
Rocky Enterprise Linux 9.2 Manual Pages on command 'process_vm_writev.2'

$ man process_vm_writev.2

PROCESS_VM_READV(2) Linux Programmer's Manual PROCESS_VM_READV(2)

NAME

 process_vm_readv, process_vm_writev - transfer data between process address spaces

SYNOPSIS

 #include <sys/uio.h>

 ssize_t process_vm_readv(pid_t pid,

 const struct iovec *local_iov,

 unsigned long liovcnt,

 const struct iovec *remote_iov,

 unsigned long riovcnt,

 unsigned long flags);

 ssize_t process_vm_writev(pid_t pid,

 const struct iovec *local_iov,

 unsigned long liovcnt,

 const struct iovec *remote_iov,

 unsigned long riovcnt,

 unsigned long flags);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 process_vm_readv(), process_vm_writev():

 _GNU_SOURCE

DESCRIPTION

 These system calls transfer data between the address space of the calling process ("the

 local process") and the process identified by pid ("the remote process"). The data moves Page 1/5

 directly between the address spaces of the two processes, without passing through kernel

 space.

 The process_vm_readv() system call transfers data from the remote process to the local

 process. The data to be transferred is identified by remote_iov and riovcnt: remote_iov

 is a pointer to an array describing address ranges in the process pid, and riovcnt speci?

 fies the number of elements in remote_iov. The data is transferred to the locations spec?

 ified by local_iov and liovcnt: local_iov is a pointer to an array describing address

 ranges in the calling process, and liovcnt specifies the number of elements in local_iov.

 The process_vm_writev() system call is the converse of process_vm_readv()?it transfers

 data from the local process to the remote process. Other than the direction of the trans?

 fer, the arguments liovcnt, local_iov, riovcnt, and remote_iov have the same meaning as

 for process_vm_readv().

 The local_iov and remote_iov arguments point to an array of iovec structures, defined in

 <sys/uio.h> as:

 struct iovec {

 void *iov_base; /* Starting address */

 size_t iov_len; /* Number of bytes to transfer */

 };

 Buffers are processed in array order. This means that process_vm_readv() completely fills

 local_iov[0] before proceeding to local_iov[1], and so on. Likewise, remote_iov[0] is

 completely read before proceeding to remote_iov[1], and so on.

 Similarly, process_vm_writev() writes out the entire contents of local_iov[0] before pro?

 ceeding to local_iov[1], and it completely fills remote_iov[0] before proceeding to re?

 mote_iov[1].

 The lengths of remote_iov[i].iov_len and local_iov[i].iov_len do not have to be the same.

 Thus, it is possible to split a single local buffer into multiple remote buffers, or vice

 versa.

 The flags argument is currently unused and must be set to 0.

 The values specified in the liovcnt and riovcnt arguments must be less than or equal to

 IOV_MAX (defined in <limits.h> or accessible via the call sysconf(_SC_IOV_MAX)).

 The count arguments and local_iov are checked before doing any transfers. If the counts

 are too big, or local_iov is invalid, or the addresses refer to regions that are inacces?

 sible to the local process, none of the vectors will be processed and an error will be re? Page 2/5

 turned immediately.

 Note, however, that these system calls do not check the memory regions in the remote

 process until just before doing the read/write. Consequently, a partial read/write (see

 RETURN VALUE) may result if one of the remote_iov elements points to an invalid memory re?

 gion in the remote process. No further reads/writes will be attempted beyond that point.

 Keep this in mind when attempting to read data of unknown length (such as C strings that

 are null-terminated) from a remote process, by avoiding spanning memory pages (typically

 4 KiB) in a single remote iovec element. (Instead, split the remote read into two re?

 mote_iov elements and have them merge back into a single write local_iov entry. The first

 read entry goes up to the page boundary, while the second starts on the next page bound?

 ary.)

 Permission to read from or write to another process is governed by a ptrace access mode

 PTRACE_MODE_ATTACH_REALCREDS check; see ptrace(2).

RETURN VALUE

 On success, process_vm_readv() returns the number of bytes read and process_vm_writev()

 returns the number of bytes written. This return value may be less than the total number

 of requested bytes, if a partial read/write occurred. (Partial transfers apply at the

 granularity of iovec elements. These system calls won't perform a partial transfer that

 splits a single iovec element.) The caller should check the return value to determine

 whether a partial read/write occurred.

 On error, -1 is returned and errno is set appropriately.

ERRORS

 EFAULT The memory described by local_iov is outside the caller's accessible address space.

 EFAULT The memory described by remote_iov is outside the accessible address space of the

 process pid.

 EINVAL The sum of the iov_len values of either local_iov or remote_iov overflows a ssize_t

 value.

 EINVAL flags is not 0.

 EINVAL liovcnt or riovcnt is too large.

 ENOMEM Could not allocate memory for internal copies of the iovec structures.

 EPERM The caller does not have permission to access the address space of the process pid.

 ESRCH No process with ID pid exists.

VERSIONS Page 3/5

 These system calls were added in Linux 3.2. Support is provided in glibc since version

 2.15.

CONFORMING TO

 These system calls are nonstandard Linux extensions.

NOTES

 The data transfers performed by process_vm_readv() and process_vm_writev() are not guaran?

 teed to be atomic in any way.

 These system calls were designed to permit fast message passing by allowing messages to be

 exchanged with a single copy operation (rather than the double copy that would be required

 when using, for example, shared memory or pipes).

EXAMPLES

 The following code sample demonstrates the use of process_vm_readv(). It reads 20 bytes

 at the address 0x10000 from the process with PID 10 and writes the first 10 bytes into

 buf1 and the second 10 bytes into buf2.

 #include <sys/uio.h>

 int

 main(void)

 {

 struct iovec local[2];

 struct iovec remote[1];

 char buf1[10];

 char buf2[10];

 ssize_t nread;

 pid_t pid = 10; /* PID of remote process */

 local[0].iov_base = buf1;

 local[0].iov_len = 10;

 local[1].iov_base = buf2;

 local[1].iov_len = 10;

 remote[0].iov_base = (void *) 0x10000;

 remote[0].iov_len = 20;

 nread = process_vm_readv(pid, local, 2, remote, 1, 0);

 if (nread != 20)

 return 1; Page 4/5

 else

 return 0;

 }

SEE ALSO

 readv(2), writev(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PROCESS_VM_READV(2)

Page 5/5

