
Rocky Enterprise Linux 9.2 Manual Pages on command 'preconv.1'

$ man preconv.1

PRECONV(1) General Commands Manual PRECONV(1)

NAME

 preconv - convert encoding of input files to something GNU troff understands

SYNOPSIS

 preconv [-dr] [-D default_encoding] [-e encoding] [file ...]

 preconv -h

 preconv --help

 preconv -v

 preconv --version

DESCRIPTION

 preconv reads files and converts its encoding(s) to a form GNU troff(1) can process, send?

 ing the data to standard output. Currently, this means ASCII characters and ?\[uXXXX]?

 entities, where ?XXXX? is a hexadecimal number with four to six digits, representing a

 Unicode input code. Normally, preconv should be invoked with the -k and -K options of

 groff.

OPTIONS

 Whitespace is permitted between a command-line option and its argument.

 -d Emit debugging messages to standard error (mainly the used encoding).

 -Dencoding

 Specify default encoding if everything fails (see below).

 -eencoding

 Specify input encoding explicitly, overriding all other methods. This corresponds

 to groff's -Kencoding option. Without this switch, preconv uses the algorithm de? Page 1/4

 scribed below to select the input encoding.

 --help

 -h Print a help message and exit.

 -r Do not add .lf requests.

 --version

 -v Print the version number and exit.

USAGE

 preconv tries to find the input encoding with the following algorithm.

 1. If the input encoding has been explicitly specified with option -e, use it.

 2. Otherwise, check whether the input starts with a Byte Order Mark (BOM, see below).

 If found, use it.

 3. Otherwise, check whether there is a known coding tag (see below) in either the

 first or second input line. If found, use it.

 4 Finally, if the uchardet library (an encoding detector library available on most

 major distributions) is available on the system, use it to try to detect the encod?

 ing of the file.

 5. If everything fails, use a default encoding as given with option -D, by the current

 locale, or ?latin1? if the locale is set to ?C?, ?POSIX?, or empty (in that order).

 Note that the groff program supports a GROFF_ENCODING environment variable which is even?

 tually expanded to option -k.

 Byte Order Mark

 The Unicode Standard defines character U+FEFF as the Byte Order Mark (BOM). On the other

 hand, value U+FFFE is guaranteed not be a Unicode character at all. This allows detection

 of the byte order within the data stream (either big-endian or little-endian), and the

 MIME encodings ?UTF-16? and ?UTF-32? mandate that the data stream starts with U+FEFF.

 Similarly, the data stream encoded as ?UTF-8? might start with a BOM (to ease the conver?

 sion from and to UTF-16 and UTF-32). In all cases, the byte order mark is not part of the

 data but part of the encoding protocol; in other words, preconv's output doesn't contain

 it.

 Note that U+FEFF not at the start of the input data actually is emitted; it has then the

 meaning of a ?zero width no-break space? character ? something not needed normally in

 groff.

 Coding Tags Page 2/4

 Editors which support more than a single character encoding need tags within the input

 files to mark the file's encoding. While it is possible to guess the right input encoding

 with the help of heuristic algorithms for data which represents a greater amount of a nat?

 ural language, it is still just a guess. Additionally, all algorithms fail easily for in?

 put which is either too short or doesn't represent a natural language.

 For these reasons, preconv supports the coding tag convention (with some restrictions) as

 used by GNU Emacs and XEmacs (and probably other programs too).

 Coding tags in GNU Emacs and XEmacs are stored in so-called File Variables. preconv rec?

 ognizes the following syntax form which must be put into a troff comment in the first or

 second line.

 -*- tag1: value1; tag2: value2; ... -*-

 The only relevant tag for preconv is ?coding? which can take the values listed below.

 Here an example line which tells Emacs to edit a file in troff mode, and to use latin2 as

 its encoding.

 .\" -*- mode: troff; coding: latin-2 -*-

 The following list gives all MIME coding tags (either lowercase or uppercase) supported by

 preconv; this list is hard-coded in the source.

 big5, cp1047, euc-jp, euc-kr, gb2312, iso-8859-1, iso-8859-2, iso-8859-5,

 iso-8859-7, iso-8859-9, iso-8859-13, iso-8859-15, koi8-r, us-ascii, utf-8, utf-16,

 utf-16be, utf-16le

 In addition, the following hard-coded list of other tags is recognized which eventually

 map to values from the list above.

 ascii, chinese-big5, chinese-euc, chinese-iso-8bit, cn-big5, cn-gb, cn-gb-2312,

 cp878, csascii, csisolatin1, cyrillic-iso-8bit, cyrillic-koi8, euc-china, euc-cn,

 euc-japan, euc-japan-1990, euc-korea, greek-iso-8bit, iso-10646/utf8,

 iso-10646/utf-8, iso-latin-1, iso-latin-2, iso-latin-5, iso-latin-7, iso-latin-9,

 japanese-euc, japanese-iso-8bit, jis8, koi8, korean-euc, korean-iso-8bit, latin-0,

 latin1, latin-1, latin-2, latin-5, latin-7, latin-9, mule-utf-8, mule-utf-16,

 mule-utf-16be, mule-utf-16-be, mule-utf-16be-with-signature, mule-utf-16le,

 mule-utf-16-le, mule-utf-16le-with-signature, utf8, utf-16-be,

 utf-16-be-with-signature, utf-16be-with-signature, utf-16-le,

 utf-16-le-with-signature, utf-16le-with-signature

 Those tags are taken from GNU Emacs and XEmacs, together with some aliases. Trailing Page 3/4

 ?-dos?, ?-unix?, and ?-mac? suffixes of coding tags (which give the end-of-line convention

 used in the file) are stripped off before the comparison with the above tags happens.

 Iconv Issues

 preconv by itself only supports three encodings: latin-1, cp1047, and UTF-8; all other en?

 codings are passed to the iconv library functions. At compile time it is searched and

 checked for a valid iconv implementation; a call to ?preconv --version? shows whether

 iconv is used.

BUGS

 preconv doesn't support local variable lists yet. This is a different syntax form to

 specify local variables at the end of a file.

SEE ALSO

 groff(1)

 the GNU Emacs and XEmacs info pages

groff 1.22.4 23 March 2022 PRECONV(1)

Page 4/4

