the rss of the process; see the description

 of RLIMIT_RSS in getrlimit(2).

 (26) startcode %lu [PT]

 The address above which program text can run.

 (27) endcode %lu [PT]

 The address below which program text can run.

 (28) startstack %lu [PT]

 The address of the start (i.e., bottom) of the stack.

 (29) kstkesp %lu [PT]

 The current value of ESP (stack pointer), as found in the kernel stack page

 for the process.

 (30) kstkeip %lu [PT]

 The current EIP (instruction pointer).

 (31) signal %lu

 The bitmap of pending signals, displayed as a decimal number. Obsolete, be?

 cause it does not provide information on real-time signals; use

 /proc/[pid]/status instead.

 (32) blocked %lu

 The bitmap of blocked signals, displayed as a decimal number. Obsolete, be?

 cause it does not provide information on real-time signals; use

 /proc/[pid]/status instead.

 (33) sigignore %lu

 The bitmap of ignored signals, displayed as a decimal number. Obsolete, be?

 cause it does not provide information on real-time signals; use

 /proc/[pid]/status instead.

 (34) sigcatch %lu

 The bitmap of caught signals, displayed as a decimal number. Obsolete, be?

 cause it does not provide information on real-time signals; use Page 31/91

 /proc/[pid]/status instead.

 (35) wchan %lu [PT]

 This is the "channel" in which the process is waiting. It is the address of

 a location in the kernel where the process is sleeping. The corresponding

 symbolic name can be found in /proc/[pid]/wchan.

 (36) nswap %lu

 Number of pages swapped (not maintained).

 (37) cnswap %lu

 Cumulative nswap for child processes (not maintained).

 (38) exit_signal %d (since Linux 2.1.22)

 Signal to be sent to parent when we die.

 (39) processor %d (since Linux 2.2.8)

 CPU number last executed on.

 (40) rt_priority %u (since Linux 2.5.19)

 Real-time scheduling priority, a number in the range 1 to 99 for processes

 scheduled under a real-time policy, or 0, for non-real-time processes (see

 sched_setscheduler(2)).

 (41) policy %u (since Linux 2.5.19)

 Scheduling policy (see sched_setscheduler(2)). Decode using the SCHED_*

 constants in linux/sched.h.

 The format for this field was %lu before Linux 2.6.22.

 (42) delayacct_blkio_ticks %llu (since Linux 2.6.18)

 Aggregated block I/O delays, measured in clock ticks (centiseconds).

 (43) guest_time %lu (since Linux 2.6.24)

 Guest time of the process (time spent running a virtual CPU for a guest op?

 erating system), measured in clock ticks (divide by sysconf(_SC_CLK_TCK)).

 (44) cguest_time %ld (since Linux 2.6.24)

 Guest time of the process's children, measured in clock ticks (divide by

 sysconf(_SC_CLK_TCK)).

 (45) start_data %lu (since Linux 3.3) [PT]

 Address above which program initialized and uninitialized (BSS) data are

 placed.

 (46) end_data %lu (since Linux 3.3) [PT] Page 32/91

 Address below which program initialized and uninitialized (BSS) data are

 placed.

 (47) start_brk %lu (since Linux 3.3) [PT]

 Address above which program heap can be expanded with brk(2).

 (48) arg_start %lu (since Linux 3.5) [PT]

 Address above which program command-line arguments (argv) are placed.

 (49) arg_end %lu (since Linux 3.5) [PT]

 Address below program command-line arguments (argv) are placed.

 (50) env_start %lu (since Linux 3.5) [PT]

 Address above which program environment is placed.

 (51) env_end %lu (since Linux 3.5) [PT]

 Address below which program environment is placed.

 (52) exit_code %d (since Linux 3.5) [PT]

 The thread's exit status in the form reported by waitpid(2).

 /proc/[pid]/statm

 Provides information about memory usage, measured in pages. The columns are:

 size (1) total program size

 (same as VmSize in /proc/[pid]/status)

 resident (2) resident set size

 (inaccurate; same as VmRSS in /proc/[pid]/status)

 shared (3) number of resident shared pages

 (i.e., backed by a file)

 (inaccurate; same as RssFile+RssShmem in

 /proc/[pid]/status)

 text (4) text (code)

 lib (5) library (unused since Linux 2.6; always 0)

 data (6) data + stack

 dt (7) dirty pages (unused since Linux 2.6; always 0)

 Some of these values are inaccurate because of a kernel-internal scalability opti?

 mization. If accurate values are required, use /proc/[pid]/smaps or

 /proc/[pid]/smaps_rollup instead, which are much slower but provide accurate, de?

 tailed information.

 /proc/[pid]/status Page 33/91

 Provides much of the information in /proc/[pid]/stat and /proc/[pid]/statm in a

 format that's easier for humans to parse. Here's an example:

 $ cat /proc/$$/status

 Name: bash

 Umask: 0022

 State: S (sleeping)

 Tgid: 17248

 Ngid: 0

 Pid: 17248

 PPid: 17200

 TracerPid: 0

 Uid: 1000 1000 1000 1000

 Gid: 100 100 100 100

 FDSize: 256

 Groups: 16 33 100

 NStgid: 17248

 NSpid: 17248

 NSpgid: 17248

 NSsid: 17200

 VmPeak: 131168 kB

 VmSize: 131168 kB

 VmLck: 0 kB

 VmPin: 0 kB

 VmHWM: 13484 kB

 VmRSS: 13484 kB

 RssAnon: 10264 kB

 RssFile: 3220 kB

 RssShmem: 0 kB

 VmData: 10332 kB

 VmStk: 136 kB

 VmExe: 992 kB

 VmLib: 2104 kB

 VmPTE: 76 kB Page 34/91

 VmPMD: 12 kB

 VmSwap: 0 kB

 HugetlbPages: 0 kB # 4.4

 CoreDumping: 0 # 4.15

 Threads: 1

 SigQ: 0/3067

 SigPnd: 0000000000000000

 ShdPnd: 0000000000000000

 SigBlk: 0000000000010000

 SigIgn: 0000000000384004

 SigCgt: 000000004b813efb

 CapInh: 0000000000000000

 CapPrm: 0000000000000000

 CapEff: 0000000000000000

 CapBnd: ffffffffffffffff

 CapAmb: 0000000000000000

 NoNewPrivs: 0

 Seccomp: 0

 Speculation_Store_Bypass: vulnerable

 Cpus_allowed: 00000001

 Cpus_allowed_list: 0

 Mems_allowed: 1

 Mems_allowed_list: 0

 voluntary_ctxt_switches: 150

 nonvoluntary_ctxt_switches: 545

 The fields are as follows:

 Name Command run by this process. Strings longer than TASK_COMM_LEN (16) charac?

 ters (including the terminating null byte) are silently truncated.

 Umask Process umask, expressed in octal with a leading zero; see umask(2). (Since

 Linux 4.7.)

 State Current state of the process. One of "R (running)", "S (sleeping)", "D

 (disk sleep)", "T (stopped)", "t (tracing stop)", "Z (zombie)", or "X

 (dead)". Page 35/91

 Tgid Thread group ID (i.e., Process ID).

 Ngid NUMA group ID (0 if none; since Linux 3.13).

 Pid Thread ID (see gettid(2)).

 PPid PID of parent process.

 TracerPid

 PID of process tracing this process (0 if not being traced).

 Uid, Gid

 Real, effective, saved set, and filesystem UIDs (GIDs).

 FDSize Number of file descriptor slots currently allocated.

 Groups Supplementary group list.

 NStgid Thread group ID (i.e., PID) in each of the PID namespaces of which [pid] is

 a member. The leftmost entry shows the value with respect to the PID name?

 space of the process that mounted this procfs (or the root namespace if

 mounted by the kernel), followed by the value in successively nested inner

 namespaces. (Since Linux 4.1.)

 NSpid Thread ID in each of the PID namespaces of which [pid] is a member. The

 fields are ordered as for NStgid. (Since Linux 4.1.)

 NSpgid Process group ID in each of the PID namespaces of which [pid] is a member.

 The fields are ordered as for NStgid. (Since Linux 4.1.)

 NSsid descendant namespace session ID hierarchy Session ID in each of the PID

 namespaces of which [pid] is a member. The fields are ordered as for NSt?

 gid. (Since Linux 4.1.)

 VmPeak Peak virtual memory size.

 VmSize Virtual memory size.

 VmLck Locked memory size (see mlock(2)).

 VmPin Pinned memory size (since Linux 3.2). These are pages that can't be moved

 because something needs to directly access physical memory.

 VmHWM Peak resident set size ("high water mark"). This value is inaccurate; see

 /proc/[pid]/statm above.

 VmRSS Resident set size. Note that the value here is the sum of RssAnon, RssFile,

 and RssShmem. This value is inaccurate; see /proc/[pid]/statm above.

 RssAnon

 Size of resident anonymous memory. (since Linux 4.5). This value is inac? Page 36/91

 curate; see /proc/[pid]/statm above.

 RssFile

 Size of resident file mappings. (since Linux 4.5). This value is inaccu?

 rate; see /proc/[pid]/statm above.

 RssShmem

 Size of resident shared memory (includes System V shared memory, mappings

 from tmpfs(5), and shared anonymous mappings). (since Linux 4.5).

 VmData, VmStk, VmExe

 Size of data, stack, and text segments. This value is inaccurate; see

 /proc/[pid]/statm above.

 VmLib Shared library code size.

 VmPTE Page table entries size (since Linux 2.6.10).

 VmPMD Size of second-level page tables (added in Linux 4.0; removed in Linux

 4.15).

 VmSwap Swapped-out virtual memory size by anonymous private pages; shmem swap usage

 is not included (since Linux 2.6.34). This value is inaccurate; see

 /proc/[pid]/statm above.

 HugetlbPages

 Size of hugetlb memory portions (since Linux 4.4).

 CoreDumping

 Contains the value 1 if the process is currently dumping core, and 0 if it

 is not (since Linux 4.15). This information can be used by a monitoring

 process to avoid killing a process that is currently dumping core, which

 could result in a corrupted core dump file.

 Threads

 Number of threads in process containing this thread.

 SigQ This field contains two slash-separated numbers that relate to queued sig?

 nals for the real user ID of this process. The first of these is the number

 of currently queued signals for this real user ID, and the second is the re?

 source limit on the number of queued signals for this process (see the de?

 scription of RLIMIT_SIGPENDING in getrlimit(2)).

 SigPnd, ShdPnd

 Mask (expressed in hexadecimal) of signals pending for thread and for Page 37/91

 process as a whole (see pthreads(7) and signal(7)).

 SigBlk, SigIgn, SigCgt

 Masks (expressed in hexadecimal) indicating signals being blocked, ignored,

 and caught (see signal(7)).

 CapInh, CapPrm, CapEff

 Masks (expressed in hexadecimal) of capabilities enabled in inheritable,

 permitted, and effective sets (see capabilities(7)).

 CapBnd Capability bounding set, expressed in hexadecimal (since Linux 2.6.26, see

 capabilities(7)).

 CapAmb Ambient capability set, expressed in hexadecimal (since Linux 4.3, see capa?

 bilities(7)).

 NoNewPrivs

 Value of the no_new_privs bit (since Linux 4.10, see prctl(2)).

 Seccomp

 Seccomp mode of the process (since Linux 3.8, see seccomp(2)). 0 means SEC?

 COMP_MODE_DISABLED; 1 means SECCOMP_MODE_STRICT; 2 means SECCOMP_MODE_FIL?

 TER. This field is provided only if the kernel was built with the CON?

 FIG_SECCOMP kernel configuration option enabled.

 Speculation_Store_Bypass

 Speculation flaw mitigation state (since Linux 4.17, see prctl(2)).

 Cpus_allowed

 Hexadecimal mask of CPUs on which this process may run (since Linux 2.6.24,

 see cpuset(7)).

 Cpus_allowed_list

 Same as previous, but in "list format" (since Linux 2.6.26, see cpuset(7)).

 Mems_allowed

 Mask of memory nodes allowed to this process (since Linux 2.6.24, see

 cpuset(7)).

 Mems_allowed_list

 Same as previous, but in "list format" (since Linux 2.6.26, see cpuset(7)).

 voluntary_ctxt_switches, nonvoluntary_ctxt_switches

 Number of voluntary and involuntary context switches (since Linux 2.6.23).

 /proc/[pid]/syscall (since Linux 2.6.27) Page 38/91

 This file exposes the system call number and argument registers for the system call

 currently being executed by the process, followed by the values of the stack

 pointer and program counter registers. The values of all six argument registers

 are exposed, although most system calls use fewer registers.

 If the process is blocked, but not in a system call, then the file displays -1 in

 place of the system call number, followed by just the values of the stack pointer

 and program counter. If process is not blocked, then the file contains just the

 string "running".

 This file is present only if the kernel was configured with CONFIG_HAVE_ARCH_TRACE?

 HOOK.

 Permission to access this file is governed by a ptrace access mode PTRACE_MODE_AT?

 TACH_FSCREDS check; see ptrace(2).

 /proc/[pid]/task (since Linux 2.6.0)

 This is a directory that contains one subdirectory for each thread in the process.

 The name of each subdirectory is the numerical thread ID ([tid]) of the thread (see

 gettid(2)).

 Within each of these subdirectories, there is a set of files with the same names

 and contents as under the /proc/[pid] directories. For attributes that are shared

 by all threads, the contents for each of the files under the task/[tid] subdirecto?

 ries will be the same as in the corresponding file in the parent /proc/[pid] direc?

 tory (e.g., in a multithreaded process, all of the task/[tid]/cwd files will have

 the same value as the /proc/[pid]/cwd file in the parent directory, since all of

 the threads in a process share a working directory). For attributes that are dis?

 tinct for each thread, the corresponding files under task/[tid] may have different

 values (e.g., various fields in each of the task/[tid]/status files may be differ?

 ent for each thread), or they might not exist in /proc/[pid] at all.

 In a multithreaded process, the contents of the /proc/[pid]/task directory are not

 available if the main thread has already terminated (typically by calling

 pthread_exit(3)).

 /proc/[pid]/task/[tid]/children (since Linux 3.5)

 A space-separated list of child tasks of this task. Each child task is represented

 by its TID.

 This option is intended for use by the checkpoint-restore (CRIU) system, and reli? Page 39/91

 ably provides a list of children only if all of the child processes are stopped or

 frozen. It does not work properly if children of the target task exit while the

 file is being read! Exiting children may cause non-exiting children to be omitted

 from the list. This makes this interface even more unreliable than classic PID-

 based approaches if the inspected task and its children aren't frozen, and most

 code should probably not use this interface.

 Until Linux 4.2, the presence of this file was governed by the CONFIG_CHECK?

 POINT_RESTORE kernel configuration option. Since Linux 4.2, it is governed by the

 CONFIG_PROC_CHILDREN option.

 /proc/[pid]/timers (since Linux 3.10)

 A list of the POSIX timers for this process. Each timer is listed with a line that

 starts with the string "ID:". For example:

 ID: 1

 signal: 60/00007fff86e452a8

 notify: signal/pid.2634

 ClockID: 0

 ID: 0

 signal: 60/00007fff86e452a8

 notify: signal/pid.2634

 ClockID: 1

 The lines shown for each timer have the following meanings:

 ID The ID for this timer. This is not the same as the timer ID returned by

 timer_create(2); rather, it is the same kernel-internal ID that is available

 via the si_timerid field of the siginfo_t structure (see sigaction(2)).

 signal This is the signal number that this timer uses to deliver notifications fol?

 lowed by a slash, and then the sigev_value value supplied to the signal han?

 dler. Valid only for timers that notify via a signal.

 notify The part before the slash specifies the mechanism that this timer uses to

 deliver notifications, and is one of "thread", "signal", or "none". Immedi?

 ately following the slash is either the string "tid" for timers with

 SIGEV_THREAD_ID notification, or "pid" for timers that notify by other mech?

 anisms. Following the "." is the PID of the process (or the kernel thread

 ID of the thread) that will be delivered a signal if the timer delivers no? Page 40/91

 tifications via a signal.

 ClockID

 This field identifies the clock that the timer uses for measuring time. For

 most clocks, this is a number that matches one of the user-space CLOCK_*

 constants exposed via <time.h>. CLOCK_PROCESS_CPUTIME_ID timers display

 with a value of -6 in this field. CLOCK_THREAD_CPUTIME_ID timers display

 with a value of -2 in this field.

 This file is available only when the kernel was configured with CONFIG_CHECK?

 POINT_RESTORE.

 /proc/[pid]/timerslack_ns (since Linux 4.6)

 This file exposes the process's "current" timer slack value, expressed in nanosec?

 onds. The file is writable, allowing the process's timer slack value to be

 changed. Writing 0 to this file resets the "current" timer slack to the "default"

 timer slack value. For further details, see the discussion of PR_SET_TIMERSLACK in

 prctl(2).

 Initially, permission to access this file was governed by a ptrace access mode

 PTRACE_MODE_ATTACH_FSCREDS check (see ptrace(2)). However, this was subsequently

 deemed too strict a requirement (and had the side effect that requiring a process

 to have the CAP_SYS_PTRACE capability would also allow it to view and change any

 process's memory). Therefore, since Linux 4.9, only the (weaker) CAP_SYS_NICE ca?

 pability is required to access this file.

 /proc/[pid]/uid_map, /proc/[pid]/gid_map (since Linux 3.5)

 See user_namespaces(7).

 /proc/[pid]/wchan (since Linux 2.6.0)

 The symbolic name corresponding to the location in the kernel where the process is

 sleeping.

 Permission to access this file is governed by a ptrace access mode

 PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

 /proc/[tid]

 There is a numerical subdirectory for each running thread that is not a thread

 group leader (i.e., a thread whose thread ID is not the same as its process ID);

 the subdirectory is named by the thread ID. Each one of these subdirectories con?

 tains files and subdirectories exposing information about the thread with the Page 41/91

 thread ID tid. The contents of these directories are the same as the corresponding

 /proc/[pid]/task/[tid] directories.

 The /proc/[tid] subdirectories are not visible when iterating through /proc with

 getdents(2) (and thus are not visible when one uses ls(1) to view the contents of

 /proc). However, the pathnames of these directories are visible to (i.e., usable

 as arguments in) system calls that operate on pathnames.

 /proc/apm

 Advanced power management version and battery information when CONFIG_APM is de?

 fined at kernel compilation time.

 /proc/buddyinfo

 This file contains information which is used for diagnosing memory fragmentation

 issues. Each line starts with the identification of the node and the name of the

 zone which together identify a memory region. This is then followed by the count

 of available chunks of a certain order in which these zones are split. The size in

 bytes of a certain order is given by the formula:

 (2^order) * PAGE_SIZE

 The binary buddy allocator algorithm inside the kernel will split one chunk into

 two chunks of a smaller order (thus with half the size) or combine two contiguous

 chunks into one larger chunk of a higher order (thus with double the size) to sat?

 isfy allocation requests and to counter memory fragmentation. The order matches

 the column number, when starting to count at zero.

 For example on an x86-64 system:

 Node 0, zone DMA 1 1 1 0 2 1 1 0 1 1 3

 Node 0, zone DMA32 65 47 4 81 52 28 13 10 5 1 404

 Node 0, zone Normal 216 55 189 101 84 38 37 27 5 3 587

 In this example, there is one node containing three zones and there are 11 differ?

 ent chunk sizes. If the page size is 4 kilobytes, then the first zone called DMA

 (on x86 the first 16 megabyte of memory) has 1 chunk of 4 kilobytes (order 0)

 available and has 3 chunks of 4 megabytes (order 10) available.

 If the memory is heavily fragmented, the counters for higher order chunks will be

 zero and allocation of large contiguous areas will fail.

 Further information about the zones can be found in /proc/zoneinfo.

 /proc/bus Page 42/91

 Contains subdirectories for installed busses.

 /proc/bus/pccard

 Subdirectory for PCMCIA devices when CONFIG_PCMCIA is set at kernel compilation

 time.

 /proc/bus/pccard/drivers

 /proc/bus/pci

 Contains various bus subdirectories and pseudo-files containing information about

 PCI busses, installed devices, and device drivers. Some of these files are not

 ASCII.

 /proc/bus/pci/devices

 Information about PCI devices. They may be accessed through lspci(8) and set?

 pci(8).

 /proc/cgroups (since Linux 2.6.24)

 See cgroups(7).

 /proc/cmdline

 Arguments passed to the Linux kernel at boot time. Often done via a boot manager

 such as lilo(8) or grub(8).

 /proc/config.gz (since Linux 2.6)

 This file exposes the configuration options that were used to build the currently

 running kernel, in the same format as they would be shown in the .config file that

 resulted when configuring the kernel (using make xconfig, make config, or similar).

 The file contents are compressed; view or search them using zcat(1) and zgrep(1).

 As long as no changes have been made to the following file, the contents of

 /proc/config.gz are the same as those provided by:

 cat /lib/modules/$(uname -r)/build/.config

 /proc/config.gz is provided only if the kernel is configured with CONFIG_IKCON?

 FIG_PROC.

 /proc/crypto

 A list of the ciphers provided by the kernel crypto API. For details, see the ker?

 nel Linux Kernel Crypto API documentation available under the kernel source direc?

 tory Documentation/crypto/ (or Documentation/DocBook before 4.10; the documentation

 can be built using a command such as make htmldocs in the root directory of the

 kernel source tree). Page 43/91

 /proc/cpuinfo

 This is a collection of CPU and system architecture dependent items, for each sup?

 ported architecture a different list. Two common entries are processor which gives

 CPU number and bogomips; a system constant that is calculated during kernel ini?

 tialization. SMP machines have information for each CPU. The lscpu(1) command

 gathers its information from this file.

 /proc/devices

 Text listing of major numbers and device groups. This can be used by MAKEDEV

 scripts for consistency with the kernel.

 /proc/diskstats (since Linux 2.5.69)

 This file contains disk I/O statistics for each disk device. See the Linux kernel

 source file Documentation/iostats.txt for further information.

 /proc/dma

 This is a list of the registered ISA DMA (direct memory access) channels in use.

 /proc/driver

 Empty subdirectory.

 /proc/execdomains

 List of the execution domains (ABI personalities).

 /proc/fb

 Frame buffer information when CONFIG_FB is defined during kernel compilation.

 /proc/filesystems

 A text listing of the filesystems which are supported by the kernel, namely

 filesystems which were compiled into the kernel or whose kernel modules are cur?

 rently loaded. (See also filesystems(5).) If a filesystem is marked with "nodev",

 this means that it does not require a block device to be mounted (e.g., virtual

 filesystem, network filesystem).

 Incidentally, this file may be used by mount(8) when no filesystem is specified and

 it didn't manage to determine the filesystem type. Then filesystems contained in

 this file are tried (excepted those that are marked with "nodev").

 /proc/fs

 Contains subdirectories that in turn contain files with information about (certain)

 mounted filesystems.

 /proc/ide Page 44/91

 This directory exists on systems with the IDE bus. There are directories for each

 IDE channel and attached device. Files include:

 cache buffer size in KB

 capacity number of sectors

 driver driver version

 geometry physical and logical geometry

 identify in hexadecimal

 media media type

 model manufacturer's model number

 settings drive settings

 smart_thresholds IDE disk management thresholds (in hex)

 smart_values IDE disk management values (in hex)

 The hdparm(8) utility provides access to this information in a friendly format.

 /proc/interrupts

 This is used to record the number of interrupts per CPU per IO device. Since Linux

 2.6.24, for the i386 and x86-64 architectures, at least, this also includes inter?

 rupts internal to the system (that is, not associated with a device as such), such

 as NMI (nonmaskable interrupt), LOC (local timer interrupt), and for SMP systems,

 TLB (TLB flush interrupt), RES (rescheduling interrupt), CAL (remote function call

 interrupt), and possibly others. Very easy to read formatting, done in ASCII.

 /proc/iomem

 I/O memory map in Linux 2.4.

 /proc/ioports

 This is a list of currently registered Input-Output port regions that are in use.

 /proc/kallsyms (since Linux 2.5.71)

 This holds the kernel exported symbol definitions used by the modules(X) tools to

 dynamically link and bind loadable modules. In Linux 2.5.47 and earlier, a similar

 file with slightly different syntax was named ksyms.

 /proc/kcore

 This file represents the physical memory of the system and is stored in the ELF

 core file format. With this pseudo-file, and an unstripped kernel

 (/usr/src/linux/vmlinux) binary, GDB can be used to examine the current state of

 any kernel data structures. Page 45/91

 The total length of the file is the size of physical memory (RAM) plus 4 KiB.

 /proc/keys (since Linux 2.6.10)

 See keyrings(7).

 /proc/key-users (since Linux 2.6.10)

 See keyrings(7).

 /proc/kmsg

 This file can be used instead of the syslog(2) system call to read kernel messages.

 A process must have superuser privileges to read this file, and only one process

 should read this file. This file should not be read if a syslog process is running

 which uses the syslog(2) system call facility to log kernel messages.

 Information in this file is retrieved with the dmesg(1) program.

 /proc/kpagecgroup (since Linux 4.3)

 This file contains a 64-bit inode number of the memory cgroup each page is charged

 to, indexed by page frame number (see the discussion of /proc/[pid]/pagemap).

 The /proc/kpagecgroup file is present only if the CONFIG_MEMCG kernel configuration

 option is enabled.

 /proc/kpagecount (since Linux 2.6.25)

 This file contains a 64-bit count of the number of times each physical page frame

 is mapped, indexed by page frame number (see the discussion of

 /proc/[pid]/pagemap).

 The /proc/kpagecount file is present only if the CONFIG_PROC_PAGE_MONITOR kernel

 configuration option is enabled.

 /proc/kpageflags (since Linux 2.6.25)

 This file contains 64-bit masks corresponding to each physical page frame; it is

 indexed by page frame number (see the discussion of /proc/[pid]/pagemap). The bits

 are as follows:

 0 - KPF_LOCKED

 1 - KPF_ERROR

 2 - KPF_REFERENCED

 3 - KPF_UPTODATE

 4 - KPF_DIRTY

 5 - KPF_LRU

 6 - KPF_ACTIVE Page 46/91

 7 - KPF_SLAB

 8 - KPF_WRITEBACK

 9 - KPF_RECLAIM

 10 - KPF_BUDDY

 11 - KPF_MMAP (since Linux 2.6.31)

 12 - KPF_ANON (since Linux 2.6.31)

 13 - KPF_SWAPCACHE (since Linux 2.6.31)

 14 - KPF_SWAPBACKED (since Linux 2.6.31)

 15 - KPF_COMPOUND_HEAD (since Linux 2.6.31)

 16 - KPF_COMPOUND_TAIL (since Linux 2.6.31)

 17 - KPF_HUGE (since Linux 2.6.31)

 18 - KPF_UNEVICTABLE (since Linux 2.6.31)

 19 - KPF_HWPOISON (since Linux 2.6.31)

 20 - KPF_NOPAGE (since Linux 2.6.31)

 21 - KPF_KSM (since Linux 2.6.32)

 22 - KPF_THP (since Linux 3.4)

 23 - KPF_BALLOON (since Linux 3.18)

 24 - KPF_ZERO_PAGE (since Linux 4.0)

 25 - KPF_IDLE (since Linux 4.3)

 For further details on the meanings of these bits, see the kernel source file Docu?

 mentation/admin-guide/mm/pagemap.rst. Before kernel 2.6.29, KPF_WRITEBACK, KPF_RE?

 CLAIM, KPF_BUDDY, and KPF_LOCKED did not report correctly.

 The /proc/kpageflags file is present only if the CONFIG_PROC_PAGE_MONITOR kernel

 configuration option is enabled.

 /proc/ksyms (Linux 1.1.23?2.5.47)

 See /proc/kallsyms.

 /proc/loadavg

 The first three fields in this file are load average figures giving the number of

 jobs in the run queue (state R) or waiting for disk I/O (state D) averaged over 1,

 5, and 15 minutes. They are the same as the load average numbers given by up?

 time(1) and other programs. The fourth field consists of two numbers separated by

 a slash (/). The first of these is the number of currently runnable kernel sched?

 uling entities (processes, threads). The value after the slash is the number of Page 47/91

 kernel scheduling entities that currently exist on the system. The fifth field is

 the PID of the process that was most recently created on the system.

 /proc/locks

 This file shows current file locks (flock(2) and fcntl(2)) and leases (fcntl(2)).

 An example of the content shown in this file is the following:

 1: POSIX ADVISORY READ 5433 08:01:7864448 128 128

 2: FLOCK ADVISORY WRITE 2001 08:01:7864554 0 EOF

 3: FLOCK ADVISORY WRITE 1568 00:2f:32388 0 EOF

 4: POSIX ADVISORY WRITE 699 00:16:28457 0 EOF

 5: POSIX ADVISORY WRITE 764 00:16:21448 0 0

 6: POSIX ADVISORY READ 3548 08:01:7867240 1 1

 7: POSIX ADVISORY READ 3548 08:01:7865567 1826 2335

 8: OFDLCK ADVISORY WRITE -1 08:01:8713209 128 191

 The fields shown in each line are as follows:

 (1) The ordinal position of the lock in the list.

 (2) The lock type. Values that may appear here include:

 FLOCK This is a BSD file lock created using flock(2).

 OFDLCK This is an open file description (OFD) lock created using fcntl(2).

 POSIX This is a POSIX byte-range lock created using fcntl(2).

 (3) Among the strings that can appear here are the following:

 ADVISORY

 This is an advisory lock.

 MANDATORY

 This is a mandatory lock.

 (4) The type of lock. Values that can appear here are:

 READ This is a POSIX or OFD read lock, or a BSD shared lock.

 WRITE This is a POSIX or OFD write lock, or a BSD exclusive lock.

 (5) The PID of the process that owns the lock.

 Because OFD locks are not owned by a single process (since multiple processes

 may have file descriptors that refer to the same open file description), the

 value -1 is displayed in this field for OFD locks. (Before kernel 4.14, a bug

 meant that the PID of the process that initially acquired the lock was dis?

 played instead of the value -1.) Page 48/91

 (6) Three colon-separated subfields that identify the major and minor device ID of

 the device containing the filesystem where the locked file resides, followed by

 the inode number of the locked file.

 (7) The byte offset of the first byte of the lock. For BSD locks, this value is

 always 0.

 (8) The byte offset of the last byte of the lock. EOF in this field means that the

 lock extends to the end of the file. For BSD locks, the value shown is always

 EOF.

 Since Linux 4.9, the list of locks shown in /proc/locks is filtered to show just

 the locks for the processes in the PID namespace (see pid_namespaces(7)) for which

 the /proc filesystem was mounted. (In the initial PID namespace, there is no fil?

 tering of the records shown in this file.)

 The lslocks(8) command provides a bit more information about each lock.

 /proc/malloc (only up to and including Linux 2.2)

 This file is present only if CONFIG_DEBUG_MALLOC was defined during compilation.

 /proc/meminfo

 This file reports statistics about memory usage on the system. It is used by

 free(1) to report the amount of free and used memory (both physical and swap) on

 the system as well as the shared memory and buffers used by the kernel. Each line

 of the file consists of a parameter name, followed by a colon, the value of the pa?

 rameter, and an option unit of measurement (e.g., "kB"). The list below describes

 the parameter names and the format specifier required to read the field value. Ex?

 cept as noted below, all of the fields have been present since at least Linux

 2.6.0. Some fields are displayed only if the kernel was configured with various

 options; those dependencies are noted in the list.

 MemTotal %lu

 Total usable RAM (i.e., physical RAM minus a few reserved bits and the ker?

 nel binary code).

 MemFree %lu

 The sum of LowFree+HighFree.

 MemAvailable %lu (since Linux 3.14)

 An estimate of how much memory is available for starting new applications,

 without swapping. Page 49/91

 Buffers %lu

 Relatively temporary storage for raw disk blocks that shouldn't get tremen?

 dously large (20 MB or so).

 Cached %lu

 In-memory cache for files read from the disk (the page cache). Doesn't in?

 clude SwapCached.

 SwapCached %lu

 Memory that once was swapped out, is swapped back in but still also is in

 the swap file. (If memory pressure is high, these pages don't need to be

 swapped out again because they are already in the swap file. This saves

 I/O.)

 Active %lu

 Memory that has been used more recently and usually not reclaimed unless ab?

 solutely necessary.

 Inactive %lu

 Memory which has been less recently used. It is more eligible to be re?

 claimed for other purposes.

 Active(anon) %lu (since Linux 2.6.28)

 [To be documented.]

 Inactive(anon) %lu (since Linux 2.6.28)

 [To be documented.]

 Active(file) %lu (since Linux 2.6.28)

 [To be documented.]

 Inactive(file) %lu (since Linux 2.6.28)

 [To be documented.]

 Unevictable %lu (since Linux 2.6.28)

 (From Linux 2.6.28 to 2.6.30, CONFIG_UNEVICTABLE_LRU was required.) [To be

 documented.]

 Mlocked %lu (since Linux 2.6.28)

 (From Linux 2.6.28 to 2.6.30, CONFIG_UNEVICTABLE_LRU was required.) [To be

 documented.]

 HighTotal %lu

 (Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.) Total amount of Page 50/91

 highmem. Highmem is all memory above ~860 MB of physical memory. Highmem

 areas are for use by user-space programs, or for the page cache. The kernel

 must use tricks to access this memory, making it slower to access than

 lowmem.

 HighFree %lu

 (Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.) Amount of free

 highmem.

 LowTotal %lu

 (Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.) Total amount of

 lowmem. Lowmem is memory which can be used for everything that highmem can

 be used for, but it is also available for the kernel's use for its own data

 structures. Among many other things, it is where everything from Slab is

 allocated. Bad things happen when you're out of lowmem.

 LowFree %lu

 (Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.) Amount of free

 lowmem.

 MmapCopy %lu (since Linux 2.6.29)

 (CONFIG_MMU is required.) [To be documented.]

 SwapTotal %lu

 Total amount of swap space available.

 SwapFree %lu

 Amount of swap space that is currently unused.

 Dirty %lu

 Memory which is waiting to get written back to the disk.

 Writeback %lu

 Memory which is actively being written back to the disk.

 AnonPages %lu (since Linux 2.6.18)

 Non-file backed pages mapped into user-space page tables.

 Mapped %lu

 Files which have been mapped into memory (with mmap(2)), such as libraries.

 Shmem %lu (since Linux 2.6.32)

 Amount of memory consumed in tmpfs(5) filesystems.

 KReclaimable %lu (since Linux 4.20) Page 51/91

 Kernel allocations that the kernel will attempt to reclaim under memory

 pressure. Includes SReclaimable (below), and other direct allocations with

 a shrinker.

 Slab %lu

 In-kernel data structures cache. (See slabinfo(5).)

 SReclaimable %lu (since Linux 2.6.19)

 Part of Slab, that might be reclaimed, such as caches.

 SUnreclaim %lu (since Linux 2.6.19)

 Part of Slab, that cannot be reclaimed on memory pressure.

 KernelStack %lu (since Linux 2.6.32)

 Amount of memory allocated to kernel stacks.

 PageTables %lu (since Linux 2.6.18)

 Amount of memory dedicated to the lowest level of page tables.

 Quicklists %lu (since Linux 2.6.27)

 (CONFIG_QUICKLIST is required.) [To be documented.]

 NFS_Unstable %lu (since Linux 2.6.18)

 NFS pages sent to the server, but not yet committed to stable storage.

 Bounce %lu (since Linux 2.6.18)

 Memory used for block device "bounce buffers".

 WritebackTmp %lu (since Linux 2.6.26)

 Memory used by FUSE for temporary writeback buffers.

 CommitLimit %lu (since Linux 2.6.10)

 This is the total amount of memory currently available to be allocated on

 the system, expressed in kilobytes. This limit is adhered to only if strict

 overcommit accounting is enabled (mode 2 in /proc/sys/vm/overcommit_memory).

 The limit is calculated according to the formula described under

 /proc/sys/vm/overcommit_memory. For further details, see the kernel source

 file Documentation/vm/overcommit-accounting.rst.

 Committed_AS %lu

 The amount of memory presently allocated on the system. The committed mem?

 ory is a sum of all of the memory which has been allocated by processes,

 even if it has not been "used" by them as of yet. A process which allocates

 1 GB of memory (using malloc(3) or similar), but touches only 300 MB of that Page 52/91

 memory will show up as using only 300 MB of memory even if it has the ad?

 dress space allocated for the entire 1 GB.

 This 1 GB is memory which has been "committed" to by the VM and can be used

 at any time by the allocating application. With strict overcommit enabled

 on the system (mode 2 in /proc/sys/vm/overcommit_memory), allocations which

 would exceed the CommitLimit will not be permitted. This is useful if one

 needs to guarantee that processes will not fail due to lack of memory once

 that memory has been successfully allocated.

 VmallocTotal %lu

 Total size of vmalloc memory area.

 VmallocUsed %lu

 Amount of vmalloc area which is used. Since Linux 4.4, this field is no

 longer calculated, and is hard coded as 0. See /proc/vmallocinfo.

 VmallocChunk %lu

 Largest contiguous block of vmalloc area which is free. Since Linux 4.4,

 this field is no longer calculated and is hard coded as 0. See /proc/vmal?

 locinfo.

 HardwareCorrupted %lu (since Linux 2.6.32)

 (CONFIG_MEMORY_FAILURE is required.) [To be documented.]

 LazyFree %lu (since Linux 4.12)

 Shows the amount of memory marked by madvise(2) MADV_FREE.

 AnonHugePages %lu (since Linux 2.6.38)

 (CONFIG_TRANSPARENT_HUGEPAGE is required.) Non-file backed huge pages

 mapped into user-space page tables.

 ShmemHugePages %lu (since Linux 4.8)

 (CONFIG_TRANSPARENT_HUGEPAGE is required.) Memory used by shared memory

 (shmem) and tmpfs(5) allocated with huge pages.

 ShmemPmdMapped %lu (since Linux 4.8)

 (CONFIG_TRANSPARENT_HUGEPAGE is required.) Shared memory mapped into user

 space with huge pages.

 CmaTotal %lu (since Linux 3.1)

 Total CMA (Contiguous Memory Allocator) pages. (CONFIG_CMA is required.)

 CmaFree %lu (since Linux 3.1) Page 53/91

 Free CMA (Contiguous Memory Allocator) pages. (CONFIG_CMA is required.)

 HugePages_Total %lu

 (CONFIG_HUGETLB_PAGE is required.) The size of the pool of huge pages.

 HugePages_Free %lu

 (CONFIG_HUGETLB_PAGE is required.) The number of huge pages in the pool

 that are not yet allocated.

 HugePages_Rsvd %lu (since Linux 2.6.17)

 (CONFIG_HUGETLB_PAGE is required.) This is the number of huge pages for

 which a commitment to allocate from the pool has been made, but no alloca?

 tion has yet been made. These reserved huge pages guarantee that an appli?

 cation will be able to allocate a huge page from the pool of huge pages at

 fault time.

 HugePages_Surp %lu (since Linux 2.6.24)

 (CONFIG_HUGETLB_PAGE is required.) This is the number of huge pages in the

 pool above the value in /proc/sys/vm/nr_hugepages. The maximum number of

 surplus huge pages is controlled by /proc/sys/vm/nr_overcommit_hugepages.

 Hugepagesize %lu

 (CONFIG_HUGETLB_PAGE is required.) The size of huge pages.

 DirectMap4k %lu (since Linux 2.6.27)

 Number of bytes of RAM linearly mapped by kernel in 4 kB pages. (x86.)

 DirectMap4M %lu (since Linux 2.6.27)

 Number of bytes of RAM linearly mapped by kernel in 4 MB pages. (x86 with

 CONFIG_X86_64 or CONFIG_X86_PAE enabled.)

 DirectMap2M %lu (since Linux 2.6.27)

 Number of bytes of RAM linearly mapped by kernel in 2 MB pages. (x86 with

 neither CONFIG_X86_64 nor CONFIG_X86_PAE enabled.)

 DirectMap1G %lu (since Linux 2.6.27)

 (x86 with CONFIG_X86_64 and CONFIG_X86_DIRECT_GBPAGES enabled.)

 /proc/modules

 A text list of the modules that have been loaded by the system. See also lsmod(8).

 /proc/mounts

 Before kernel 2.4.19, this file was a list of all the filesystems currently mounted

 on the system. With the introduction of per-process mount namespaces in Linux Page 54/91

 2.4.19 (see mount_namespaces(7)), this file became a link to /proc/self/mounts,

 which lists the mount points of the process's own mount namespace. The format of

 this file is documented in fstab(5).

 /proc/mtrr

 Memory Type Range Registers. See the Linux kernel source file Documenta?

 tion/x86/mtrr.txt (or Documentation/mtrr.txt before Linux 2.6.28) for details.

 /proc/net

 This directory contains various files and subdirectories containing information

 about the networking layer. The files contain ASCII structures and are, therefore,

 readable with cat(1). However, the standard netstat(8) suite provides much cleaner

 access to these files.

 With the advent of network namespaces, various information relating to the network

 stack is virtualized (see network_namespaces(7)). Thus, since Linux 2.6.25,

 /proc/net is a symbolic link to the directory /proc/self/net, which contains the

 same files and directories as listed below. However, these files and directories

 now expose information for the network namespace of which the process is a member.

 /proc/net/arp

 This holds an ASCII readable dump of the kernel ARP table used for address resolu?

 tions. It will show both dynamically learned and preprogrammed ARP entries. The

 format is:

 IP address HW type Flags HW address Mask Device

 192.168.0.50 0x1 0x2 00:50:BF:25:68:F3 * eth0

 192.168.0.250 0x1 0xc 00:00:00:00:00:00 * eth0

 Here "IP address" is the IPv4 address of the machine and the "HW type" is the hard?

 ware type of the address from RFC 826. The flags are the internal flags of the ARP

 structure (as defined in /usr/include/linux/if_arp.h) and the "HW address" is the

 data link layer mapping for that IP address if it is known.

 /proc/net/dev

 The dev pseudo-file contains network device status information. This gives the

 number of received and sent packets, the number of errors and collisions and other

 basic statistics. These are used by the ifconfig(8) program to report device sta?

 tus. The format is:

 Inter-| Receive | Transmit Page 55/91

 face |bytes packets errs drop fifo frame compressed multicast|bytes packets errs drop fifo colls carrier

compressed

 lo: 2776770 11307 0 0 0 0 0 0 2776770 11307 0 0 0 0 0 0

 eth0: 1215645 2751 0 0 0 0 0 0 1782404 4324 0 0 0 427 0 0

 ppp0: 1622270 5552 1 0 0 0 0 0 354130 5669 0 0 0 0 0 0

 tap0: 7714 81 0 0 0 0 0 0 7714 81 0 0 0 0 0 0

 /proc/net/dev_mcast

 Defined in /usr/src/linux/net/core/dev_mcast.c:

 indx interface_name dmi_u dmi_g dmi_address

 2 eth0 1 0 01005e000001

 3 eth1 1 0 01005e000001

 4 eth2 1 0 01005e000001

 /proc/net/igmp

 Internet Group Management Protocol. Defined in /usr/src/linux/net/core/igmp.c.

 /proc/net/rarp

 This file uses the same format as the arp file and contains the current reverse

 mapping database used to provide rarp(8) reverse address lookup services. If RARP

 is not configured into the kernel, this file will not be present.

 /proc/net/raw

 Holds a dump of the RAW socket table. Much of the information is not of use apart

 from debugging. The "sl" value is the kernel hash slot for the socket, the "lo?

 cal_address" is the local address and protocol number pair. "St" is the internal

 status of the socket. The "tx_queue" and "rx_queue" are the outgoing and incoming

 data queue in terms of kernel memory usage. The "tr", "tm->when", and "rexmits"

 fields are not used by RAW. The "uid" field holds the effective UID of the creator

 of the socket.

 /proc/net/snmp

 This file holds the ASCII data needed for the IP, ICMP, TCP, and UDP management in?

 formation bases for an SNMP agent.

 /proc/net/tcp

 Holds a dump of the TCP socket table. Much of the information is not of use apart

 from debugging. The "sl" value is the kernel hash slot for the socket, the "lo?

 cal_address" is the local address and port number pair. The "rem_address" is the Page 56/91

 remote address and port number pair (if connected). "St" is the internal status of

 the socket. The "tx_queue" and "rx_queue" are the outgoing and incoming data queue

 in terms of kernel memory usage. The "tr", "tm->when", and "rexmits" fields hold

 internal information of the kernel socket state and are useful only for debugging.

 The "uid" field holds the effective UID of the creator of the socket.

 /proc/net/udp

 Holds a dump of the UDP socket table. Much of the information is not of use apart

 from debugging. The "sl" value is the kernel hash slot for the socket, the "lo?

 cal_address" is the local address and port number pair. The "rem_address" is the

 remote address and port number pair (if connected). "St" is the internal status of

 the socket. The "tx_queue" and "rx_queue" are the outgoing and incoming data queue

 in terms of kernel memory usage. The "tr", "tm->when", and "rexmits" fields are

 not used by UDP. The "uid" field holds the effective UID of the creator of the

 socket. The format is:

 sl local_address rem_address st tx_queue rx_queue tr rexmits tm->when uid

 1: 01642C89:0201 0C642C89:03FF 01 00000000:00000001 01:000071BA 00000000 0

 1: 00000000:0801 00000000:0000 0A 00000000:00000000 00:00000000 6F000100 0

 1: 00000000:0201 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0

 /proc/net/unix

 Lists the UNIX domain sockets present within the system and their status. The for?

 mat is:

 Num RefCount Protocol Flags Type St Inode Path

 0: 00000002 00000000 00000000 0001 03 42

 1: 00000001 00000000 00010000 0001 01 1948 /dev/printer

 The fields are as follows:

 Num: the kernel table slot number.

 RefCount: the number of users of the socket.

 Protocol: currently always 0.

 Flags: the internal kernel flags holding the status of the socket.

 Type: the socket type. For SOCK_STREAM sockets, this is 0001; for SOCK_DGRAM

 sockets, it is 0002; and for SOCK_SEQPACKET sockets, it is 0005.

 St: the internal state of the socket.

 Inode: the inode number of the socket. Page 57/91

 Path: the bound pathname (if any) of the socket. Sockets in the abstract name?

 space are included in the list, and are shown with a Path that commences

 with the character '@'.

 /proc/net/netfilter/nfnetlink_queue

 This file contains information about netfilter user-space queueing, if used. Each

 line represents a queue. Queues that have not been subscribed to by user space are

 not shown.

 1 4207 0 2 65535 0 0 0 1

 (1) (2) (3)(4) (5) (6) (7) (8)

 The fields in each line are:

 (1) The ID of the queue. This matches what is specified in the --queue-num or

 --queue-balance options to the iptables(8) NFQUEUE target. See iptables-ex?

 tensions(8) for more information.

 (2) The netlink port ID subscribed to the queue.

 (3) The number of packets currently queued and waiting to be processed by the ap?

 plication.

 (4) The copy mode of the queue. It is either 1 (metadata only) or 2 (also copy

 payload data to user space).

 (5) Copy range; that is, how many bytes of packet payload should be copied to user

 space at most.

 (6) queue dropped. Number of packets that had to be dropped by the kernel because

 too many packets are already waiting for user space to send back the mandatory

 accept/drop verdicts.

 (7) queue user dropped. Number of packets that were dropped within the netlink

 subsystem. Such drops usually happen when the corresponding socket buffer is

 full; that is, user space is not able to read messages fast enough.

 (8) sequence number. Every queued packet is associated with a (32-bit) monotoni?

 cally increasing sequence number. This shows the ID of the most recent packet

 queued.

 The last number exists only for compatibility reasons and is always 1.

 /proc/partitions

 Contains the major and minor numbers of each partition as well as the number of

 1024-byte blocks and the partition name. Page 58/91

 /proc/pci

 This is a listing of all PCI devices found during kernel initialization and their

 configuration.

 This file has been deprecated in favor of a new /proc interface for PCI

 (/proc/bus/pci). It became optional in Linux 2.2 (available with CON?

 FIG_PCI_OLD_PROC set at kernel compilation). It became once more nonoptionally en?

 abled in Linux 2.4. Next, it was deprecated in Linux 2.6 (still available with

 CONFIG_PCI_LEGACY_PROC set), and finally removed altogether since Linux 2.6.17.

 /proc/profile (since Linux 2.4)

 This file is present only if the kernel was booted with the profile=1 command-line

 option. It exposes kernel profiling information in a binary format for use by

 readprofile(1). Writing (e.g., an empty string) to this file resets the profiling

 counters; on some architectures, writing a binary integer "profiling multiplier" of

 size sizeof(int) sets the profiling interrupt frequency.

 /proc/scsi

 A directory with the scsi mid-level pseudo-file and various SCSI low-level driver

 directories, which contain a file for each SCSI host in this system, all of which

 give the status of some part of the SCSI IO subsystem. These files contain ASCII

 structures and are, therefore, readable with cat(1).

 You can also write to some of the files to reconfigure the subsystem or switch cer?

 tain features on or off.

 /proc/scsi/scsi

 This is a listing of all SCSI devices known to the kernel. The listing is similar

 to the one seen during bootup. scsi currently supports only the add-single-device

 command which allows root to add a hotplugged device to the list of known devices.

 The command

 echo 'scsi add-single-device 1 0 5 0' > /proc/scsi/scsi

 will cause host scsi1 to scan on SCSI channel 0 for a device on ID 5 LUN 0. If

 there is already a device known on this address or the address is invalid, an error

 will be returned.

 /proc/scsi/[drivername]

 [drivername] can currently be NCR53c7xx, aha152x, aha1542, aha1740, aic7xxx, bus?

 logic, eata_dma, eata_pio, fdomain, in2000, pas16, qlogic, scsi_debug, seagate, Page 59/91

 t128, u15-24f, ultrastore, or wd7000. These directories show up for all drivers

 that registered at least one SCSI HBA. Every directory contains one file per reg?

 istered host. Every host-file is named after the number the host was assigned dur?

 ing initialization.

 Reading these files will usually show driver and host configuration, statistics,

 and so on.

 Writing to these files allows different things on different hosts. For example,

 with the latency and nolatency commands, root can switch on and off command latency

 measurement code in the eata_dma driver. With the lockup and unlock commands, root

 can control bus lockups simulated by the scsi_debug driver.

 /proc/self

 This directory refers to the process accessing the /proc filesystem, and is identi?

 cal to the /proc directory named by the process ID of the same process.

 /proc/slabinfo

 Information about kernel caches. See slabinfo(5) for details.

 /proc/stat

 kernel/system statistics. Varies with architecture. Common entries include:

 cpu 10132153 290696 3084719 46828483 16683 0 25195 0 175628 0

 cpu0 1393280 32966 572056 13343292 6130 0 17875 0 23933 0

 The amount of time, measured in units of USER_HZ (1/100ths of a second on

 most architectures, use sysconf(_SC_CLK_TCK) to obtain the right value),

 that the system ("cpu" line) or the specific CPU ("cpuN" line) spent in var?

 ious states:

 user (1) Time spent in user mode.

 nice (2) Time spent in user mode with low priority (nice).

 system (3) Time spent in system mode.

 idle (4) Time spent in the idle task. This value should be USER_HZ times

 the second entry in the /proc/uptime pseudo-file.

 iowait (since Linux 2.5.41)

 (5) Time waiting for I/O to complete. This value is not reliable,

 for the following reasons:

 1. The CPU will not wait for I/O to complete; iowait is the time that

 a task is waiting for I/O to complete. When a CPU goes into idle Page 60/91

 state for outstanding task I/O, another task will be scheduled on

 this CPU.

 2. On a multi-core CPU, the task waiting for I/O to complete is not

 running on any CPU, so the iowait of each CPU is difficult to cal?

 culate.

 3. The value in this field may decrease in certain conditions.

 irq (since Linux 2.6.0)

 (6) Time servicing interrupts.

 softirq (since Linux 2.6.0)

 (7) Time servicing softirqs.

 steal (since Linux 2.6.11)

 (8) Stolen time, which is the time spent in other operating systems

 when running in a virtualized environment

 guest (since Linux 2.6.24)

 (9) Time spent running a virtual CPU for guest operating systems un?

 der the control of the Linux kernel.

 guest_nice (since Linux 2.6.33)

 (10) Time spent running a niced guest (virtual CPU for guest operat?

 ing systems under the control of the Linux kernel).

 page 5741 1808

 The number of pages the system paged in and the number that were paged out

 (from disk).

 swap 1 0

 The number of swap pages that have been brought in and out.

 intr 1462898

 This line shows counts of interrupts serviced since boot time, for each of

 the possible system interrupts. The first column is the total of all inter?

 rupts serviced including unnumbered architecture specific interrupts; each

 subsequent column is the total for that particular numbered interrupt. Un?

 numbered interrupts are not shown, only summed into the total.

 disk_io: (2,0):(31,30,5764,1,2) (3,0):...

 (major,disk_idx):(noinfo, read_io_ops, blks_read, write_io_ops, blks_writ?

 ten) Page 61/91

 (Linux 2.4 only)

 ctxt 115315

 The number of context switches that the system underwent.

 btime 769041601

 boot time, in seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).

 processes 86031

 Number of forks since boot.

 procs_running 6

 Number of processes in runnable state. (Linux 2.5.45 onward.)

 procs_blocked 2

 Number of processes blocked waiting for I/O to complete. (Linux 2.5.45 on?

 ward.)

 softirq 229245889 94 60001584 13619 5175704 2471304 28 51212741 59130143 0 51240672

 This line shows the number of softirq for all CPUs. The first column is the

 total of all softirqs and each subsequent column is the total for particular

 softirq. (Linux 2.6.31 onward.)

 /proc/swaps

 Swap areas in use. See also swapon(8).

 /proc/sys

 This directory (present since 1.3.57) contains a number of files and subdirectories

 corresponding to kernel variables. These variables can be read and in some cases

 modified using the /proc filesystem, and the (deprecated) sysctl(2) system call.

 String values may be terminated by either '\0' or '\n'.

 Integer and long values may be written either in decimal or in hexadecimal notation

 (e.g., 0x3FFF). When writing multiple integer or long values, these may be sepa?

 rated by any of the following whitespace characters: ' ', '\t', or '\n'. Using

 other separators leads to the error EINVAL.

 /proc/sys/abi (since Linux 2.4.10)

 This directory may contain files with application binary information. See the

 Linux kernel source file Documentation/sysctl/abi.txt for more information.

 /proc/sys/debug

 This directory may be empty.

 /proc/sys/dev Page 62/91

 This directory contains device-specific information (e.g., dev/cdrom/info). On

 some systems, it may be empty.

 /proc/sys/fs

 This directory contains the files and subdirectories for kernel variables related

 to filesystems.

 /proc/sys/fs/aio-max-nr and /proc/sys/fs/aio-nr (since Linux 2.6.4)

 aio-nr is the running total of the number of events specified by io_setup(2) calls

 for all currently active AIO contexts. If aio-nr reaches aio-max-nr, then

 io_setup(2) will fail with the error EAGAIN. Raising aio-max-nr does not result in

 the preallocation or resizing of any kernel data structures.

 /proc/sys/fs/binfmt_misc

 Documentation for files in this directory can be found in the Linux kernel source

 in the file Documentation/admin-guide/binfmt-misc.rst (or in Documenta?

 tion/binfmt_misc.txt on older kernels).

 /proc/sys/fs/dentry-state (since Linux 2.2)

 This file contains information about the status of the directory cache (dcache).

 The file contains six numbers, nr_dentry, nr_unused, age_limit (age in seconds),

 want_pages (pages requested by system) and two dummy values.

 * nr_dentry is the number of allocated dentries (dcache entries). This field is

 unused in Linux 2.2.

 * nr_unused is the number of unused dentries.

 * age_limit is the age in seconds after which dcache entries can be reclaimed when

 memory is short.

 * want_pages is nonzero when the kernel has called shrink_dcache_pages() and the

 dcache isn't pruned yet.

 /proc/sys/fs/dir-notify-enable

 This file can be used to disable or enable the dnotify interface described in fc?

 ntl(2) on a system-wide basis. A value of 0 in this file disables the interface,

 and a value of 1 enables it.

 /proc/sys/fs/dquot-max

 This file shows the maximum number of cached disk quota entries. On some (2.4)

 systems, it is not present. If the number of free cached disk quota entries is

 very low and you have some awesome number of simultaneous system users, you might Page 63/91

 want to raise the limit.

 /proc/sys/fs/dquot-nr

 This file shows the number of allocated disk quota entries and the number of free

 disk quota entries.

 /proc/sys/fs/epoll (since Linux 2.6.28)

 This directory contains the file max_user_watches, which can be used to limit the

 amount of kernel memory consumed by the epoll interface. For further details, see

 epoll(7).

 /proc/sys/fs/file-max

 This file defines a system-wide limit on the number of open files for all pro?

 cesses. System calls that fail when encountering this limit fail with the error

 ENFILE. (See also setrlimit(2), which can be used by a process to set the per-

 process limit, RLIMIT_NOFILE, on the number of files it may open.) If you get lots

 of error messages in the kernel log about running out of file handles (open file

 descriptions) (look for "VFS: file-max limit <number> reached"), try increasing

 this value:

 echo 100000 > /proc/sys/fs/file-max

 Privileged processes (CAP_SYS_ADMIN) can override the file-max limit.

 /proc/sys/fs/file-nr

 This (read-only) file contains three numbers: the number of allocated file handles

 (i.e., the number of open file descriptions; see open(2)); the number of free file

 handles; and the maximum number of file handles (i.e., the same value as

 /proc/sys/fs/file-max). If the number of allocated file handles is close to the

 maximum, you should consider increasing the maximum. Before Linux 2.6, the kernel

 allocated file handles dynamically, but it didn't free them again. Instead the

 free file handles were kept in a list for reallocation; the "free file handles"

 value indicates the size of that list. A large number of free file handles indi?

 cates that there was a past peak in the usage of open file handles. Since Linux

 2.6, the kernel does deallocate freed file handles, and the "free file handles"

 value is always zero.

 /proc/sys/fs/inode-max (only present until Linux 2.2)

 This file contains the maximum number of in-memory inodes. This value should be

 3?4 times larger than the value in file-max, since stdin, stdout and network sock? Page 64/91

 ets also need an inode to handle them. When you regularly run out of inodes, you

 need to increase this value.

 Starting with Linux 2.4, there is no longer a static limit on the number of inodes,

 and this file is removed.

 /proc/sys/fs/inode-nr

 This file contains the first two values from inode-state.

 /proc/sys/fs/inode-state

 This file contains seven numbers: nr_inodes, nr_free_inodes, preshrink, and four

 dummy values (always zero).

 nr_inodes is the number of inodes the system has allocated. nr_free_inodes repre?

 sents the number of free inodes.

 preshrink is nonzero when the nr_inodes > inode-max and the system needs to prune

 the inode list instead of allocating more; since Linux 2.4, this field is a dummy

 value (always zero).

 /proc/sys/fs/inotify (since Linux 2.6.13)

 This directory contains files max_queued_events, max_user_instances, and

 max_user_watches, that can be used to limit the amount of kernel memory consumed by

 the inotify interface. For further details, see inotify(7).

 /proc/sys/fs/lease-break-time

 This file specifies the grace period that the kernel grants to a process holding a

 file lease (fcntl(2)) after it has sent a signal to that process notifying it that

 another process is waiting to open the file. If the lease holder does not remove

 or downgrade the lease within this grace period, the kernel forcibly breaks the

 lease.

 /proc/sys/fs/leases-enable

 This file can be used to enable or disable file leases (fcntl(2)) on a system-wide

 basis. If this file contains the value 0, leases are disabled. A nonzero value

 enables leases.

 /proc/sys/fs/mount-max (since Linux 4.9)

 The value in this file specifies the maximum number of mounts that may exist in a

 mount namespace. The default value in this file is 100,000.

 /proc/sys/fs/mqueue (since Linux 2.6.6)

 This directory contains files msg_max, msgsize_max, and queues_max, controlling the Page 65/91

 resources used by POSIX message queues. See mq_overview(7) for details.

 /proc/sys/fs/nr_open (since Linux 2.6.25)

 This file imposes a ceiling on the value to which the RLIMIT_NOFILE resource limit

 can be raised (see getrlimit(2)). This ceiling is enforced for both unprivileged

 and privileged process. The default value in this file is 1048576. (Before Linux

 2.6.25, the ceiling for RLIMIT_NOFILE was hard-coded to the same value.)

 /proc/sys/fs/overflowgid and /proc/sys/fs/overflowuid

 These files allow you to change the value of the fixed UID and GID. The default is

 65534. Some filesystems support only 16-bit UIDs and GIDs, although in Linux UIDs

 and GIDs are 32 bits. When one of these filesystems is mounted with writes en?

 abled, any UID or GID that would exceed 65535 is translated to the overflow value

 before being written to disk.

 /proc/sys/fs/pipe-max-size (since Linux 2.6.35)

 See pipe(7).

 /proc/sys/fs/pipe-user-pages-hard (since Linux 4.5)

 See pipe(7).

 /proc/sys/fs/pipe-user-pages-soft (since Linux 4.5)

 See pipe(7).

 /proc/sys/fs/protected_fifos (since Linux 4.19)

 The value in this file is/can be set to one of the following:

 0 Writing to FIFOs is unrestricted.

 1 Don't allow O_CREAT open(2) on FIFOs that the caller doesn't own in world-

 writable sticky directories, unless the FIFO is owned by the owner of the di?

 rectory.

 2 As for the value 1, but the restriction also applies to group-writable sticky

 directories.

 The intent of the above protections is to avoid unintentional writes to an at?

 tacker-controlled FIFO when a program expected to create a regular file.

 /proc/sys/fs/protected_hardlinks (since Linux 3.6)

 When the value in this file is 0, no restrictions are placed on the creation of

 hard links (i.e., this is the historical behavior before Linux 3.6). When the

 value in this file is 1, a hard link can be created to a target file only if one of

 the following conditions is true: Page 66/91

 * The calling process has the CAP_FOWNER capability in its user namespace and the

 file UID has a mapping in the namespace.

 * The filesystem UID of the process creating the link matches the owner (UID) of

 the target file (as described in credentials(7), a process's filesystem UID is

 normally the same as its effective UID).

 * All of the following conditions are true:

 ? the target is a regular file;

 ? the target file does not have its set-user-ID mode bit enabled;

 ? the target file does not have both its set-group-ID and group-executable

 mode bits enabled; and

 ? the caller has permission to read and write the target file (either via the

 file's permissions mask or because it has suitable capabilities).

 The default value in this file is 0. Setting the value to 1 prevents a longstand?

 ing class of security issues caused by hard-link-based time-of-check, time-of-use

 races, most commonly seen in world-writable directories such as /tmp. The common

 method of exploiting this flaw is to cross privilege boundaries when following a

 given hard link (i.e., a root process follows a hard link created by another user).

 Additionally, on systems without separated partitions, this stops unauthorized

 users from "pinning" vulnerable set-user-ID and set-group-ID files against being

 upgraded by the administrator, or linking to special files.

 /proc/sys/fs/protected_regular (since Linux 4.19)

 The value in this file is/can be set to one of the following:

 0 Writing to regular files is unrestricted.

 1 Don't allow O_CREAT open(2) on regular files that the caller doesn't own in

 world-writable sticky directories, unless the regular file is owned by the

 owner of the directory.

 2 As for the value 1, but the restriction also applies to group-writable sticky

 directories.

 The intent of the above protections is similar to protected_fifos, but allows an

 application to avoid writes to an attacker-controlled regular file, where the ap?

 plication expected to create one.

 /proc/sys/fs/protected_symlinks (since Linux 3.6)

 When the value in this file is 0, no restrictions are placed on following symbolic Page 67/91

 links (i.e., this is the historical behavior before Linux 3.6). When the value in

 this file is 1, symbolic links are followed only in the following circumstances:

 * the filesystem UID of the process following the link matches the owner (UID) of

 the symbolic link (as described in credentials(7), a process's filesystem UID is

 normally the same as its effective UID);

 * the link is not in a sticky world-writable directory; or

 * the symbolic link and its parent directory have the same owner (UID)

 A system call that fails to follow a symbolic link because of the above restric?

 tions returns the error EACCES in errno.

 The default value in this file is 0. Setting the value to 1 avoids a longstanding

 class of security issues based on time-of-check, time-of-use races when accessing

 symbolic links.

 /proc/sys/fs/suid_dumpable (since Linux 2.6.13)

 The value in this file is assigned to a process's "dumpable" flag in the circum?

 stances described in prctl(2). In effect, the value in this file determines

 whether core dump files are produced for set-user-ID or otherwise protected/tainted

 binaries. The "dumpable" setting also affects the ownership of files in a

 process's /proc/[pid] directory, as described above.

 Three different integer values can be specified:

 0 (default)

 This provides the traditional (pre-Linux 2.6.13) behavior. A core dump will

 not be produced for a process which has changed credentials (by calling se?

 teuid(2), setgid(2), or similar, or by executing a set-user-ID or set-group-

 ID program) or whose binary does not have read permission enabled.

 1 ("debug")

 All processes dump core when possible. (Reasons why a process might never?

 theless not dump core are described in core(5).) The core dump is owned by

 the filesystem user ID of the dumping process and no security is applied.

 This is intended for system debugging situations only: this mode is insecure

 because it allows unprivileged users to examine the memory contents of priv?

 ileged processes.

 2 ("suidsafe")

 Any binary which normally would not be dumped (see "0" above) is dumped Page 68/91

 readable by root only. This allows the user to remove the core dump file

 but not to read it. For security reasons core dumps in this mode will not

 overwrite one another or other files. This mode is appropriate when admin?

 istrators are attempting to debug problems in a normal environment.

 Additionally, since Linux 3.6, /proc/sys/kernel/core_pattern must either be

 an absolute pathname or a pipe command, as detailed in core(5). Warnings

 will be written to the kernel log if core_pattern does not follow these

 rules, and no core dump will be produced.

 For details of the effect of a process's "dumpable" setting on ptrace access mode

 checking, see ptrace(2).

 /proc/sys/fs/super-max

 This file controls the maximum number of superblocks, and thus the maximum number

 of mounted filesystems the kernel can have. You need increase only super-max if

 you need to mount more filesystems than the current value in super-max allows you

 to.

 /proc/sys/fs/super-nr

 This file contains the number of filesystems currently mounted.

 /proc/sys/kernel

 This directory contains files controlling a range of kernel parameters, as de?

 scribed below.

 /proc/sys/kernel/acct

 This file contains three numbers: highwater, lowwater, and frequency. If BSD-style

 process accounting is enabled, these values control its behavior. If free space on

 filesystem where the log lives goes below lowwater percent, accounting suspends.

 If free space gets above highwater percent, accounting resumes. frequency deter?

 mines how often the kernel checks the amount of free space (value is in seconds).

 Default values are 4, 2 and 30. That is, suspend accounting if 2% or less space is

 free; resume it if 4% or more space is free; consider information about amount of

 free space valid for 30 seconds.

 /proc/sys/kernel/auto_msgmni (Linux 2.6.27 to 3.18)

 From Linux 2.6.27 to 3.18, this file was used to control recomputing of the value

 in /proc/sys/kernel/msgmni upon the addition or removal of memory or upon IPC name?

 space creation/removal. Echoing "1" into this file enabled msgmni automatic recom? Page 69/91

 puting (and triggered a recomputation of msgmni based on the current amount of

 available memory and number of IPC namespaces). Echoing "0" disabled automatic re?

 computing. (Automatic recomputing was also disabled if a value was explicitly as?

 signed to /proc/sys/kernel/msgmni.) The default value in auto_msgmni was 1.

 Since Linux 3.19, the content of this file has no effect (because msgmni defaults

 to near the maximum value possible), and reads from this file always return the

 value "0".

 /proc/sys/kernel/cap_last_cap (since Linux 3.2)

 See capabilities(7).

 /proc/sys/kernel/cap-bound (from Linux 2.2 to 2.6.24)

 This file holds the value of the kernel capability bounding set (expressed as a

 signed decimal number). This set is ANDed against the capabilities permitted to a

 process during execve(2). Starting with Linux 2.6.25, the system-wide capability

 bounding set disappeared, and was replaced by a per-thread bounding set; see capa?

 bilities(7).

 /proc/sys/kernel/core_pattern

 See core(5).

 /proc/sys/kernel/core_pipe_limit

 See core(5).

 /proc/sys/kernel/core_uses_pid

 See core(5).

 /proc/sys/kernel/ctrl-alt-del

 This file controls the handling of Ctrl-Alt-Del from the keyboard. When the value

 in this file is 0, Ctrl-Alt-Del is trapped and sent to the init(1) program to han?

 dle a graceful restart. When the value is greater than zero, Linux's reaction to a

 Vulcan Nerve Pinch (tm) will be an immediate reboot, without even syncing its dirty

 buffers. Note: when a program (like dosemu) has the keyboard in "raw" mode, the

 ctrl-alt-del is intercepted by the program before it ever reaches the kernel tty

 layer, and it's up to the program to decide what to do with it.

 /proc/sys/kernel/dmesg_restrict (since Linux 2.6.37)

 The value in this file determines who can see kernel syslog contents. A value of 0

 in this file imposes no restrictions. If the value is 1, only privileged users can

 read the kernel syslog. (See syslog(2) for more details.) Since Linux 3.4, only Page 70/91

 users with the CAP_SYS_ADMIN capability may change the value in this file.

 /proc/sys/kernel/domainname and /proc/sys/kernel/hostname

 can be used to set the NIS/YP domainname and the hostname of your box in exactly

 the same way as the commands domainname(1) and hostname(1), that is:

 # echo 'darkstar' > /proc/sys/kernel/hostname

 # echo 'mydomain' > /proc/sys/kernel/domainname

 has the same effect as

 # hostname 'darkstar'

 # domainname 'mydomain'

 Note, however, that the classic darkstar.frop.org has the hostname "darkstar" and

 DNS (Internet Domain Name Server) domainname "frop.org", not to be confused with

 the NIS (Network Information Service) or YP (Yellow Pages) domainname. These two

 domain names are in general different. For a detailed discussion see the host?

 name(1) man page.

 /proc/sys/kernel/hotplug

 This file contains the pathname for the hotplug policy agent. The default value in

 this file is /sbin/hotplug.

 /proc/sys/kernel/htab-reclaim (before Linux 2.4.9.2)

 (PowerPC only) If this file is set to a nonzero value, the PowerPC htab (see kernel

 file Documentation/powerpc/ppc_htab.txt) is pruned each time the system hits the

 idle loop.

 /proc/sys/kernel/keys/*

 This directory contains various files that define parameters and limits for the

 key-management facility. These files are described in keyrings(7).

 /proc/sys/kernel/kptr_restrict (since Linux 2.6.38)

 The value in this file determines whether kernel addresses are exposed via /proc

 files and other interfaces. A value of 0 in this file imposes no restrictions. If

 the value is 1, kernel pointers printed using the %pK format specifier will be re?

 placed with zeros unless the user has the CAP_SYSLOG capability. If the value is

 2, kernel pointers printed using the %pK format specifier will be replaced with ze?

 ros regardless of the user's capabilities. The initial default value for this file

 was 1, but the default was changed to 0 in Linux 2.6.39. Since Linux 3.4, only

 users with the CAP_SYS_ADMIN capability can change the value in this file. Page 71/91

 /proc/sys/kernel/l2cr

 (PowerPC only) This file contains a flag that controls the L2 cache of G3 processor

 boards. If 0, the cache is disabled. Enabled if nonzero.

 /proc/sys/kernel/modprobe

 This file contains the pathname for the kernel module loader. The default value is

 /sbin/modprobe. The file is present only if the kernel is built with the CON?

 FIG_MODULES (CONFIG_KMOD in Linux 2.6.26 and earlier) option enabled. It is de?

 scribed by the Linux kernel source file Documentation/kmod.txt (present only in

 kernel 2.4 and earlier).

 /proc/sys/kernel/modules_disabled (since Linux 2.6.31)

 A toggle value indicating if modules are allowed to be loaded in an otherwise modu?

 lar kernel. This toggle defaults to off (0), but can be set true (1). Once true,

 modules can be neither loaded nor unloaded, and the toggle cannot be set back to

 false. The file is present only if the kernel is built with the CONFIG_MODULES op?

 tion enabled.

 /proc/sys/kernel/msgmax (since Linux 2.2)

 This file defines a system-wide limit specifying the maximum number of bytes in a

 single message written on a System V message queue.

 /proc/sys/kernel/msgmni (since Linux 2.4)

 This file defines the system-wide limit on the number of message queue identifiers.

 See also /proc/sys/kernel/auto_msgmni.

 /proc/sys/kernel/msgmnb (since Linux 2.2)

 This file defines a system-wide parameter used to initialize the msg_qbytes setting

 for subsequently created message queues. The msg_qbytes setting specifies the max?

 imum number of bytes that may be written to the message queue.

 /proc/sys/kernel/ngroups_max (since Linux 2.6.4)

 This is a read-only file that displays the upper limit on the number of a process's

 group memberships.

 /proc/sys/kernel/ns_last_pid (since Linux 3.3)

 See pid_namespaces(7).

 /proc/sys/kernel/ostype and /proc/sys/kernel/osrelease

 These files give substrings of /proc/version.

 /proc/sys/kernel/overflowgid and /proc/sys/kernel/overflowuid Page 72/91

 These files duplicate the files /proc/sys/fs/overflowgid and /proc/sys/fs/over?

 flowuid.

 /proc/sys/kernel/panic

 This file gives read/write access to the kernel variable panic_timeout. If this is

 zero, the kernel will loop on a panic; if nonzero, it indicates that the kernel

 should autoreboot after this number of seconds. When you use the software watchdog

 device driver, the recommended setting is 60.

 /proc/sys/kernel/panic_on_oops (since Linux 2.5.68)

 This file controls the kernel's behavior when an oops or BUG is encountered. If

 this file contains 0, then the system tries to continue operation. If it contains

 1, then the system delays a few seconds (to give klogd time to record the oops out?

 put) and then panics. If the /proc/sys/kernel/panic file is also nonzero, then the

 machine will be rebooted.

 /proc/sys/kernel/pid_max (since Linux 2.5.34)

 This file specifies the value at which PIDs wrap around (i.e., the value in this

 file is one greater than the maximum PID). PIDs greater than this value are not

 allocated; thus, the value in this file also acts as a system-wide limit on the to?

 tal number of processes and threads. The default value for this file, 32768, re?

 sults in the same range of PIDs as on earlier kernels. On 32-bit platforms, 32768

 is the maximum value for pid_max. On 64-bit systems, pid_max can be set to any

 value up to 2^22 (PID_MAX_LIMIT, approximately 4 million).

 /proc/sys/kernel/powersave-nap (PowerPC only)

 This file contains a flag. If set, Linux-PPC will use the "nap" mode of powersav?

 ing, otherwise the "doze" mode will be used.

 /proc/sys/kernel/printk

 See syslog(2).

 /proc/sys/kernel/pty (since Linux 2.6.4)

 This directory contains two files relating to the number of UNIX 98 pseudoterminals

 (see pts(4)) on the system.

 /proc/sys/kernel/pty/max

 This file defines the maximum number of pseudoterminals.

 /proc/sys/kernel/pty/nr

 This read-only file indicates how many pseudoterminals are currently in use. Page 73/91

 /proc/sys/kernel/random

 This directory contains various parameters controlling the operation of the file

 /dev/random. See random(4) for further information.

 /proc/sys/kernel/random/uuid (since Linux 2.4)

 Each read from this read-only file returns a randomly generated 128-bit UUID, as a

 string in the standard UUID format.

 /proc/sys/kernel/randomize_va_space (since Linux 2.6.12)

 Select the address space layout randomization (ASLR) policy for the system (on ar?

 chitectures that support ASLR). Three values are supported for this file:

 0 Turn ASLR off. This is the default for architectures that don't support ASLR,

 and when the kernel is booted with the norandmaps parameter.

 1 Make the addresses of mmap(2) allocations, the stack, and the VDSO page random?

 ized. Among other things, this means that shared libraries will be loaded at

 randomized addresses. The text segment of PIE-linked binaries will also be

 loaded at a randomized address. This value is the default if the kernel was

 configured with CONFIG_COMPAT_BRK.

 2 (Since Linux 2.6.25) Also support heap randomization. This value is the default

 if the kernel was not configured with CONFIG_COMPAT_BRK.

 /proc/sys/kernel/real-root-dev

 This file is documented in the Linux kernel source file Documentation/ad?

 min-guide/initrd.rst (or Documentation/initrd.txt before Linux 4.10).

 /proc/sys/kernel/reboot-cmd (Sparc only)

 This file seems to be a way to give an argument to the SPARC ROM/Flash boot loader.

 Maybe to tell it what to do after rebooting?

 /proc/sys/kernel/rtsig-max

 (Only in kernels up to and including 2.6.7; see setrlimit(2)) This file can be used

 to tune the maximum number of POSIX real-time (queued) signals that can be out?

 standing in the system.

 /proc/sys/kernel/rtsig-nr

 (Only in kernels up to and including 2.6.7.) This file shows the number of POSIX

 real-time signals currently queued.

 /proc/[pid]/sched_autogroup_enabled (since Linux 2.6.38)

 See sched(7). Page 74/91

 /proc/sys/kernel/sched_child_runs_first (since Linux 2.6.23)

 If this file contains the value zero, then, after a fork(2), the parent is first

 scheduled on the CPU. If the file contains a nonzero value, then the child is

 scheduled first on the CPU. (Of course, on a multiprocessor system, the parent and

 the child might both immediately be scheduled on a CPU.)

 /proc/sys/kernel/sched_rr_timeslice_ms (since Linux 3.9)

 See sched_rr_get_interval(2).

 /proc/sys/kernel/sched_rt_period_us (since Linux 2.6.25)

 See sched(7).

 /proc/sys/kernel/sched_rt_runtime_us (since Linux 2.6.25)

 See sched(7).

 /proc/sys/kernel/seccomp (since Linux 4.14)

 This directory provides additional seccomp information and configuration. See sec?

 comp(2) for further details.

 /proc/sys/kernel/sem (since Linux 2.4)

 This file contains 4 numbers defining limits for System V IPC semaphores. These

 fields are, in order:

 SEMMSL The maximum semaphores per semaphore set.

 SEMMNS A system-wide limit on the number of semaphores in all semaphore sets.

 SEMOPM The maximum number of operations that may be specified in a semop(2) call.

 SEMMNI A system-wide limit on the maximum number of semaphore identifiers.

 /proc/sys/kernel/sg-big-buff

 This file shows the size of the generic SCSI device (sg) buffer. You can't tune it

 just yet, but you could change it at compile time by editing include/scsi/sg.h and

 changing the value of SG_BIG_BUFF. However, there shouldn't be any reason to

 change this value.

 /proc/sys/kernel/shm_rmid_forced (since Linux 3.1)

 If this file is set to 1, all System V shared memory segments will be marked for

 destruction as soon as the number of attached processes falls to zero; in other

 words, it is no longer possible to create shared memory segments that exist inde?

 pendently of any attached process.

 The effect is as though a shmctl(2) IPC_RMID is performed on all existing segments

 as well as all segments created in the future (until this file is reset to 0). Page 75/91

 Note that existing segments that are attached to no process will be immediately de?

 stroyed when this file is set to 1. Setting this option will also destroy segments

 that were created, but never attached, upon termination of the process that created

 the segment with shmget(2).

 Setting this file to 1 provides a way of ensuring that all System V shared memory

 segments are counted against the resource usage and resource limits (see the de?

 scription of RLIMIT_AS in getrlimit(2)) of at least one process.

 Because setting this file to 1 produces behavior that is nonstandard and could also

 break existing applications, the default value in this file is 0. Set this file to

 1 only if you have a good understanding of the semantics of the applications using

 System V shared memory on your system.

 /proc/sys/kernel/shmall (since Linux 2.2)

 This file contains the system-wide limit on the total number of pages of System V

 shared memory.

 /proc/sys/kernel/shmmax (since Linux 2.2)

 This file can be used to query and set the run-time limit on the maximum (System V

 IPC) shared memory segment size that can be created. Shared memory segments up to

 1 GB are now supported in the kernel. This value defaults to SHMMAX.

 /proc/sys/kernel/shmmni (since Linux 2.4)

 This file specifies the system-wide maximum number of System V shared memory seg?

 ments that can be created.

 /proc/sys/kernel/sysctl_writes_strict (since Linux 3.16)

 The value in this file determines how the file offset affects the behavior of up?

 dating entries in files under /proc/sys. The file has three possible values:

 -1 This provides legacy handling, with no printk warnings. Each write(2) must

 fully contain the value to be written, and multiple writes on the same file de?

 scriptor will overwrite the entire value, regardless of the file position.

 0 (default) This provides the same behavior as for -1, but printk warnings are

 written for processes that perform writes when the file offset is not 0.

 1 Respect the file offset when writing strings into /proc/sys files. Multiple

 writes will append to the value buffer. Anything written beyond the maximum

 length of the value buffer will be ignored. Writes to numeric /proc/sys en?

 tries must always be at file offset 0 and the value must be fully contained in Page 76/91

 the buffer provided to write(2).

 /proc/sys/kernel/sysrq

 This file controls the functions allowed to be invoked by the SysRq key. By de?

 fault, the file contains 1 meaning that every possible SysRq request is allowed (in

 older kernel versions, SysRq was disabled by default, and you were required to

 specifically enable it at run-time, but this is not the case any more). Possible

 values in this file are:

 0 Disable sysrq completely

 1 Enable all functions of sysrq

 > 1 Bit mask of allowed sysrq functions, as follows:

 2 Enable control of console logging level

 4 Enable control of keyboard (SAK, unraw)

 8 Enable debugging dumps of processes etc.

 16 Enable sync command

 32 Enable remount read-only

 64 Enable signaling of processes (term, kill, oom-kill)

 128 Allow reboot/poweroff

 256 Allow nicing of all real-time tasks

 This file is present only if the CONFIG_MAGIC_SYSRQ kernel configuration option is

 enabled. For further details see the Linux kernel source file Documentation/ad?

 min-guide/sysrq.rst (or Documentation/sysrq.txt before Linux 4.10).

 /proc/sys/kernel/version

 This file contains a string such as:

 #5 Wed Feb 25 21:49:24 MET 1998

 The "#5" means that this is the fifth kernel built from this source base and the

 date following it indicates the time the kernel was built.

 /proc/sys/kernel/threads-max (since Linux 2.3.11)

 This file specifies the system-wide limit on the number of threads (tasks) that can

 be created on the system.

 Since Linux 4.1, the value that can be written to threads-max is bounded. The min?

 imum value that can be written is 20. The maximum value that can be written is

 given by the constant FUTEX_TID_MASK (0x3fffffff). If a value outside of this

 range is written to threads-max, the error EINVAL occurs. Page 77/91

 The value written is checked against the available RAM pages. If the thread struc?

 tures would occupy too much (more than 1/8th) of the available RAM pages,

 threads-max is reduced accordingly.

 /proc/sys/kernel/yama/ptrace_scope (since Linux 3.5)

 See ptrace(2).

 /proc/sys/kernel/zero-paged (PowerPC only)

 This file contains a flag. When enabled (nonzero), Linux-PPC will pre-zero pages

 in the idle loop, possibly speeding up get_free_pages.

 /proc/sys/net

 This directory contains networking stuff. Explanations for some of the files under

 this directory can be found in tcp(7) and ip(7).

 /proc/sys/net/core/bpf_jit_enable

 See bpf(2).

 /proc/sys/net/core/somaxconn

 This file defines a ceiling value for the backlog argument of listen(2); see the

 listen(2) manual page for details.

 /proc/sys/proc

 This directory may be empty.

 /proc/sys/sunrpc

 This directory supports Sun remote procedure call for network filesystem (NFS). On

 some systems, it is not present.

 /proc/sys/user (since Linux 4.9)

 See namespaces(7).

 /proc/sys/vm

 This directory contains files for memory management tuning, buffer and cache man?

 agement.

 /proc/sys/vm/admin_reserve_kbytes (since Linux 3.10)

 This file defines the amount of free memory (in KiB) on the system that should be

 reserved for users with the capability CAP_SYS_ADMIN.

 The default value in this file is the minimum of [3% of free pages, 8MiB] expressed

 as KiB. The default is intended to provide enough for the superuser to log in and

 kill a process, if necessary, under the default overcommit 'guess' mode (i.e., 0 in

 /proc/sys/vm/overcommit_memory). Page 78/91

 Systems running in "overcommit never" mode (i.e., 2 in /proc/sys/vm/overcommit_mem?

 ory) should increase the value in this file to account for the full virtual memory

 size of the programs used to recover (e.g., login(1) ssh(1), and top(1)) Otherwise,

 the superuser may not be able to log in to recover the system. For example, on

 x86-64 a suitable value is 131072 (128MiB reserved).

 Changing the value in this file takes effect whenever an application requests mem?

 ory.

 /proc/sys/vm/compact_memory (since Linux 2.6.35)

 When 1 is written to this file, all zones are compacted such that free memory is

 available in contiguous blocks where possible. The effect of this action can be

 seen by examining /proc/buddyinfo.

 Present only if the kernel was configured with CONFIG_COMPACTION.

 /proc/sys/vm/drop_caches (since Linux 2.6.16)

 Writing to this file causes the kernel to drop clean caches, dentries, and inodes

 from memory, causing that memory to become free. This can be useful for memory

 management testing and performing reproducible filesystem benchmarks. Because

 writing to this file causes the benefits of caching to be lost, it can degrade

 overall system performance.

 To free pagecache, use:

 echo 1 > /proc/sys/vm/drop_caches

 To free dentries and inodes, use:

 echo 2 > /proc/sys/vm/drop_caches

 To free pagecache, dentries and inodes, use:

 echo 3 > /proc/sys/vm/drop_caches

 Because writing to this file is a nondestructive operation and dirty objects are

 not freeable, the user should run sync(1) first.

 /proc/sys/vm/legacy_va_layout (since Linux 2.6.9)

 If nonzero, this disables the new 32-bit memory-mapping layout; the kernel will use

 the legacy (2.4) layout for all processes.

 /proc/sys/vm/memory_failure_early_kill (since Linux 2.6.32)

 Control how to kill processes when an uncorrected memory error (typically a 2-bit

 error in a memory module) that cannot be handled by the kernel is detected in the

 background by hardware. In some cases (like the page still having a valid copy on Page 79/91

 disk), the kernel will handle the failure transparently without affecting any ap?

 plications. But if there is no other up-to-date copy of the data, it will kill

 processes to prevent any data corruptions from propagating.

 The file has one of the following values:

 1: Kill all processes that have the corrupted-and-not-reloadable page mapped as

 soon as the corruption is detected. Note that this is not supported for a few

 types of pages, such as kernel internally allocated data or the swap cache, but

 works for the majority of user pages.

 0: Unmap the corrupted page from all processes and kill a process only if it tries

 to access the page.

 The kill is performed using a SIGBUS signal with si_code set to BUS_MCEERR_AO.

 Processes can handle this if they want to; see sigaction(2) for more details.

 This feature is active only on architectures/platforms with advanced machine check

 handling and depends on the hardware capabilities.

 Applications can override the memory_failure_early_kill setting individually with

 the prctl(2) PR_MCE_KILL operation.

 Present only if the kernel was configured with CONFIG_MEMORY_FAILURE.

 /proc/sys/vm/memory_failure_recovery (since Linux 2.6.32)

 Enable memory failure recovery (when supported by the platform).

 1: Attempt recovery.

 0: Always panic on a memory failure.

 Present only if the kernel was configured with CONFIG_MEMORY_FAILURE.

 /proc/sys/vm/oom_dump_tasks (since Linux 2.6.25)

 Enables a system-wide task dump (excluding kernel threads) to be produced when the

 kernel performs an OOM-killing. The dump includes the following information for

 each task (thread, process): thread ID, real user ID, thread group ID (process ID),

 virtual memory size, resident set size, the CPU that the task is scheduled on,

 oom_adj score (see the description of /proc/[pid]/oom_adj), and command name. This

 is helpful to determine why the OOM-killer was invoked and to identify the rogue

 task that caused it.

 If this contains the value zero, this information is suppressed. On very large

 systems with thousands of tasks, it may not be feasible to dump the memory state

 information for each one. Such systems should not be forced to incur a performance Page 80/91

 penalty in OOM situations when the information may not be desired.

 If this is set to nonzero, this information is shown whenever the OOM-killer actu?

 ally kills a memory-hogging task.

 The default value is 0.

 /proc/sys/vm/oom_kill_allocating_task (since Linux 2.6.24)

 This enables or disables killing the OOM-triggering task in out-of-memory situa?

 tions.

 If this is set to zero, the OOM-killer will scan through the entire tasklist and

 select a task based on heuristics to kill. This normally selects a rogue memory-

 hogging task that frees up a large amount of memory when killed.

 If this is set to nonzero, the OOM-killer simply kills the task that triggered the

 out-of-memory condition. This avoids a possibly expensive tasklist scan.

 If /proc/sys/vm/panic_on_oom is nonzero, it takes precedence over whatever value is

 used in /proc/sys/vm/oom_kill_allocating_task.

 The default value is 0.

 /proc/sys/vm/overcommit_kbytes (since Linux 3.14)

 This writable file provides an alternative to /proc/sys/vm/overcommit_ratio for

 controlling the CommitLimit when /proc/sys/vm/overcommit_memory has the value 2.

 It allows the amount of memory overcommitting to be specified as an absolute value

 (in kB), rather than as a percentage, as is done with overcommit_ratio. This al?

 lows for finer-grained control of CommitLimit on systems with extremely large mem?

 ory sizes.

 Only one of overcommit_kbytes or overcommit_ratio can have an effect: if overcom?

 mit_kbytes has a nonzero value, then it is used to calculate CommitLimit, otherwise

 overcommit_ratio is used. Writing a value to either of these files causes the

 value in the other file to be set to zero.

 /proc/sys/vm/overcommit_memory

 This file contains the kernel virtual memory accounting mode. Values are:

 0: heuristic overcommit (this is the default)

 1: always overcommit, never check

 2: always check, never overcommit

 In mode 0, calls of mmap(2) with MAP_NORESERVE are not checked, and the default

 check is very weak, leading to the risk of getting a process "OOM-killed". Page 81/91

 In mode 1, the kernel pretends there is always enough memory, until memory actually

 runs out. One use case for this mode is scientific computing applications that em?

 ploy large sparse arrays. In Linux kernel versions before 2.6.0, any nonzero value

 implies mode 1.

 In mode 2 (available since Linux 2.6), the total virtual address space that can be

 allocated (CommitLimit in /proc/meminfo) is calculated as

 CommitLimit = (total_RAM - total_huge_TLB) *

 overcommit_ratio / 100 + total_swap

 where:

 * total_RAM is the total amount of RAM on the system;

 * total_huge_TLB is the amount of memory set aside for huge pages;

 * overcommit_ratio is the value in /proc/sys/vm/overcommit_ratio; and

 * total_swap is the amount of swap space.

 For example, on a system with 16 GB of physical RAM, 16 GB of swap, no space dedi?

 cated to huge pages, and an overcommit_ratio of 50, this formula yields a Com?

 mitLimit of 24 GB.

 Since Linux 3.14, if the value in /proc/sys/vm/overcommit_kbytes is nonzero, then

 CommitLimit is instead calculated as:

 CommitLimit = overcommit_kbytes + total_swap

 See also the description of /proc/sys/vm/admin_reserve_kbytes and

 /proc/sys/vm/user_reserve_kbytes.

 /proc/sys/vm/overcommit_ratio (since Linux 2.6.0)

 This writable file defines a percentage by which memory can be overcommitted. The

 default value in the file is 50. See the description of /proc/sys/vm/overcom?

 mit_memory.

 /proc/sys/vm/panic_on_oom (since Linux 2.6.18)

 This enables or disables a kernel panic in an out-of-memory situation.

 If this file is set to the value 0, the kernel's OOM-killer will kill some rogue

 process. Usually, the OOM-killer is able to kill a rogue process and the system

 will survive.

 If this file is set to the value 1, then the kernel normally panics when out-of-

 memory happens. However, if a process limits allocations to certain nodes using

 memory policies (mbind(2) MPOL_BIND) or cpusets (cpuset(7)) and those nodes reach Page 82/91

 memory exhaustion status, one process may be killed by the OOM-killer. No panic

 occurs in this case: because other nodes' memory may be free, this means the system

 as a whole may not have reached an out-of-memory situation yet.

 If this file is set to the value 2, the kernel always panics when an out-of-memory

 condition occurs.

 The default value is 0. 1 and 2 are for failover of clustering. Select either ac?

 cording to your policy of failover.

 /proc/sys/vm/swappiness

 The value in this file controls how aggressively the kernel will swap memory pages.

 Higher values increase aggressiveness, lower values decrease aggressiveness. The

 default value is 60.

 /proc/sys/vm/user_reserve_kbytes (since Linux 3.10)

 Specifies an amount of memory (in KiB) to reserve for user processes. This is in?

 tended to prevent a user from starting a single memory hogging process, such that

 they cannot recover (kill the hog). The value in this file has an effect only when

 /proc/sys/vm/overcommit_memory is set to 2 ("overcommit never" mode). In this

 case, the system reserves an amount of memory that is the minimum of [3% of current

 process size, user_reserve_kbytes].

 The default value in this file is the minimum of [3% of free pages, 128MiB] ex?

 pressed as KiB.

 If the value in this file is set to zero, then a user will be allowed to allocate

 all free memory with a single process (minus the amount reserved by

 /proc/sys/vm/admin_reserve_kbytes). Any subsequent attempts to execute a command

 will result in "fork: Cannot allocate memory".

 Changing the value in this file takes effect whenever an application requests mem?

 ory.

 /proc/sys/vm/unprivileged_userfaultfd (since Linux 5.2)

 This (writable) file exposes a flag that controls whether unprivileged processes

 are allowed to employ userfaultfd(2). If this file has the value 1, then unprivi?

 leged processes may use userfaultfd(2). If this file has the value 0, then only

 processes that have the CAP_SYS_PTRACE capability may employ userfaultfd(2). The

 default value in this file is 1.

 /proc/sysrq-trigger (since Linux 2.4.21) Page 83/91

 Writing a character to this file triggers the same SysRq function as typing ALT-

 SysRq-<character> (see the description of /proc/sys/kernel/sysrq). This file is

 normally writable only by root. For further details see the Linux kernel source

 file Documentation/admin-guide/sysrq.rst (or Documentation/sysrq.txt before Linux

 4.10).

 /proc/sysvipc

 Subdirectory containing the pseudo-files msg, sem and shm. These files list the

 System V Interprocess Communication (IPC) objects (respectively: message queues,

 semaphores, and shared memory) that currently exist on the system, providing simi?

 lar information to that available via ipcs(1). These files have headers and are

 formatted (one IPC object per line) for easy understanding. sysvipc(7) provides

 further background on the information shown by these files.

 /proc/thread-self (since Linux 3.17)

 This directory refers to the thread accessing the /proc filesystem, and is identi?

 cal to the /proc/self/task/[tid] directory named by the process thread ID ([tid])

 of the same thread.

 /proc/timer_list (since Linux 2.6.21)

 This read-only file exposes a list of all currently pending (high-resolution)

 timers, all clock-event sources, and their parameters in a human-readable form.

 /proc/timer_stats (from Linux 2.6.21 until Linux 4.10)

 This is a debugging facility to make timer (ab)use in a Linux system visible to

 kernel and user-space developers. It can be used by kernel and user-space develop?

 ers to verify that their code does not make undue use of timers. The goal is to

 avoid unnecessary wakeups, thereby optimizing power consumption.

 If enabled in the kernel (CONFIG_TIMER_STATS), but not used, it has almost zero

 run-time overhead and a relatively small data-structure overhead. Even if collec?

 tion is enabled at run time, overhead is low: all the locking is per-CPU and lookup

 is hashed.

 The /proc/timer_stats file is used both to control sampling facility and to read

 out the sampled information.

 The timer_stats functionality is inactive on bootup. A sampling period can be

 started using the following command:

 # echo 1 > /proc/timer_stats Page 84/91

 The following command stops a sampling period:

 # echo 0 > /proc/timer_stats

 The statistics can be retrieved by:

 $ cat /proc/timer_stats

 While sampling is enabled, each readout from /proc/timer_stats will see newly up?

 dated statistics. Once sampling is disabled, the sampled information is kept until

 a new sample period is started. This allows multiple readouts.

 Sample output from /proc/timer_stats:

 $ cat /proc/timer_stats

 Timer Stats Version: v0.3

 Sample period: 1.764 s

 Collection: active

 255, 0 swapper/3 hrtimer_start_range_ns (tick_sched_timer)

 71, 0 swapper/1 hrtimer_start_range_ns (tick_sched_timer)

 58, 0 swapper/0 hrtimer_start_range_ns (tick_sched_timer)

 4, 1694 gnome-shell mod_delayed_work_on (delayed_work_timer_fn)

 17, 7 rcu_sched rcu_gp_kthread (process_timeout)

 ...

 1, 4911 kworker/u16:0 mod_delayed_work_on (delayed_work_timer_fn)

 1D, 2522 kworker/0:0 queue_delayed_work_on (delayed_work_timer_fn)

 1029 total events, 583.333 events/sec

 The output columns are:

 * a count of the number of events, optionally (since Linux 2.6.23) followed by the

 letter 'D' if this is a deferrable timer;

 * the PID of the process that initialized the timer;

 * the name of the process that initialized the timer;

 * the function where the timer was initialized; and

 * (in parentheses) the callback function that is associated with the timer.

 During the Linux 4.11 development cycle, this file was removed because of security

 concerns, as it exposes information across namespaces. Furthermore, it is possible

 to obtain the same information via in-kernel tracing facilities such as ftrace.

 /proc/tty

 Subdirectory containing the pseudo-files and subdirectories for tty drivers and Page 85/91

 line disciplines.

 /proc/uptime

 This file contains two numbers (values in seconds): the uptime of the system (in?

 cluding time spent in suspend) and the amount of time spent in the idle process.

 /proc/version

 This string identifies the kernel version that is currently running. It includes

 the contents of /proc/sys/kernel/ostype, /proc/sys/kernel/osrelease, and

 /proc/sys/kernel/version. For example:

 Linux version 1.0.9 (quinlan@phaze) #1 Sat May 14 01:51:54 EDT 1994

 /proc/vmstat (since Linux 2.6.0)

 This file displays various virtual memory statistics. Each line of this file con?

 tains a single name-value pair, delimited by white space. Some lines are present

 only if the kernel was configured with suitable options. (In some cases, the op?

 tions required for particular files have changed across kernel versions, so they

 are not listed here. Details can be found by consulting the kernel source code.)

 The following fields may be present:

 nr_free_pages (since Linux 2.6.31)

 nr_alloc_batch (since Linux 3.12)

 nr_inactive_anon (since Linux 2.6.28)

 nr_active_anon (since Linux 2.6.28)

 nr_inactive_file (since Linux 2.6.28)

 nr_active_file (since Linux 2.6.28)

 nr_unevictable (since Linux 2.6.28)

 nr_mlock (since Linux 2.6.28)

 nr_anon_pages (since Linux 2.6.18)

 nr_mapped (since Linux 2.6.0)

 nr_file_pages (since Linux 2.6.18)

 nr_dirty (since Linux 2.6.0)

 nr_writeback (since Linux 2.6.0)

 nr_slab_reclaimable (since Linux 2.6.19)

 nr_slab_unreclaimable (since Linux 2.6.19)

 nr_page_table_pages (since Linux 2.6.0)

 nr_kernel_stack (since Linux 2.6.32) Page 86/91

 Amount of memory allocated to kernel stacks.

 nr_unstable (since Linux 2.6.0)

 nr_bounce (since Linux 2.6.12)

 nr_vmscan_write (since Linux 2.6.19)

 nr_vmscan_immediate_reclaim (since Linux 3.2)

 nr_writeback_temp (since Linux 2.6.26)

 nr_isolated_anon (since Linux 2.6.32)

 nr_isolated_file (since Linux 2.6.32)

 nr_shmem (since Linux 2.6.32)

 Pages used by shmem and tmpfs(5).

 nr_dirtied (since Linux 2.6.37)

 nr_written (since Linux 2.6.37)

 nr_pages_scanned (since Linux 3.17)

 numa_hit (since Linux 2.6.18)

 numa_miss (since Linux 2.6.18)

 numa_foreign (since Linux 2.6.18)

 numa_interleave (since Linux 2.6.18)

 numa_local (since Linux 2.6.18)

 numa_other (since Linux 2.6.18)

 workingset_refault (since Linux 3.15)

 workingset_activate (since Linux 3.15)

 workingset_nodereclaim (since Linux 3.15)

 nr_anon_transparent_hugepages (since Linux 2.6.38)

 nr_free_cma (since Linux 3.7)

 Number of free CMA (Contiguous Memory Allocator) pages.

 nr_dirty_threshold (since Linux 2.6.37)

 nr_dirty_background_threshold (since Linux 2.6.37)

 pgpgin (since Linux 2.6.0)

 pgpgout (since Linux 2.6.0)

 pswpin (since Linux 2.6.0)

 pswpout (since Linux 2.6.0)

 pgalloc_dma (since Linux 2.6.5)

 pgalloc_dma32 (since Linux 2.6.16) Page 87/91

 pgalloc_normal (since Linux 2.6.5)

 pgalloc_high (since Linux 2.6.5)

 pgalloc_movable (since Linux 2.6.23)

 pgfree (since Linux 2.6.0)

 pgactivate (since Linux 2.6.0)

 pgdeactivate (since Linux 2.6.0)

 pgfault (since Linux 2.6.0)

 pgmajfault (since Linux 2.6.0)

 pgrefill_dma (since Linux 2.6.5)

 pgrefill_dma32 (since Linux 2.6.16)

 pgrefill_normal (since Linux 2.6.5)

 pgrefill_high (since Linux 2.6.5)

 pgrefill_movable (since Linux 2.6.23)

 pgsteal_kswapd_dma (since Linux 3.4)

 pgsteal_kswapd_dma32 (since Linux 3.4)

 pgsteal_kswapd_normal (since Linux 3.4)

 pgsteal_kswapd_high (since Linux 3.4)

 pgsteal_kswapd_movable (since Linux 3.4)

 pgsteal_direct_dma

 pgsteal_direct_dma32 (since Linux 3.4)

 pgsteal_direct_normal (since Linux 3.4)

 pgsteal_direct_high (since Linux 3.4)

 pgsteal_direct_movable (since Linux 2.6.23)

 pgscan_kswapd_dma

 pgscan_kswapd_dma32 (since Linux 2.6.16)

 pgscan_kswapd_normal (since Linux 2.6.5)

 pgscan_kswapd_high

 pgscan_kswapd_movable (since Linux 2.6.23)

 pgscan_direct_dma

 pgscan_direct_dma32 (since Linux 2.6.16)

 pgscan_direct_normal

 pgscan_direct_high

 pgscan_direct_movable (since Linux 2.6.23) Page 88/91

 pgscan_direct_throttle (since Linux 3.6)

 zone_reclaim_failed (since linux 2.6.31)

 pginodesteal (since linux 2.6.0)

 slabs_scanned (since linux 2.6.5)

 kswapd_inodesteal (since linux 2.6.0)

 kswapd_low_wmark_hit_quickly (since 2.6.33)

 kswapd_high_wmark_hit_quickly (since 2.6.33)

 pageoutrun (since Linux 2.6.0)

 allocstall (since Linux 2.6.0)

 pgrotated (since Linux 2.6.0)

 drop_pagecache (since Linux 3.15)

 drop_slab (since Linux 3.15)

 numa_pte_updates (since Linux 3.8)

 numa_huge_pte_updates (since Linux 3.13)

 numa_hint_faults (since Linux 3.8)

 numa_hint_faults_local (since Linux 3.8)

 numa_pages_migrated (since Linux 3.8)

 pgmigrate_success (since Linux 3.8)

 pgmigrate_fail (since Linux 3.8)

 compact_migrate_scanned (since Linux 3.8)

 compact_free_scanned (since Linux 3.8)

 compact_isolated (since Linux 3.8)

 compact_stall (since Linux 2.6.35)

 See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

 compact_fail (since Linux 2.6.35)

 See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

 compact_success (since Linux 2.6.35)

 See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

 htlb_buddy_alloc_success (since Linux 2.6.26)

 htlb_buddy_alloc_fail (since Linux 2.6.26)

 unevictable_pgs_culled (since Linux 2.6.28)

 unevictable_pgs_scanned (since Linux 2.6.28)

 unevictable_pgs_rescued (since Linux 2.6.28) Page 89/91

 unevictable_pgs_mlocked (since Linux 2.6.28)

 unevictable_pgs_munlocked (since Linux 2.6.28)

 unevictable_pgs_cleared (since Linux 2.6.28)

 unevictable_pgs_stranded (since Linux 2.6.28)

 thp_fault_alloc (since Linux 2.6.39)

 See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

 thp_fault_fallback (since Linux 2.6.39)

 See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

 thp_collapse_alloc (since Linux 2.6.39)

 See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

 thp_collapse_alloc_failed (since Linux 2.6.39)

 See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

 thp_split (since Linux 2.6.39)

 See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

 thp_zero_page_alloc (since Linux 3.8)

 See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

 thp_zero_page_alloc_failed (since Linux 3.8)

 See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

 balloon_inflate (since Linux 3.18)

 balloon_deflate (since Linux 3.18)

 balloon_migrate (since Linux 3.18)

 nr_tlb_remote_flush (since Linux 3.12)

 nr_tlb_remote_flush_received (since Linux 3.12)

 nr_tlb_local_flush_all (since Linux 3.12)

 nr_tlb_local_flush_one (since Linux 3.12)

 vmacache_find_calls (since Linux 3.16)

 vmacache_find_hits (since Linux 3.16)

 vmacache_full_flushes (since Linux 3.19)

 /proc/zoneinfo (since Linux 2.6.13)

 This file displays information about memory zones. This is useful for analyzing

 virtual memory behavior.

NOTES

 Many files contain strings (e.g., the environment and command line) that are in the inter? Page 90/91

 nal format, with subfields terminated by null bytes ('\0'). When inspecting such files,

 you may find that the results are more readable if you use a command of the following form

 to display them:

 $ cat file | tr '\000' '\n'

 This manual page is incomplete, possibly inaccurate, and is the kind of thing that needs

 to be updated very often.

SEE ALSO

 cat(1), dmesg(1), find(1), free(1), htop(1), init(1), ps(1), pstree(1), tr(1), uptime(1),

 chroot(2), mmap(2), readlink(2), syslog(2), slabinfo(5), sysfs(5), hier(7), namespaces(7),

 time(7), arp(8), hdparm(8), ifconfig(8), lsmod(8), lspci(8), mount(8), netstat(8),

 procinfo(8), route(8), sysctl(8)

 The Linux kernel source files: Documentation/filesystems/proc.txt, Documenta?

 tion/sysctl/fs.txt, Documentation/sysctl/kernel.txt, Documentation/sysctl/net.txt, and

 Documentation/sysctl/vm.txt.

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 PROC(5)

Page 91/91

