
Rocky Enterprise Linux 9.2 Manual Pages on command 'podman-run.1'

$ man podman-run.1

podman-run(1)()                                                                   podman-run(1)()

NAME

       podman-run - Run a command in a new container

SYNOPSIS

       podman run [options] image [command [arg ...]]

       podman container run [options] image [command [arg ...]]

DESCRIPTION

       Run  a  process  in a new container. podman run starts a process with its own file system,

       its own networking, and its own isolated process tree. The image which starts the  process

       may define defaults related to the process that will be run in the container, the network?

       ing to expose, and more, but podman run gives final control to the operator or administra?

       tor  who  starts the container from the image. For that reason podman run has more options

       than any other Podman command.

       If the image is not already loaded then podman run will pull the image, and all image  de?

       pendencies,  from  the  repository  in  the same way running podman pull image , before it

       starts the container from that image.

       Several  files  will  be  automatically  created  within  the  container.  These   include

       /etc/hosts, /etc/hostname, and /etc/resolv.conf to manage networking.  These will be based

       on the host's version of the files, though they can be customized with options (for  exam?

       ple, --dns will override the host's DNS servers in the created resolv.conf). Additionally,

       a container environment file is created in each container to indicate to programs they are

       running in a container. This file is located at /run/.containerenv. When using the --priv?

       ileged flag the .containerenv contains name/value pairs indicating  the  container  engine Page 1/40



       version,  whether  the  engine  is running in rootless mode, the container name and id, as

       well as the image name and id that the container is based on.

       When running from a user defined network namespace, the /etc/netns/NSNAME/resolv.conf will

       be used if it exists, otherwise /etc/resolv.conf will be used.

       Default  settings are defined in containers.conf. Most settings for remote connections use

       the servers containers.conf, except when documented in man pages.

IMAGE

       The image is specified using transport:path format. If  no  transport  is  specified,  the

       docker  (container  registry) transport will be used by default. For remote Podman, docker

       is the only allowed transport.

       dir:path

         An existing local directory path storing the manifest, layer tarballs and signatures  as

       individual  files.  This  is  a non-standardized format, primarily useful for debugging or

       noninvasive container inspection.

              $ podman save --format docker-dir fedora -o /tmp/fedora

              $ podman run dir:/tmp/fedora echo hello

       docker://docker-reference (Default)

         An image reference stored in a remote container image registry.  Example:  "quay.io/pod?

       man/stable:latest".   The  reference can include a path to a specific registry; if it does

       not, the registries listed in registries.conf will be queried to find  a  matching  image.

       By default, credentials from podman login (stored at $XDG_RUNTIME_DIR/containers/auth.json

       by default) will be used to authenticate; otherwise it falls back to using credentials  in

       $HOME/.docker/config.json.

              $ podman run registry.fedoraproject.org/fedora:latest echo hello

       docker-archive:path[:docker-reference]  An image stored in the docker save formatted file.

       docker-reference is only used when creating such a file, and it must not contain a digest.

              $ podman save --format docker-archive fedora -o /tmp/fedora

              $ podman run docker-archive:/tmp/fedora echo hello

       docker-daemon:docker-reference

         An image in docker-reference format stored in the docker daemon  internal  storage.  The

       docker-reference can also be an image ID (docker-daemon:algo:digest).

              $ sudo docker pull fedora

              $ sudo podman run docker-daemon:docker.io/library/fedora echo hello Page 2/40



       oci-archive:path:tag

         An  image  in a directory compliant with the "Open Container Image Layout Specification"

       at the specified path and specified with a tag.

              $ podman save --format oci-archive fedora -o /tmp/fedora

              $ podman run oci-archive:/tmp/fedora echo hello

OPTIONS

   --add-host=host:ip

       Add a line to container's /etc/hosts for custom host-to-IP mapping.  This  option  can  be

       set multiple times.

   --annotation=key=value

       Add an annotation to the container.  This option can be set multiple times.

   --arch=ARCH

       Override the architecture, defaults to hosts, of the image to be pulled. For example, arm.

   --attach, -a=stdin|stdout|stderr

       Attach to STDIN, STDOUT or STDERR.

       In  foreground  mode  (the  default  when  -d  is not specified), podman run can start the

       process in the container and attach the console to the process's standard  input,  output,

       and  error. It can even pretend to be a TTY (this is what most commandline executables ex?

       pect) and pass along signals. The -a option can be set for  each  of  stdin,  stdout,  and

       stderr.

   --authfile[=path]

       Path to the authentication file. Default is ${XDG_RUNTIME_DIR}/containers/auth.json.

       Note:  You  can  also  override the default path of the authentication file by setting the

       REGISTRY_AUTH_FILE environment variable.

   --blkio-weight=weight

       Block IO relative weight. The weight is a value between 10 and 1000.

   --blkio-weight-device=device:weight

       Block IO relative device weight.

   --cap-add=capability

       Add Linux capabilities.

   --cap-drop=capability

       Drop Linux capabilities.

   --cgroupns=mode Page 3/40



       Set the cgroup namespace mode for the container.

              ? host: use the host's cgroup namespace inside the container.

              ? container:id: join the namespace of the specified container.

              ? private: create a new cgroup namespace.

              ? ns:path: join the namespace at the specified path.

       If the host uses cgroups v1, the default is set to host. On cgroups  v2,  the  default  is

       private.

   --cgroups=enabled|disabled|no-conmon|split

       Determines whether the container will create CGroups.

       Default is enabled.

       The  enabled option will create a new cgroup under the cgroup-parent.  The disabled option

       will force the container to not create CGroups, and thus  conflicts  with  CGroup  options

       (--cgroupns and --cgroup-parent).  The no-conmon option disables a new CGroup only for the

       conmon process.  The split option splits the current CGroup in two  sub-cgroups:  one  for

       conmon  and  one for the container payload. It is not possible to set --cgroup-parent with

       split.

   --cgroup-parent=path

       Path to cgroups under which the cgroup for the container will be created. If the  path  is

       not  absolute,  the  path  is  considered  to  be relative to the cgroups path of the init

       process. Cgroups will be created if they do not already exist.

   --cgroup-conf=KEY=VALUE

       When running on cgroup v2, specify the cgroup file to write to and its value. For  example

       --cgroup-conf=memory.high=1073741824 sets the memory.high limit to 1GB.

   --cidfile=file

       Write the container ID to file.

   --conmon-pidfile=file

       Write  the  pid of the conmon process to a file. As conmon runs in a separate process than

       Podman, this is necessary when using systemd to restart Podman containers.   (This  option

       is not available with the remote Podman client)

   --cpu-period=limit

       Set  the  CPU  period  for the Completely Fair Scheduler (CFS), which is a duration in mi?

       croseconds. Once the container's CPU quota is used up, it will not be scheduled to run un?

       til the current period ends. Defaults to 100000 microseconds. Page 4/40



       On  some  systems, changing the CPU limits may not be allowed for non-root users. For more

       details,  see  https://github.com/containers/podman/blob/master/troubleshooting.md#26-run?

       ning-containers-with-cpu-limits-fails-with-a-permissions-error

   --cpu-quota=limit

       Limit the CPU Completely Fair Scheduler (CFS) quota.

       Limit  the  container's  CPU usage. By default, containers run with the full CPU resource.

       The limit is a number in microseconds. If you provide a number, the container will be  al?

       lowed to use that much CPU time until the CPU period ends (controllable via --cpu-period).

       On  some  systems, changing the CPU limits may not be allowed for non-root users. For more

       details,  see  https://github.com/containers/podman/blob/master/troubleshooting.md#26-run?

       ning-containers-with-cpu-limits-fails-with-a-permissions-error

   --cpu-rt-period=microseconds

       Limit the CPU real-time period in microseconds.

       Limit  the container's Real Time CPU usage. This flag tell the kernel to restrict the con?

       tainer's Real Time CPU usage to the period you specify.

       This flag is not supported on cgroups V2 systems.

   --cpu-rt-runtime=microseconds

       Limit the CPU real-time runtime in microseconds.

       Limit the containers Real Time CPU usage. This flag tells the kernel to limit  the  amount

       of  time  in a given CPU period Real Time tasks may consume. Ex: Period of 1,000,000us and

       Runtime of 950,000us means that this container could consume  95%  of  available  CPU  and

       leave the remaining 5% to normal priority tasks.

       The  sum of all runtimes across containers cannot exceed the amount allotted to the parent

       cgroup.

       This flag is not supported on cgroups V2 systems.

   --cpu-shares=shares

       CPU shares (relative weight).

       By default, all containers get the same proportion of CPU cycles. This proportion  can  be

       modified  by  changing the container's CPU share weighting relative to the combined weight

       of all the running containers. Default weight is 1024.

       The proportion will only apply when CPU-intensive processes are running.   When  tasks  in

       one container are idle, other containers can use the left-over CPU time. The actual amount

       of CPU time will vary depending on the number of containers running on the system. Page 5/40



       For example, consider three containers, one has a cpu-share of 1024 and two others have  a

       cpu-share  setting  of  512. When processes in all three containers attempt to use 100% of

       CPU, the first container would receive 50% of the total CPU time. If you add a fourth con?

       tainer with a cpu-share of 1024, the first container only gets 33% of the CPU. The remain?

       ing containers receive 16.5%, 16.5% and 33% of the CPU.

       On a multi-core system, the shares of CPU time are distributed over all CPU cores. Even if

       a  container  is limited to less than 100% of CPU time, it can use 100% of each individual

       CPU core.

       For example, consider a system with more than three cores. If you start one container {C0}

       with  --cpu-shares=512  running  one  process,  and  another  container  {C1}  with --cpu-

       shares=1024 running two processes, this can  result  in  the  following  division  of  CPU

       shares:

       ???????????????????????????????????????

       ?PID ? container ? CPU ? CPU share    ?

       ???????????????????????????????????????

       ?100 ? {C0}      ? 0   ? 100% of CPU0 ?

       ???????????????????????????????????????

       ?101 ? {C1}      ? 1   ? 100% of CPU1 ?

       ???????????????????????????????????????

       ?102 ? {C1}      ? 2   ? 100% of CPU2 ?

       ???????????????????????????????????????

   --cpus=number

       Number  of  CPUs. The default is 0.0 which means no limit. This is shorthand for --cpu-pe?

       riod and --cpu-quota, so you may only set either

   --cpus or --cpu-period and --cpu-quota.

       On some systems, changing the CPU limits may not be allowed for non-root users.  For  more

       details,  see  https://github.com/containers/podman/blob/master/troubleshooting.md#26-run?

       ning-containers-with-cpu-limits-fails-with-a-permissions-error

   --cpuset-cpus=number

       CPUs in which to allow execution. Can be specified as a comma-separated list  (e.g.  0,1),

       as a range (e.g. 0-3), or any combination thereof (e.g. 0-3,7,11-15).

   --cpuset-mems=nodes

       Memory nodes (MEMs) in which to allow execution. Only effective on NUMA systems. Page 6/40



       For  example, if you have four memory nodes (0-3) on your system, use --cpuset-mems=0,1 to

       only use memory from the first two memory nodes.

   --detach, -d=true|false

       Detached mode: run the container in the background and print the new container ID. The de?

       fault is false.

       At  any  time  you can run podman ps in the other shell to view a list of the running con?

       tainers. You can reattach to a detached container with podman attach.

       When attached in the tty mode, you can detach from the container (and  leave  it  running)

       using  a  configurable key sequence. The default sequence is ctrl-p,ctrl-q.  Configure the

       keys sequence using the --detach-keys option, or  specifying  it  in  the  containers.conf

       file: see containers.conf(5) for more information.

   --detach-keys=sequence

       Specify  the key sequence for detaching a container. Format is a single character [a-Z] or

       one or more ctrl-<value> characters where <value> is one of: a-z, @, ^, [, , or _.  Speci?

       fying "" will set the sequence to the default value of ctrl-p,ctrl-q.

       This option can also be set in containers.conf(5) file.

   --device=host-device[:container-device][:permissions]

       Add  a host device to the container. Optional permissions parameter can be used to specify

       device permissions, it is combination of r for read, w for write, and m for mknod(2).

       Example: --device=/dev/sdc:/dev/xvdc:rwm.

       Note: if _hostdevice is a symbolic link then it will be  resolved  first.   The  container

       will only store the major and minor numbers of the host device.

       Note:  if  the user only has access rights via a group, accessing the device from inside a

       rootless container will fail. Use the --group-add keep-groups flag to pass the user's sup?

       plementary group access into the container.

       Podman  may  load kernel modules required for using the specified device. The devices that

       Podman will load modules when necessary are: /dev/fuse.

   --device-cgroup-rule=rule

       Add a rule to the cgroup allowed devices list

   --device-read-bps=path:rate

       Limit read rate (in bytes per second) from a device (e.g. --device-read-bps=/dev/sda:1mb).

   --device-read-iops=path:rate

       Limit read rate  (in  IO  operations  per  second)  from  a  device  (e.g.  --device-read- Page 7/40



       iops=/dev/sda:1000).

   --device-write-bps=path:rate

       Limit write rate (in bytes per second) to a device (e.g. --device-write-bps=/dev/sda:1mb).

   --device-write-iops=path:rate

       Limit  write  rate  (in  IO  operations  per  second)  to  a  device (e.g. --device-write-

       iops=/dev/sda:1000).

   --disable-content-trust

       This is a Docker specific option to disable image verification to a Docker registry and is

       not supported by Podman. This flag is a NOOP and provided solely for scripting compatibil?

       ity.

   --dns=ipaddr

       Set custom DNS servers. Invalid if using --dns with --network that is set to none or  con?

       tainer:id.

       This  option  can be used to override the DNS configuration passed to the container. Typi?

       cally this is necessary when the host DNS  configuration  is  invalid  for  the  container

       (e.g., 127.0.0.1). When this is the case the --dns flags is necessary for every run.

       The  special  value  none  can be specified to disable creation of /etc/resolv.conf in the

       container by Podman.  The /etc/resolv.conf file in the image will be used without changes.

   --dns-opt=option

       Set custom DNS options. Invalid if using --dns-opt with --network that is set to  none  or

       container:id.

   --dns-search=domain

       Set  custom DNS search domains. Invalid if using --dns-search and --network that is set to

       none or container:id.  Use --dns-search=. if you don't wish to set the search domain.

   --entrypoint="command" | '["command", arg1 , ...]'

       Overwrite the default ENTRYPOINT of the image.

       This option allows you to overwrite the default entrypoint of the image.

       The ENTRYPOINT of an image is similar to a COMMAND because it specifies what executable to

       run  when  the container starts, but it is (purposely) more difficult to override. The EN?

       TRYPOINT gives a container its default nature or behavior, so that when you set an  ENTRY?

       POINT  you can run the container as if it were that binary, complete with default options,

       and you can pass in more options via the COMMAND. But, sometimes an operator may  want  to

       run  something  else  inside  the container, so you can override the default ENTRYPOINT at Page 8/40



       runtime by using a --entrypoint and a string to specify the new ENTRYPOINT.

       You need to specify multi option commands in the form of a json string.

   --env, -e=env

       Set environment variables.

       This option allows arbitrary environment variables that are available for the  process  to

       be  launched  inside  of  the container. If an environment variable is specified without a

       value, Podman will check the host environment for a value and set the variable only if  it

       is  set  on  the  host.  If  an environment variable ending in * is specified, Podman will

       search the host environment for variables starting with the  prefix  and  will  add  those

       variables to the container. If an environment variable with a trailing ***** is specified,

       then a value must be supplied.

       See Environment ?#environment? note below for precedence and examples.

   --env-host=true|false

       Use host environment inside of the container. See Environment note below  for  precedence.

       (This option is not available with the remote Podman client)

   --env-file=file

       Read  in  a  line  delimited file of environment variables. See Environment note below for

       precedence.

   --expose=port

       Expose a port, or a range of ports (e.g. --expose=3300-3310) to set up port redirection on

       the host system.

   --gidmap=container_gid:host_gid:amount

       Run  the  container  in  a new user namespace using the supplied mapping. This option con?

       flicts with the --userns and --subgidname flags.  This option can be passed several  times

       to  map different ranges. If calling podman run as an unprivileged user, the user needs to

       have the right to use the mapping. See subuid(5).  The example maps  gids  0-1999  in  the

       container to the gids 30000-31999 on the host: --gidmap=0:30000:2000.

       Important  note:  The new user namespace mapping based on --gidmap is based on the initial

       mapping made in the  /etc/subgid  file.  Assuming there is a  /etc/subgid  mapping  group?

       name:100000:65536,  then  groupname  is  initially mapped to a namespace starting with gid

       100000 for 65536 ids. From here the --gidmap mapping to the new namespace  starts  from  0

       again,  but is based on the initial mapping.  Meaning groupname is initially mapped to gid

       100000 which is referenced as 0 in the following --gidmap mapping. In terms of the example Page 9/40



       above:  The  group  groupname  is mapped to group 100000 of the initial namespace then the

       30000st id of this namespace (which is gid 130000 in this namespace)  is  mapped  to  con?

       tainer namespace group id 0. (groupname -> 100000 / 30000 -> 0)

   --group-add=group|keep-groups

       Add additional groups to assign to primary user running within the container process.

              ? keep-groups  is  a special flag that tells Podman to keep the supplementary group

                access.

       Allows container to use the user's supplementary group access. If file systems or  devices

       are  only accessible by the rootless user's group, this flag tells the OCI runtime to pass

       the group access into the container. Currently only available with the crun  OCI  runtime.

       Note:  keep-groups  is  exclusive,  you  cannot  add any other groups with this flag. (Not

       available for remote commands)

   --health-cmd="command" | '["command", arg1 , ...]'

       Set or alter a healthcheck command for a container. The command is a command  to  be  exe?

       cuted inside your container that determines your container health. The command is required

       for  other  healthcheck  options  to  be  applied.  A  value  of  none  disables  existing

       healthchecks.

       Multiple options can be passed in the form of a JSON array; otherwise, the command will be

       interpreted as an argument to /bin/sh -c.

   --health-interval=interval

       Set an interval for the healthchecks. An interval of disable results in no automatic timer

       setup. The default is 30s.

   --health-retries=retries

       The  number of retries allowed before a healthcheck is considered to be unhealthy. The de?

       fault value is 3.

   --health-start-period=period

       The initialization time needed for a container to bootstrap. The value can be expressed in

       time format like 2m3s. The default value is 0s.

   --health-timeout=timeout

       The  maximum  time  allowed  to  complete the healthcheck before an interval is considered

       failed. Like start-period, the value can be expressed in a time format such as 1m22s.  The

       default value is 30s.

   --help Page 10/40



       Print usage statement

   --hostname=name, -h

       Container host name

       Sets the container host name that is available inside the container. Can only be used with

       a private UTS namespace --uts=private (default). If --pod is specified and the pod  shares

       the UTS namespace (default) the pod's hostname will be used.

   --http-proxy=true|false

       By default proxy environment variables are passed into the container if set for the Podman

       process. This can be disabled by setting the value to false.   The  environment  variables

       passed  in  include  http_proxy, https_proxy, ftp_proxy, no_proxy, and also the upper case

       versions of those. This option is only needed when the host system must use  a  proxy  but

       the container should not use any proxy. Proxy environment variables specified for the con?

       tainer in any other way will override the values that would have been passed through  from

       the  host.  (Other  ways to specify the proxy for the container include passing the values

       with the --env flag, or hard coding the proxy environment at container build time.)  (This

       option is not available with the remote Podman client)

       Defaults to true.

   --image-volume, builtin-volume=bind|tmpfs|ignore

       Tells Podman how to handle the builtin image volumes. Default is bind.

              ? bind: An anonymous named volume will be created and mounted into the container.

              ? tmpfs:  The  volume  is  mounted  onto the container as a tmpfs, which allows the

                users to create content that disappears when the container is stopped.

              ? ignore: All volumes are just ignored and no action is taken.

   --init

       Run an init inside the container that forwards signals and reaps processes.

   --init-path=path

       Path to the container-init binary.

   --interactive, -i=true|false

       When set to true, keep stdin open even if not attached. The default is false.

   --ip6=ip

       Not implemented.

   --ip=ip

       Specify a static IP address for the container, for example 10.88.64.128.  This option  can Page 11/40



       only  be  used if the container is joined to only a single network - i.e., --network=_net?

       work-name_ is used at most once and if the container is not  joining  another  container's

       network  namespace  via --network=container:_id_.  The address must be within the CNI net?

       work's IP address pool (default 10.88.0.0/16).

   --ipc=mode

       Set the IPC namespace mode for a container. The default is to create a private  IPC  name?

       space.

              ? container:id:  reuses  another  container  shared  memory, semaphores and message

                queues

              ? host: use the host shared memory,semaphores and message queues  inside  the  con?

                tainer.  Note: the host mode gives the container full access to local shared mem?

                ory and is therefore considered insecure.

              ? ns:path: path to an IPC namespace to join.

   --kernel-memory=number[unit]

       Kernel memory limit. A unit can be b (bytes), k (kilobytes), m (megabytes),  or  g  (giga?

       bytes).

       Constrains  the  kernel memory available to a container. If a limit of 0 is specified (not

       using --kernel-memory), the container's kernel memory is not limited.  If  you  specify  a

       limit,  it  may  be  rounded  up to a multiple of the operating system's page size and the

       value can be very large, millions of trillions.

       This flag is not supported on cgroups V2 systems.

   --label, -l=key=value

       Add metadata to a container.

   --label-file=file

       Read in a line-delimited file of labels.

   --link-local-ip=ip

       Not implemented.

   --log-driver="driver"

       Logging driver for the container. Currently available options are k8s-file, journald,  and

       none, with json-file aliased to k8s-file for scripting compatibility.

   --log-opt=name=value

       Logging driver specific options.

       Set custom logging configuration. The following *name*s are supported: Page 12/40



       path: specify a path to the log file

           (e.g. --log-opt path=/var/log/container/mycontainer.json);

       max-size: specify a max size of the log file

           (e.g. --log-opt max-size=10mb);

       tag: specify a custom log tag for the container

          (e.g. --log-opt tag="{{.ImageName}}".

       This option is currently supported only by the journald log driver.

   --mac-address=address

       Container MAC address (e.g. 92:d0:c6:0a:29:33).

       Remember  that the MAC address in an Ethernet network must be unique.  The IPv6 link-local

       address will be based on the device's MAC address according to RFC4862.

   --memory, -m=number[unit]

       Memory limit. A unit can be b (bytes), k (kilobytes), m (megabytes), or g (gigabytes).

       Allows you to constrain the memory available to a container. If  the  host  supports  swap

       memory,  then  the  -m  memory setting can be larger than physical RAM. If a limit of 0 is

       specified (not using -m), the container's memory is not limited. The actual limit  may  be

       rounded  up  to  a  multiple  of the operating system's page size (the value would be very

       large, that's millions of trillions).

   --memory-reservation=number[unit]

       Memory soft limit. A unit can be b (bytes), k (kilobytes),  m  (megabytes),  or  g  (giga?

       bytes).

       After setting memory reservation, when the system detects memory contention or low memory,

       containers are forced to restrict their consumption to their reservation.  So  you  should

       always set the value below --memory, otherwise the hard limit will take precedence. By de?

       fault, memory reservation will be the same as memory limit.

   --memory-swap=number[unit]

       A limit value equal to memory plus swap.  A unit  can  be  b  (bytes),  k  (kilobytes),  m

       (megabytes), or g (gigabytes).

       Must be used with the -m (--memory) flag.  The argument value should always be larger than

       that of

        -m (--memory) By default, it is set to double the value of --memory.

       Set number to -1 to enable unlimited swap.

   --memory-swappiness=number Page 13/40



       Tune a container's memory swappiness behavior. Accepts an integer between 0 and 100.

       This flag is not supported on cgroups V2 systems.

   --mount=type=TYPE,TYPE-SPECIFIC-OPTION[,...]

       Attach a filesystem mount to the container

       Current supported mount TYPEs are bind, volume, image, tmpfs and devpts. [1] ?#Footnote1?

                 e.g.

                 type=bind,source=/path/on/host,destination=/path/in/container

                 type=bind,src=/path/on/host,dst=/path/in/container,relabel=shared

                 type=volume,source=vol1,destination=/path/in/container,ro=true

                 type=tmpfs,tmpfs-size=512M,destination=/path/in/container

                 type=image,source=fedora,destination=/fedora-image,rw=true

                 type=devpts,destination=/dev/pts

                 Common Options:

                    ? src, source: mount source spec for bind and volume. Mandatory for bind.

                    ? dst, destination, target: mount destination spec.

                 Options specific to volume:

                    ? ro, readonly: true or false (default).

                 Options specific to image:

                    ? rw, readwrite: true or false (default).

                 Options specific to bind:

                    ? ro, readonly: true or false (default).

                    ? bind-propagation: shared, slave, private, unbindable, rshared, rslave, runbindable, or rprivate(default). See

also mount(2).

                    . bind-nonrecursive: do not setup a recursive bind mount. By default it is recursive.

                    . relabel: shared, private.

                 Options specific to tmpfs:

                    ? ro, readonly: true or false (default).

                    ? tmpfs-size: Size of the tmpfs mount in bytes. Unlimited by default in Linux.

                    ? tmpfs-mode: File mode of the tmpfs in octal. (e.g. 700 or 0700.) Defaults to 1777 in Linux.

                    ? tmpcopyup: Enable copyup from the image directory at the same location to the tmpfs. Used by default.

                    ? notmpcopyup: Disable copying files from the image to the tmpfs.

   --name=name

       Assign a name to the container. Page 14/40



       The operator can identify a container in three ways:

              ? UUID                               long                                identifier

                (?f78375b1c487e03c9438c729345e54db9d20cfa2ac1fc3494b6eb60872e74778?);

              ? UUID short identifier (?f78375b1c487?);

              ? Name (?jonah?).

       Podman generates a UUID for each container, and if a name is not assigned to the container

       with --name then it will generate a random string name. The name is useful any  place  you

       need to identify a container.  This works for both background and foreground containers.

   --network=mode, --net

       Set the network mode for the container. Invalid if using --dns, --dns-opt, or --dns-search

       with --network that is set to none or container:id. If used together with --pod, the  con?

       tainer will not join the pods network namespace.

       Valid mode values are:

              ? bridge:  Create  a  network  stack on the default bridge. This is the default for

                rootfull containers.

              ? none: Create a network namespace for the container but do not  configure  network

                interfaces for it, thus the container has no network connectivity.

              ? container:id: Reuse another container's network stack.

              ? host:  Do  not create a network namespace, the container will use the host's net?

                work. Note: The host mode gives the container full access to  local  system  ser?

                vices such as D-bus and is therefore considered insecure.

              ? network:  Connect  to  a user-defined network, multiple networks should be comma-

                separated.

              ? ns:path: Path to a network namespace to join.

              ? private: Create a new namespace for the container. This will use the bridge  mode

                for rootfull containers and slirp4netns for rootless ones.

              ? slirp4netns[:OPTIONS,...]:  use  slirp4netns(1)  to  create a user network stack.

                This is the default for rootless containers. It is possible to specify these  ad?

                ditional options:

                ? allow_host_loopback=true|false:  Allow  the slirp4netns to reach the host loop?

                  back IP (10.0.2.2, which is added to /etc/hosts as host.containers.internal for

                  your convenience). Default is false.

                ? mtu=MTU: Specify the MTU to use for this network. (Default is 65520). Page 15/40



                ? cidr=CIDR: Specify ip range to use for this network. (Default is 10.0.2.0/24).

                ? enable_ipv6=true|false:  Enable  IPv6.  Default  is  false.  (Required for out?

                  bound_addr6).

                ? outbound_addr=INTERFACE: Specify the outbound interface slirp  should  bind  to

                  (ipv4 traffic only).

                ? outbound_addr=IPv4: Specify the outbound ipv4 address slirp should bind to.

                ? outbound_addr6=INTERFACE:  Specify  the outbound interface slirp should bind to

                  (ipv6 traffic only).

                ? outbound_addr6=IPv6: Specify the outbound ipv6 address slirp should bind to.

                ? port_handler=rootlesskit: Use rootlesskit for port forwarding. Default.   Note:

                  Rootlesskit  changes  the source IP address of incoming packets to a IP address

                  in the container network namespace, usually 10.0.2.100. If your application re?

                  quires  the  real  source IP address, e.g. web server logs, use the slirp4netns

                  port handler. The rootlesskit port handler is also used for rootless containers

                  when connected to user-defined networks.

                ? port_handler=slirp4netns:  Use  the  slirp4netns  port forwarding, it is slower

                  than rootlesskit but preserves the correct source IP address. This port handler

                  cannot be used for user-defined networks.

   --network-alias=alias

       Add  network-scoped  alias  for the container.  NOTE: A container will only have access to

       aliases on the first network that it joins. This is a limitation that will be removed in a

       later release.

   --no-healthcheck=true|false

       Disable any defined healthchecks for container.

   --no-hosts=true|false

       Do not create /etc/hosts for the container.

       By  default,  Podman will manage /etc/hosts, adding the container's own IP address and any

       hosts from --add-host.

   --no-hosts disables this, and the image's /etc/hosts will be preserved unmodified.

       This option conflicts with --add-host.

   --oom-kill-disable=true|false

       Whether to disable OOM Killer for the container or not.

   --oom-score-adj=num Page 16/40



       Tune the host's OOM preferences for containers (accepts values from -1000 to 1000).

   --os=OS

       Override the OS, defaults to hosts, of the image to be pulled. For example, windows.

   --personality=persona

       Personality sets the execution domain via Linux personality(2).

   --pid=mode

       Set the PID namespace mode for the container.  The default is  to  create  a  private  PID

       namespace for the container.

              ? container:id: join another container's PID namespace;

              ? host:  use  the  host's PID namespace for the container. Note the host mode gives

                the container full access to local PID and is therefore considered insecure;

              ? private: create a new namespace for the container (default)

              ? ns:path: join the specified PID namespace.

   --pids-limit=limit

       Tune the container's pids limit. Set to -1 to have unlimited pids for the  container.  The

       default is 4096 on systems that support "pids" cgroup controller.

   --platform=OS/ARCH

       Specify  the  platform  for  selecting  the  image.   (Conflicts with --arch and --os) The

       --platform option can be used to override the current architecture and operating system.

   --pod=name

       Run container in an existing pod. If you want Podman to make the pod for you,  prefix  the

       pod  name  with new:.  To make a pod with more granular options, use the podman pod create

       command before creating a container.  If a container is run with a pod, and the pod has an

       infra-container, the infra-container will be started before the container is.

   --pod-id-file=path

       Run container in an existing pod and read the pod's ID from the specified file.  If a con?

       tainer is run within a pod, and the pod has an infra-container, the  infra-container  will

       be started before the container is.

   --preserve-fds=N

       Pass  down to the process N additional file descriptors (in addition to 0, 1, 2).  The to?

       tal FDs will be 3+N. (This option is not available with the remote Podman client)

   --privileged=true|false

       Give extended privileges to this container. The default is false. Page 17/40



       By default, Podman containers are unprivileged (=false) and cannot,  for  example,  modify

       parts of the operating system. This is because by default a container is only allowed lim?

       ited access to devices. A "privileged" container is given the same access  to  devices  as

       the user launching the container.

       A privileged container turns off the security features that isolate the container from the

       host. Dropped Capabilities, limited devices, read-only mount points, Apparmor/SELinux sep?

       aration, and Seccomp filters are all disabled.

       Rootless containers cannot have more privileges than the account that launched them.

   --publish,  -p=ip:hostPort:containerPort  |  ip::containerPort | hostPort:containerPort | con?

       tainerPort

       Publish a container's port, or range of ports, to the host.

       Both hostPort and containerPort can be specified as a range of ports.

       When specifying ranges for both, the number of container ports in the range must match the

       number of host ports in the range.

       If  host  IP is set to 0.0.0.0 or not set at all, the port will be bound on all IPs on the

       host.

       Host port does not have to be specified (e.g. podman run -p 127.0.0.1::80).  If it is not,

       the container port will be randomly assigned a port on the host.

       Use podman port to see the actual mapping: podman port $CONTAINER $CONTAINERPORT.

       Note: if a container will be run within a pod, it is not necessary to publish the port for

       the containers in the pod. The port must only be published by the pod itself. Pod  network

       stacks  act  like  the network stack on the host - you have a variety of containers in the

       pod, and programs in the container, all sharing a single interface and IP address, and as?

       sociated  ports.  If  one  container binds to a port, no other container can use that port

       within the pod while it is in use. Containers in the pod can also communicate over  local?

       host  by  having  one  container bind to localhost in the pod, and another connect to that

       port.

   --publish-all, -P=true|false

       Publish all exposed ports to random ports on the host interfaces. The default is false.

       When set to true, publish all exposed ports to the host interfaces. The default is  false.

       If  the  operator uses -P (or -p) then Podman will make the exposed port accessible on the

       host and the ports will be available to any client that can reach the host.

       When using this option, Podman will bind any exposed port to a random  port  on  the  host Page 18/40



       within an ephemeral port range defined by /proc/sys/net/ipv4/ip_local_port_range.  To find

       the mapping between the host ports and the exposed ports, use podman port.

   --pull=always|missing|never

       Pull image before running. The default is missing.

              ? missing: attempt to pull the latest image from  the  registries  listed  in  reg?

                istries.conf  if  a local image does not exist.Raise an error if the image is not

                in any listed registry and is not present locally.

              ? always: Pull the image from the first registry it is found in as listed  in  reg?

                istries.conf. Raise an error if not found in the registries, even if the image is

                present locally.

              ? never: do not pull the image from the registry, use only the local version. Raise

                an error if the image is not present locally.

   --quiet, -q

       Suppress output information when pulling images

   --read-only=true|false

       Mount the container's root filesystem as read only.

       By  default a container will have its root filesystem writable allowing processes to write

       files anywhere. By specifying the --read-only flag,  the  container  will  have  its  root

       filesystem mounted as read only prohibiting any writes.

   --read-only-tmpfs=true|false

       If  container is running in --read-only mode, then mount a read-write tmpfs on /run, /tmp,

       and /var/tmp. The default is true.

   --replace=true|false

       If another container with the same name already exists, replace and remove it. The default

       is false.

   --requires=container

       Specify  one  or  more requirements.  A requirement is a dependency container that will be

       started before this container.  Containers can be specified by name or ID,  with  multiple

       containers being separated by commas.

   --restart=policy

       Restart  policy  to follow when containers exit.  Restart policy will not take effect if a

       container is stopped via the podman kill or podman stop commands.

       Valid policy values are: Page 19/40



              ? no                       : Do not restart containers on exit

              ? on-failure[:max_retries] : Restart containers when they exit with a non-zero exit

                code, retrying indefinitely or until the optional max_retries count is hit

              ? always                    : Restart containers when they exit, regardless of sta?

                tus, retrying indefinitely

              ? unless-stopped           : Identical to always

       Please note that restart will not restart containers after a system reboot.  If this func?

       tionality  is  required  in your environment, you can invoke Podman from a systemd.unit(5)

       file, or create an init script for whichever init system is in use.  To  generate  systemd

       unit files, please see podman generate systemd.

   --rm=true|false

       Automatically remove the container when it exits. The default is false.

   --rmi=true|false

       After  exit  of  the container, remove the image unless another container is using it. The

       default is false.

   --rootfs

       If specified, the first argument refers to an exploded container on the file system.

       This is useful to run a container without requiring any image management,  the  rootfs  of

       the container is assumed to be managed externally.

       Note:  On  SELinux systems, the rootfs needs the correct label, which is by default uncon?

       fined_u:object_r:container_file_t.

   --sdnotify=container|conmon|ignore

       Determines how to use the NOTIFY_SOCKET, as passed with systemd and Type=notify.

       Default is container, which means allow the OCI runtime to proxy the socket into the  con?

       tainer  to  receive  ready notification. Podman will set the MAINPID to conmon's pid.  The

       conmon option sets MAINPID to conmon's  pid,  and  sends  READY  when  the  container  has

       started.  The  socket  is never passed to the runtime or the container.  The ignore option

       removes NOTIFY_SOCKET from the environment for itself and child processes,  for  the  case

       where some other process above Podman uses NOTIFY_SOCKET and Podman should not use it.

   --seccomp-policy=policy

       Specify  the policy to select the seccomp profile. If set to image, Podman will look for a

       "io.containers.seccomp.profile" label in the container-image config and use its value as a

       seccomp  profile. Otherwise, Podman will follow the default policy by applying the default Page 20/40



       profile unless specified otherwise via --security-opt seccomp as described below.

       Note that this feature is experimental and may change in the future.

   --secret=secret[,opt=opt ...]

       Give the container access to a secret. Can be specified multiple times.

       A secret is a blob of sensitive data which a container needs at runtime but should not  be

       stored  in  the  image or in source control, such as usernames and passwords, TLS certifi?

       cates and keys, SSH keys or other important generic strings or binary content (up  to  500

       kb in size).

       When secrets are specified as type mount, the secrets are copied and mounted into the con?

       tainer when a container is created.  When secrets are specified as type  env,  the  secret

       will  be  set as an environment variable within the container.  Secrets are written in the

       container at the time of container creation, and modifying the secret using podman  secret

       commands after the container is created will not affect the secret inside the container.

       Secrets and its storage are managed using the podman secret command.

       Secret Options

              ? type=mount|env     :  How  the  secret  will be exposed to the container. Default

                mount.

              ? target=target     : Target of secret. Defaults to secret name.

              ? uid=0             : UID of secret. Defaults to 0. Mount secret type only.

              ? gid=0             : GID of secret. Defaults to 0. Mount secret type only.

              ? mode=0            : Mode of secret. Defaults to 0444. Mount secret type only.

   --security-opt=option

       Security Options

              ? apparmor=unconfined : Turn off apparmor confinement for the container

              ? apparmor=your-profile : Set the apparmor confinement profile for the container

              ? label=user:USER: Set the label user for the container processes

              ? label=role:ROLE: Set the label role for the container processes

              ? label=type:TYPE: Set the label process type for the container processes

              ? label=level:LEVEL: Set the label level for the container processes

              ? label=filetype:TYPE_: Set the label file type for the container files

              ? label=disable: Turn off label separation for the container

       Note: Labeling can be disabled for all containers by setting label=false in  the  contain?

       ers.conf   (/etc/containers/containers.conf  or  $HOME/.config/containers/containers.conf) Page 21/40



       file.

              ? mask=/path/1:/path/2: The paths to mask separated by a colon. A masked path  can?

                not be accessed inside the container.

              ? no-new-privileges: Disable container processes from gaining additional privileges

              ? seccomp=unconfined: Turn off seccomp confinement for the container

              ? seccomp=profile.json: Allowed syscall list seccomp JSON file to be used as a sec?

                comp filter

              ? proc-opts=OPTIONS : Comma-separated list of options to use for the  /proc  mount.

                More  details  for  the  possible  mount options are specified in the proc(5) man

                page.

              ? unmask=ALL or /path/1:/path/2, or shell expanded paths (/proc/*): Paths to unmask

                separated by a colon. If set to ALL, it will unmask all the paths that are masked

                or made  read  only  by  default.   The  default  masked  paths  are  /proc/acpi,

                /proc/kcore,   /proc/keys,  /proc/latency_stats,  /proc/sched_debug,  /proc/scsi,

                /proc/timer_list, /proc/timer_stats, /sys/firmware,  and  /sys/fs/selinux..   The

                default   paths  that  are  read  only  are  /proc/asound,  /proc/bus,  /proc/fs,

                /proc/irq, /proc/sys, /proc/sysrq-trigger, /sys/fs/cgroup.

       Note: Labeling can be disabled for all containers by setting label=false in  the  contain?

       ers.conf(5) file.

   --shm-size=number[unit]

       Size of /dev/shm. A unit can be b (bytes), k (kilobytes), m (megabytes), or g (gigabytes).

       If you omit the unit, the system uses bytes. If you omit the size entirely, the default is

       64m.   When  size is 0, there is no limit on the amount of memory used for IPC by the con?

       tainer.

   --sig-proxy=true|false

       Sets whether the signals sent to the podman run  command  are  proxied  to  the  container

       process. SIGCHLD, SIGSTOP, and SIGKILL are not proxied. The default is true.

   --stop-signal=signal

       Signal to stop a container. Default is SIGTERM.

   --stop-timeout=seconds

       Timeout  to stop a container. Default is 10.  Remote connections use local containers.conf

       for defaults

   --subgidname=name Page 22/40



       Run the container in a new user namespace using the map with name in the /etc/subgid file.

       If calling podman run as an unprivileged user, the user needs to have the right to use the

       mapping. See subgid(5).  This flag conflicts with --userns and --gidmap.

   --subuidname=name

       Run the container in a new user namespace using the map with name in the /etc/subuid file.

       If calling podman run as an unprivileged user, the user needs to have the right to use the

       mapping. See subuid(5).  This flag conflicts with --userns and --uidmap.

   --sysctl=name=value

       Configure namespaced kernel parameters at runtime.

       For the IPC namespace, the following sysctls are allowed:

              ? kernel.msgmax

              ? kernel.msgmnb

              ? kernel.msgmni

              ? kernel.sem

              ? kernel.shmall

              ? kernel.shmmax

              ? kernel.shmmni

              ? kernel.shm_rmid_forced

              ? Sysctls beginning with fs.mqueue.*

       Note: if you use the --ipc=host option, the above sysctls will not be allowed.

       For the network namespace, the following sysctls are allowed:

              ? Sysctls beginning with net.*

       Note: if you use the --network=host option, these sysctls will not be allowed.

   --systemd=true|false|always

       Run container in systemd mode. The default is true.

       The value always enforces the systemd mode is enforced without looking at  the  executable

       name.  Otherwise,  if  set to true and the command you are running inside the container is

       systemd, /usr/sbin/init, /sbin/init or /usr/local/sbin/init.

       If the command you are running inside of the container is systemd Podman will setup  tmpfs

       mount points in the following directories:

              ? /run

              ? /run/lock

              ? /tmp Page 23/40



              ? /sys/fs/cgroup/systemd

              ? /var/lib/journal

       It will also set the default stop signal to SIGRTMIN+3.

       This allows systemd to run in a confined container without any modifications.

       Note  that  on  SELinux systems, systemd attempts to write to the cgroup file system. Con?

       tainers writing to the cgroup file system  are  denied  by  default.   The  container_man?

       age_cgroup boolean must be enabled for this to be allowed on an SELinux separated system.

              setsebool -P container_manage_cgroup true

   --timeout=seconds

       Maximum time a container is allowed to run before conmon sends it the kill signal.  By de?

       fault containers will run until they exit or are stopped by podman stop.

   --tls-verify=true|false

       Require HTTPS and verify certificates when contacting registries (default: true).  If  ex?

       plicitly  set to true, then TLS verification will be used. If set to false, then TLS veri?

       fication will not be used. If not specified, TLS verification will be used unless the tar?

       get registry is listed as an insecure registry in registries.conf.

   --tmpfs=fs

       Create a tmpfs mount.

       Mount a temporary filesystem (tmpfs) mount into a container, for example:

              $ podman run -d --tmpfs /tmp:rw,size=787448k,mode=1777 my_image

       This  command mounts a tmpfs at /tmp within the container. The supported mount options are

       the same as the Linux default mount flags. If you do not specify any options, the  systems

       uses the following options: rw,noexec,nosuid,nodev.

   --tty, -t=true|false

       Allocate a pseudo-TTY. The default is false.

       When  set  to  true, Podman will allocate a pseudo-tty and attach to the standard input of

       the container. This can be used, for example, to run a throwaway  interactive  shell.  The

       default is false.

       NOTE:  The  --tty  flag  prevents  redirection of standard output.  It combines STDOUT and

       STDERR, it can insert control characters, and it can hang pipes. This option  should  only

       be  used  when run interactively in a terminal. When feeding input to Podman, use -i only,

       not -it.

              echo "asdf" | podman run --rm -i someimage /bin/cat Page 24/40



   --tz=timezone

       Set timezone in container. This flag takes area-based timezones, GMT time, as well as  lo?

       cal,   which  sets  the  timezone  in  the  container  to  match  the  host  machine.  See

       /usr/share/zoneinfo/ for valid timezones.  Remote connections  use  local  containers.conf

       for defaults

   --umask=umask

       Set  the  umask inside the container. Defaults to 0022.  Remote connections use local con?

       tainers.conf for defaults

   --uidmap=container_uid:from_uid:amount

       Run the container in a new user namespace using the supplied  mapping.  This  option  con?

       flicts  with the --userns and --subuidname options. This option provides a way to map host

       UIDs to container UIDs. It can be passed several times to map different ranges.

       The _fromuid value is based upon the user running the command, either rootfull or rootless

       users.  * rootfull user:  container_uid:host_uid:amount * rootless user: container_uid:in?

       termediate_uid:amount

       When podman run is called by a privileged user, the option --uidmap works as a direct map?

       ping between host UIDs and container UIDs.

       host UID -> container UID

       The  amount  specifies the number of consecutive UIDs that will be mapped.  If for example

       amount is 4 the mapping would look like:

       |   host UID     |    container UID    | | -              | -                   | |  _fro?

       muid     | _containeruid     | | _fromuid + 1 | _containeruid + 1 | | _fromuid + 2 | _con?

       taineruid + 2 | | _fromuid + 3 | _containeruid + 3 |

       When podman run is called by an unprivileged user (i.e. running rootless), the value _fro?

       muid  is  interpreted  as  an  "intermediate UID". In the rootless case, host UIDs are not

       mapped directly to container UIDs. Instead the mapping happens over two mapping steps:

       host UID -> intermediate UID -> container UID

       The --uidmap option only influences the second mapping step.

       The first mapping step is derived by Podman from the contents of the file /etc/subuid  and

       the UID of the user calling Podman.

       First mapping step:

       |   host   UID                                           |   intermediate   UID   |   |  -

       |                - | | UID for the user starting Podman                 |                0 Page 25/40



       |  |  1st subordinate UID for the user starting Podman |                1 | | 2nd subordi?

       nate UID for the user starting Podman |                2 | | 3rd subordinate UID  for  the

       user starting Podman |                3 | | nth subordinate UID for the user starting Pod?

       man |                n |

       To be able to use intermediate UIDs greater than zero, the user needs to have  subordinate

       UIDs configured in /etc/subuid. See subuid(5).

       The second mapping step is configured with --uidmap.

       If for example amount is 5 the second mapping step would look like:

       |     intermediate   UID     |      container   UID      |   |  -                     |  -

       | | _fromuid           | _containeruid     | | _fromuid + 1       | _containeruid + 1 |  |

       _fromuid  +  2        |  _containeruid  + 2 | | _fromuid + 3       | _containeruid + 3 | |

       _fromuid + 4       | _containeruid + 4 |

       Even if a user does not have any subordinate UIDs in  /etc/subuid, --uidmap could still be

       used  to  map the normal UID of the user to a container UID by running podman run --uidmap

       $container_uid:0:1 --user $container_uid ....

   --ulimit=option

       Ulimit options. You can use host to copy the current configuration from the host.

   --user, -u=[user | user:group | uid | uid:gid | user:gid | uid:group ]

       Sets the username or UID used and optionally the groupname or GID for the  specified  com?

       mand.

       Without  this argument, the command will run as the user specified in the container image.

       Unless overridden by a USER command in the Containerfile or by a value passed to this  op?

       tion, this user generally defaults to root.

       When  a user namespace is not in use, the UID and GID used within the container and on the

       host will match. When user namespaces are in use, however, the UID and  GID  in  the  con?

       tainer  may correspond to another UID and GID on the host. In rootless containers, for ex?

       ample, a user namespace is always used, and root in the container will by  default  corre?

       spond to the UID and GID of the user invoking Podman.

   --userns=mode

       Set  the  user namespace mode for the container. It defaults to the PODMAN_USERNS environ?

       ment variable. An empty value ("") means user namespaces are disabled unless  an  explicit

       mapping is set with the --uidmap and --gidmap options.

       Valid mode values are: Page 26/40



       auto[:OPTIONS,...]: automatically create a unique user namespace.

       The  --userns=auto flag, requires that the user name containers and a range of subordinate

       user ids that the Podman container is allowed to use be specified in the  /etc/subuid  and

       /etc/subgid files.

       Example: containers:2147483647:2147483648.

       Podman allocates unique ranges of UIDs and GIDs from the containers subpordinate user ids.

       The size of the ranges is based on the number of UIDs required in the image. The number of

       UIDs  and GIDs can be overridden with the size option. The auto options currently does not

       work in rootless mode

       Valid auto options:

              ? gidmapping=_CONTAINER_GID:HOSTGID:SIZE: to force a GID mapping to be  present  in

                the user namespace.

              ? size=SIZE:  to  specify  an  explicit size for the automatic user namespace. e.g.

                --userns=auto:size=8192. If size is not specified, auto will estimate a size  for

                the user namespace.

              ? uidmapping=_CONTAINER_UID:HOSTUID:SIZE:  to  force a UID mapping to be present in

                the user namespace.

       container:id: join the user namespace of the specified container.

       host: run in the user namespace of the caller. The processes running in the container will

       have  the  same  privileges  on the host as any other process launched by the calling user

       (default).

       keep-id: creates a user namespace where the current rootless user's UID:GID are mapped  to

       the  same  values  in  the container. This option is ignored for containers created by the

       root user.

       ns:namespace: run the container in the given existing user namespace.

       private: create a new namespace for the container.

       This option is incompatible with --gidmap, --uidmap, --subuidname and --subgidname.

   --uts=mode

       Set the UTS namespace mode for the container. The following values are supported:

              ? host: use the host's UTS namespace inside the container.

              ? private: create a new namespace for the container (default).

              ? ns:[path]: run the container in the given existing UTS namespace.

              ? container:[container]: join the UTS namespace of the specified container. Page 27/40



   --variant=VARIANT

       Use VARIANT instead of the default architecture variant of the container image.  Some  im?

       ages can use multiple variants of the arm architectures, such as arm/v5 and arm/v7.

   --volume, -v[=[[SOURCE-VOLUME|HOST-DIR:]CONTAINER-DIR[:OPTIONS]]]

       Create  a bind mount. If you specify /HOST-DIR:/CONTAINER-DIR, Podman bind mounts host-dir

       in the host to CONTAINER-DIR in the Podman container. Similarly, SOURCE-VOLUME:/CONTAINER-

       DIR  will  mount  the volume in the host to the container. If no such named volume exists,

       Podman will create one. (Note when using the remote client, the volumes  will  be  mounted

       from the remote server, not necessarily the client machine.)

       The options is a comma-separated list and can be: [1] ?#Footnote1?

              ? rw|ro

              ? z|Z

              ? [r]shared|[r]slave|[r]private[r]unbindable

              ? [r]bind

              ? [no]exec

              ? [no]dev

              ? [no]suid

              ? [O]

              ? [U]

       The  CONTAINER-DIR  must be an absolute path such as /src/docs. The volume will be mounted

       into the container at this directory.

       Volumes may specify a source as well, as either a directory on the host or the name  of  a

       named  volume.  If  no source is given, the volume will be created as an anonymously named

       volume with a randomly generated name, and will be removed when the container  is  removed

       via the --rm flag or podman rm --volumes.

       If a volume source is specified, it must be a path on the host or the name of a named vol?

       ume. Host paths are allowed to be absolute or relative; relative paths are resolved  rela?

       tive  to  the directory Podman is run in. If the source does not exist, Podman will return

       an error. Users must pre-create the source files or directories.

       Any source that does not begin with a . or / will be treated as the name of a  named  vol?

       ume.  If a volume with that name does not exist, it will be created.  Volumes created with

       names are not anonymous, and they are not removed by the --rm option  and  the  podman  rm

       --volumes command. Page 28/40



       You can specify multiple -v options to mount one or more volumes into a container.

       Write Protected Volume Mounts

       You  can  add :ro or :rw option to mount a volume in read-only or read-write mode, respec?

       tively. By default, the volumes are mounted read-write.

       Chowning Volume Mounts

       By default, Podman does not change the  owner  and  group  of  source  volume  directories

       mounted  into  containers.  If a container is created in a new user namespace, the UID and

       GID in the container may correspond to another UID and GID on the host.

       The :U suffix tells Podman to use the correct host UID and GID based on the  UID  and  GID

       within the container, to change recursively the owner and group of the source volume.

       Warning use with caution since this will modify the host filesystem.

       Labeling Volume Mounts

       Labeling  systems  like  SELinux  require  that proper labels are placed on volume content

       mounted into a container. Without a label, the security system might prevent the processes

       running  inside  the  container from using the content. By default, Podman does not change

       the labels set by the OS.

       To change a label in the container context, you can add either of two suffixes :z or :Z to

       the  volume  mount.  These suffixes tell Podman to relabel file objects on the shared vol?

       umes. The z option tells Podman that two containers share the volume content. As a result,

       Podman labels the content with a shared content label. Shared volume labels allow all con?

       tainers to read/write content.  The Z option tells Podman to label the content with a pri?

       vate unshared label.

       Note:  Do  not relabel system files and directories. Relabeling system content might cause

       other confined services on your machine to fail.  For these types of containers we  recom?

       mend  that  disable  SELinux separation.  The option --security-opt label=disable disables

       SELinux separation for the container.  For example if a user wanted to volume mount  their

       entire home directory into a container, they need to disable SELinux separation.

                 $ podman run --security-opt label=disable -v $HOME:/home/user fedora touch /home/user/file

       Overlay Volume Mounts

       The :O flag tells Podman to mount the directory from the host as a temporary storage using

       the overlay file system. The container processes can modify content within the  mountpoint

       which  is  stored  in the container storage in a separate directory. In overlay terms, the

       source directory will be the lower, and the container storage directory will be the upper. Page 29/40



       Modifications to the mount point are destroyed when the container finishes executing, sim?

       ilar to a tmpfs mount point being unmounted.

       Subsequent executions of the container will see the original source directory content, any

       changes from previous container executions no longer exist.

       One use case of the overlay mount is sharing the package cache from the host into the con?

       tainer to allow speeding up builds.

       Note:

               - The `O` flag conflicts with other options listed above.

       Content mounted into the container is labeled with the private label.

              On SELinux systems, labels in the source directory must be  readable  by  the  con?

       tainer  label.  Usually  containers  can read/execute container_share_t and can read/write

       container_file_t. If you cannot change the labels on a source  volume,  SELinux  container

       separation must be disabled for the container to work.

            - The source directory mounted into the container with an overlay mount should not be

       modified, it can cause unexpected failures. It is recommended that you do not  modify  the

       directory until the container finishes running.

       Only the current container can use a private volume.

       Mounts propagation

       By  default  bind mounted volumes are private. That means any mounts done inside container

       will not be visible on host and vice versa. One can change this behavior by  specifying  a

       volume  mount  propagation  property. Making a volume shared mounts done under that volume

       inside container will be visible on host and vice versa. Making  a  volume  slave  enables

       only  one  way mount propagation and that is mounts done on host under that volume will be

       visible inside container but not the other way around. [1] ?#Footnote1?

       To control mount propagation property of volume one can use [r]shared,  [r]slave,  [r]pri?

       vate  or  [r]unbindable  propagation flag.  Propagation property can be specified only for

       bind mounted volumes and not for internal volumes or named volumes. For mount  propagation

       to  work source mount point (mount point where source dir is mounted on) has to have right

       propagation properties. For shared volumes, source mount point has to be shared.  And  for

       slave volumes, source mount has to be either shared or slave.  [1] ?#Footnote1?

       If  you want to recursively mount a volume and all of its submounts into a container, then

       you can use the rbind option. By default the bind option is used,  and  submounts  of  the

       source directory will not be mounted into the container. Page 30/40



       Mounting  the  volume  with  the nosuid options means that SUID applications on the volume

       will not be able to change their privilege. By default volumes are mounted with nosuid.

       Mounting the volume with the noexec option means that no executables on the volume will be

       able to executed within the container.

       Mounting the volume with the nodev option means that no devices on the volume will be able

       to be used by processes within the container. By default volumes are mounted with nodev.

       If the host-dir is a mount point, then dev, suid, and exec options are ignored by the ker?

       nel.

       Use df $hostdir to figure out the source mount, and then use findmnt -o TARGET,PROPAGATION

       source-mount-dir to figure out propagation properties of source mount. If findmnt(1) util?

       ity  is  not  available,  then  one  can  look  at  mount  entry for source mount point in

       /proc/self/mountinfo. Look at the "optional fields" and see if any propagation  properties

       are  specified.   In  there,  shared:N  means the mount is shared, master:N means mount is

       slave, and if nothing is there, the mount is private. [1] ?#Footnote1?

       To change propagation properties of a mount point, use mount(8) command. For  example,  if

       one wants to bind mount source directory /foo, one can do mount --bind /foo /foo and mount

       --make-private --make-shared /foo. This will convert /foo into a shared mount  point.  Al?

       ternatively,  one can directly change propagation properties of source mount. Say, if / is

       source mount for /foo, then use mount --make-shared / to convert / into a shared mount.

       Note: if the user only has access rights via a group, accessing the volume from  inside  a

       rootless container will fail. Use the --group-add keep-groups flag to pass the user's sup?

       plementary group access into the container.

   --volumes-from[=CONTAINER[:OPTIONS]]

       Mount volumes from the specified container(s). Used to share volumes  between  containers.

       The options is a comma-separated list with the following available elements:

              ? rw|ro

              ? z

       Mounts  already  mounted  volumes from a source container onto another container. You must

       supply the source's container-id or container-name.  To share a volume, use the --volumes-

       from  option  when  running the target container. You can share volumes even if the source

       container is not running.

       By default, Podman mounts the volumes in the same mode (read-write or read-only) as it  is

       mounted in the source container.  You can change this by adding a ro or rw option. Page 31/40



       Labeling  systems  like  SELinux  require  that proper labels are placed on volume content

       mounted into a container. Without a label, the security system might prevent the processes

       running  inside  the  container from using the content. By default, Podman does not change

       the labels set by the OS.

       To change a label in the container context, you can add z to the volume mount.  This  suf?

       fix  tells Podman to relabel file objects on the shared volumes. The z option tells Podman

       that two containers share the volume content. As a result, Podman labels the content  with

       a shared content label. Shared volume labels allow all containers to read/write content.

       If  the  location of the volume from the source container overlaps with data residing on a

       target container, then the volume hides that data on the target.

   --workdir, -w=dir

       Working directory inside the container.

       The default working directory for running binaries within a container is the  root  direc?

       tory  (/).   The image developer can set a different default with the WORKDIR instruction.

       The operator can override the working directory by using the -w option.

   --pidfile=path

       When the pidfile location is specified, the container process' PID will be written to  the

       pidfile.  (This  option is not available with the remote Podman client) If the pidfile op?

       tion is not specified, the container process' PID will be written to /run/containers/stor?

       age/${storage-driver}-containers/$CID/userdata/pidfile.

       After  the  container  is started, the location for the pidfile can be discovered with the

       following podman inspect command:

              $ podman inspect --format '{{ .PidFile }}' $CID

              /run/containers/storage/${storage-driver}-containers/$CID/userdata/pidfile

Exit Status

       The exit code from podman run gives information about why the container failed to  run  or

       why  it  exited. When podman run exits with a non-zero code, the exit codes follow the ch?

       root(1) standard, see below:

       125 The error is with Podman itself

              $ podman run --foo busybox; echo $?

              Error: unknown flag: --foo

              125

       126 The contained command cannot be invoked Page 32/40



              $ podman run busybox /etc; echo $?

              Error: container_linux.go:346: starting container process caused "exec: \"/etc\": permission denied": OCI runtime

error

              126

       127 The contained command cannot be found

              $ podman run busybox foo; echo $?

              Error: container_linux.go:346: starting container process caused "exec: \"foo\": executable file not found in $PATH":

OCI runtime error

              127

       Exit code contained command exit code

              $ podman run busybox /bin/sh -c 'exit 3'; echo $?

              3

EXAMPLES

   Running container in read-only mode

       During container image development, containers often need to write to the  image  content.

       Installing  packages  into  /usr,  for example. In production, applications seldom need to

       write to the image.  Container applications write to volumes if they need to write to file

       systems at all. Applications can be made more secure by running them in read-only mode us?

       ing the --read-only switch.  This protects the containers image  from  modification.  Read

       only  containers may still need to write temporary data. The best way to handle this is to

       mount tmpfs directories on /run and /tmp.

              $ podman run --read-only -i -t fedora /bin/bash

              $ podman run --read-only --read-only-tmpfs=false --tmpfs /run -i -t fedora /bin/bash

   Exposing log messages from the container to the host's log

       If you want messages that are logged in your container to  show  up  in  the  host's  sys?

       log/journal then you should bind mount the /dev/log directory as follows.

              $ podman run -v /dev/log:/dev/log -i -t fedora /bin/bash

       From inside the container you can test this by sending a message to the log.

              (bash)# logger "Hello from my container"

       Then exit and check the journal.

              (bash)# exit

              $ journalctl -b | grep Hello

       This should list the message sent to logger. Page 33/40



   Attaching to one or more from STDIN, STDOUT, STDERR

       If  you do not specify -a, Podman will attach everything (stdin, stdout, stderr).  You can

       specify to which of the three standard streams (stdin, stdout, stderr) you'd like to  con?

       nect instead, as in:

              $ podman run -a stdin -a stdout -i -t fedora /bin/bash

   Sharing IPC between containers

       Using shm_server.c available here: https://www.cs.cf.ac.uk/Dave/C/node27.html

       Testing --ipc=host mode:

       Host shows a shared memory segment with 7 pids attached, happens to be from httpd:

              $ sudo ipcs -m

              ------ Shared Memory Segments --------

              key        shmid      owner      perms      bytes      nattch     status

              0x01128e25 0          root       600        1000       7

       Now  run a regular container, and it correctly does NOT see the shared memory segment from

       the host:

              $ podman run -it shm ipcs -m

              ------ Shared Memory Segments --------

              key        shmid      owner      perms      bytes      nattch     status

       Run a container with the new --ipc=host option, and it now sees the shared memory  segment

       from the host httpd:

              $ podman run -it --ipc=host shm ipcs -m

              ------ Shared Memory Segments --------

              key        shmid      owner      perms      bytes      nattch     status

              0x01128e25 0          root       600        1000       7

       Testing --ipc=container:id mode:

       Start a container with a program to create a shared memory segment:

              $ podman run -it shm bash

              $ sudo shm/shm_server &

              $ sudo ipcs -m

              ------ Shared Memory Segments --------

              key        shmid      owner      perms      bytes      nattch     status

              0x0000162e 0          root       666        27         1

       Create a 2nd container correctly shows no shared memory segment from 1st container: Page 34/40



              $ podman run shm ipcs -m

              ------ Shared Memory Segments --------

              key        shmid      owner      perms      bytes      nattch     status

       Create a 3rd container using the --ipc=container:id option, now it shows the shared memory

       segment from the first:

              $ podman run -it --ipc=container:ed735b2264ac shm ipcs -m

              $ sudo ipcs -m

              ------ Shared Memory Segments --------

              key        shmid      owner      perms      bytes      nattch     status

              0x0000162e 0          root       666        27         1

   Mapping Ports for External Usage

       The exposed port of an application can be mapped to a host port using the -p flag. For ex?

       ample, an httpd port 80 can be mapped to the host port 8080 using the following:

              $ podman run -p 8080:80 -d -i -t fedora/httpd

   Mounting External Volumes

       To  mount  a host directory as a container volume, specify the absolute path to the direc?

       tory and the absolute path for the container directory separated by a colon. If the source

       is  a named volume maintained by Podman, it is recommended to use its name rather than the

       path to the volume. Otherwise the volume will be considered as an orphan and wiped if  you

       execute podman volume prune:

              $ podman run -v /var/db:/data1 -i -t fedora bash

              $ podman run -v data:/data2 -i -t fedora bash

              $ podman run -v /var/cache/dnf:/var/cache/dnf:O -ti fedora dnf -y update

              $ podman run -d -e MYSQL_ROOT_PASSWORD=root --user mysql --userns=keep-id -v ~/data:/var/lib/mysql:z,U

mariadb

       Using  --mount flags to mount a host directory as a container folder, specify the absolute

       path to the directory or the volume name, and the absolute path within the  container  di?

       rectory:

              $ podman run --mount type=bind,src=/var/db,target=/data1 busybox sh

              $ podman run --mount type=bind,src=volume-name,target=/data1 busybox sh

       When  using  SELinux, be aware that the host has no knowledge of container SELinux policy.

       Therefore, in the above example, if SELinux policy is enforced, the /var/db  directory  is

       not  writable  to the container. A "Permission Denied" message will occur and an avc: mes? Page 35/40



       sage in the host's syslog.

       To work around this, at time of writing this man page, the following command needs  to  be

       run  in  order  for the proper SELinux policy type label to be attached to the host direc?

       tory:

              $ chcon -Rt svirt_sandbox_file_t /var/db

       Now, writing to the /data1 volume in the container will be allowed and  the  changes  will

       also be reflected on the host in /var/db.

   Using alternative security labeling

       You  can override the default labeling scheme for each container by specifying the --secu?

       rity-opt flag. For example, you can specify the MCS/MLS level, a requirement for MLS  sys?

       tems.  Specifying  the level in the following command allows you to share the same content

       between containers.

              podman run --security-opt label=level:s0:c100,c200 -i -t fedora bash

       An MLS example might be:

              $ podman run --security-opt label=level:TopSecret -i -t rhel7 bash

       To disable the security labeling for this container versus running with the

   --permissive flag, use the following command:

              $ podman run --security-opt label=disable -i -t fedora bash

       If you want a tighter security policy on the processes within a container, you can specify

       an  alternate  type  for  the container. You could run a container that is only allowed to

       listen on Apache ports by executing the following command:

              $ podman run --security-opt label=type:svirt_apache_t -i -t centos bash

       Note you would have to write policy defining a svirt_apache_t type.

       To mask additional specific paths in the container, specify the paths separated by a colon

       using the mask option with the --security-opt flag.

              $ podman run --security-opt mask=/foo/bar:/second/path fedora bash

       To  unmask  all  the paths that are masked by default, set the unmask option to ALL. Or to

       only unmask specific paths, specify the paths as shown above with the mask option.

              $ podman run --security-opt unmask=ALL fedora bash

       To unmask all the paths that start with /proc, set the unmask option to /proc/*.

              $ podman run --security-opt unmask=/proc/* fedora bash

              $ podman run --security-opt unmask=/foo/bar:/sys/firmware fedora bash

   Setting device weight Page 36/40



       If you want to set /dev/sda device weight to 200, you can specify  the  device  weight  by

       --blkio-weight-device flag. Use the following command:

              $ podman run -it --blkio-weight-device "/dev/sda:200" ubuntu

   Using a podman container with input from a pipe

              $ echo "asdf" | podman run --rm -i --entrypoint /bin/cat someimage

              asdf

   Setting automatic user namespace separated containers

              # podman run --userns=auto:size=65536 ubi8-micro cat /proc/self/uid_map

              0 2147483647      65536

              # podman run --userns=auto:size=65536 ubi8-micro cat /proc/self/uid_map

              0 2147549183      65536

   Setting Namespaced Kernel Parameters (Sysctls)

       The --sysctl sets namespaced kernel parameters (sysctls) in the container. For example, to

       turn on IP forwarding in the containers network namespace, run this command:

              $ podman run --sysctl net.ipv4.ip_forward=1 someimage

       Note that not all sysctls are namespaced. Podman does not support changing sysctls  inside

       of  a  container  that also modify the host system. As the kernel evolves we expect to see

       more sysctls become namespaced.

       See the definition of the --sysctl option above for the current list of supported sysctls.

   Set UID/GID mapping in a new user namespace

       Running a container in a new user namespace requires a mapping of the uids and  gids  from

       the host.

              $ podman run --uidmap 0:30000:7000 --gidmap 0:30000:7000 fedora echo hello

   Configuring Storage Options from the command line

       Podman  allows  for  the  configuration of storage by changing the values in the /etc/con?

       tainer/storage.conf or by using global options. This shows how to setup and use fuse-over?

       layfs for a one time run of busybox using global options.

              podman --log-level=debug --storage-driver overlay --storage-opt "overlay.mount_program=/usr/bin/fuse-overlayfs"

run busybox /bin/sh

   Configure timezone in a container

              $ podman run --tz=local alpine date

              $ podman run --tz=Asia/Shanghai alpine date

              $ podman run --tz=US/Eastern alpine date Page 37/40



   Adding dependency containers

       The first container, container1, is not started initially, but must be running before con?

       tainer2 will start.  The podman run command will start the container automatically  before

       starting container2.

              $ podman create --name container1 -t -i fedora bash

              $ podman run --name container2 --requires container1 -t -i fedora bash

       Multiple containers can be required.

              $ podman create --name container1 -t -i fedora bash

              $ podman create --name container2 -t -i fedora bash

              $ podman run --name container3 --requires container1,container2 -t -i fedora bash

   Configure keep supplemental groups for access to volume

              $ podman run -v /var/lib/design:/var/lib/design --group-add keep-groups ubi8

   Configure execution domain for containers using personality flag

              $ podman run --name container1 --personaity=LINUX32 fedora bash

   Rootless Containers

       Podman  runs  as  a non root user on most systems. This feature requires that a new enough

       version  of  shadow-utils  be  installed.  The  shadow-utils  package  must  include   the

       newuidmap(1) and newgidmap(1) executables.

       Note: RHEL7 and Centos 7 will not have this feature until RHEL7.7 is released.

       In order for users to run rootless, there must be an entry for their username in /etc/sub?

       uid and /etc/subgid which lists the UIDs for their user namespace.

       Rootless Podman works better if the fuse-overlayfs and slirp4netns packages are installed.

       The  fuse-overlayfs  package  provides a userspace overlay storage driver, otherwise users

       need to use the vfs storage driver, which is diskspace  expensive  and  does  not  perform

       well.  slirp4netns  is  required  for  VPN,  without it containers need to be run with the

       --network=host flag.

ENVIRONMENT

       Environment variables within containers can be set using multiple  different  options,  in

       the following order of precedence (later entries override earlier entries):

              ? Container image: Any environment variables specified in the container image.

              ? --http-proxy:  By  default,  several environment variables will be passed in from

                the host, such as http_proxy and no_proxy. See --http-proxy for details.

              ? --env-host: Host environment of the process executing Podman is added. Page 38/40



              ? --env-file: Any environment variables specified via env-files. If multiple  files

                specified, then they override each other in order of entry.

              ? --env: Any environment variables specified will override previous settings.

       Run containers and set the environment ending with a * and a *****:

              $ export ENV1=a

              $ podman run --env ENV* alpine printenv ENV1

              a

              $ podman run --env ENV*****=b alpine printenv ENV*****

              b

CONMON

       When  Podman  starts  a container it actually executes the conmon program, which then exe?

       cutes the OCI Runtime.  Conmon is the container monitor.  It is a small program whose  job

       is to watch the primary process of the container, and if the container dies, save the exit

       code.  It also holds open the tty of the container, so that it can be attached  to  later.

       This  is what allows Podman to run in detached mode (backgrounded), so Podman can exit but

       conmon continues to run.  Each container has their own instance of  conmon.  Conmon  waits

       for  the  container  to  exit, gathers and saves the exit code, and then launches a Podman

       process to complete the container cleanup, by shutting down the network and storage.   For

       more information on conmon, please reference the conmon(8) man page.

FILES

       /etc/subuid

       /etc/subgid

       NOTE:  Use  the  environment  variable  TMPDIR to change the temporary storage location of

       downloaded container images. Podman defaults to use /var/tmp.

SEE ALSO

       podman(1), podman-save(1), podman-ps(1), podman-attach(1),  podman-pod-create(1),  podman-

       port(1),  podman-start(1), podman-kill(1), podman-stop(1), podman-generate-systemd(1) pod?

       man-rm(1),  subgid(5),  subuid(5),  containers.conf(5),   systemd.unit(5),   setsebool(8),

       slirp4netns(1), fuse-overlayfs(1), proc(5), conmon(8), personality(2).

HISTORY

       September 2018, updated by Kunal Kushwaha <kushwaha_kunal_v7@lab.ntt.co.jp>

       October  2017,  converted  from  Docker  documentation  to  Podman by Dan Walsh for Podman

       <dwalsh@redhat.com> Page 39/40



       November 2015, updated by Sally O'Malley <somalley@redhat.com>

       June 2014, updated by Sven Dowideit <SvenDowideit@home.org.au>

       April 2014, Originally compiled by William Henry <whenry@redhat.com> based  on  docker.com

       source material and internal work.

FOOTNOTES

       1: The Podman project is committed to inclusivity, a core value of open source. The master

       and slave mount propagation terminology used here is problematic and divisive, and  should

       be  changed.  However,  these terms are currently used within the Linux kernel and must be

       used as-is at this time. When the kernel maintainers rectify this usage, Podman will  fol?

       low suit immediately.

                                                                                  podman-run(1)()

Page 40/40


