
Rocky Enterprise Linux 9.2 Manual Pages on command 'pkg-config.1'

$ man pkg-config.1

pkg-config(1)                        General Commands Manual                        pkg-config(1)

NAME

       pkg-config - Return metainformation about installed libraries

SYNOPSIS

       pkg-config   [--modversion]   [--version]  [--help]  [--atleast-pkgconfig-version=VERSION]

       [--print-errors]  [--short-errors]   [--silence-errors]   [--errors-to-stdout]   [--debug]

       [--cflags]  [--libs] [--libs-only-L] [--libs-only-l] [--cflags-only-I] [--libs-only-other]

       [--cflags-only-other] [--variable=VARIABLENAME]  [--define-variable=VARIABLENAME=VARIABLE?

       VALUE]  [--print-variables]  [--uninstalled] [--exists] [--atleast-version=VERSION] [--ex?

       act-version=VERSION] [--max-version=VERSION] [--validate] [--list-all]  [--print-provides]

       [--print-requires] [--print-requires-private] [LIBRARIES...]

DESCRIPTION

       The  pkg-config  program  is used to retrieve information about installed libraries in the

       system.  It is typically used to compile and link against one or more libraries.  Here  is

       a typical usage scenario in a Makefile:

       program: program.c

            cc program.c `pkg-config --cflags --libs gnomeui`

       pkg-config  retrieves  information about packages from special metadata files. These files

       are named after the package, and has a .pc extension.  On most systems,  pkg-config  looks

       in   /usr/lib/pkgconfig,   /usr/share/pkgconfig,   /usr/local/lib/pkgconfig  and  /usr/lo?

       cal/share/pkgconfig for these files.  It will additionally look in the colon-separated (on

       Windows,  semicolon-separated)  list of directories specified by the PKG_CONFIG_PATH envi?

       ronment variable. Page 1/12



       The package name specified on the pkg-config command line is defined to be the name of the

       metadata  file, minus the .pc extension. If a library can install multiple versions simul?

       taneously, it must give each version its own name (for example, GTK  1.2  might  have  the

       package name "gtk+" while GTK 2.0 has "gtk+-2.0").

       In addition to specifying a package name on the command line, the full path to a given .pc

       file may be given instead. This allows a user to directly query a particular .pc file.

OPTIONS

       The following options are supported:

       --modversion

              Requests that the version information of the libraries  specified  on  the  command

              line  be  displayed.  If pkg-config can find all the libraries on the command line,

              each library's version string is printed to stdout, one version per line.  In  this

              case pkg-config exits successfully. If one or more libraries is unknown, pkg-config

              exits with a nonzero code, and the contents of stdout are undefined.

       --version

              Displays the version of pkg-config and terminates.

       --atleast-pkgconfig-version=VERSION

              Requires at least the given version of pkg-config.

       --help Displays a help message and terminates.

       --print-errors

              If one or more of the modules on the command line, or their dependencies,  are  not

              found, or if an error occurs in parsing a .pc file, then this option will cause er?

              rors explaining the problem to be printed. With "predicate" options such as  "--ex?

              ists"  pkg-config  runs  silently  by default, because it's usually used in scripts

              that want to control what's output. This option can be used alone  (to  just  print

              errors encountered locating modules on the command line) or with other options. The

              PKG_CONFIG_DEBUG_SPEW environment variable overrides this option.

       --short-errors

              Print short error messages.

       --silence-errors

              If one or more of the modules on the command line, or their dependencies,  are  not

              found,  or  if  an error occurs in parsing a a .pc file, then this option will keep

              errors explaining the problem from being printed. With "predicate" options such  as Page 2/12



              "--exists"  pkg-config  runs  silently  by  default,  because  it's usually used in

              scripts that want to control what's output. So this option is only useful with  op?

              tions  such  as  "--cflags"  or  "--modversion"  that  print errors by default. The

              PKG_CONFIG_DEBUG_SPEW environment variable overrides this option.

       --errors-to-stdout

              If printing errors, print them to stdout rather than the default stderr

       --debug

              Print debugging information. This is slightly  different  than  the  PKG_CONFIG_DE?

              BUG_SPEW environment variable, which also enable "--print-errors".

       The following options are used to compile and link programs:

       --cflags

              This prints pre-processor and compile flags required to compile the packages on the

              command line, including flags for all their dependencies. Flags are "compressed" so

              that each identical flag appears only once. pkg-config exits with a nonzero code if

              it can't find metadata for one or more of the packages on the command line.

       --cflags-only-I

              This prints the -I part of "--cflags". That is, it defines the header  search  path

              but doesn't specify anything else.

       --cflags-only-other

              This prints parts of "--cflags" not covered by "--cflags-only-I".

       --libs This  option  is  identical  to  "--cflags", only it prints the link flags. As with

              "--cflags", duplicate flags are merged (maintaining proper ordering), and flags for

              dependencies are included in the output.

       --libs-only-L

              This prints the -L/-R part of "--libs". That is, it defines the library search path

              but doesn't specify which libraries to link with.

       --libs-only-l

              This prints the -l part of "--libs" for the  libraries  specified  on  the  command

              line.  Note  that  the  union of "--libs-only-l" and "--libs-only-L" may be smaller

              than "--libs", due to flags such as -rdynamic.

       --libs-only-other

              This prints the parts of "--libs" not covered by "--libs-only-L" and  "--libs-only-

              l", such as "--pthread". Page 3/12



       --variable=VARIABLENAME

              This returns the value of a variable defined in a package's .pc file. Most packages

              define the variable "prefix", for example, so you can say:

                $ pkg-config --variable=prefix glib-2.0

                /usr/

       --define-variable=VARIABLENAME=VARIABLEVALUE

              This sets a global value for a variable, overriding the value  in  any  .pc  files.

              Most packages define the variable "prefix", for example, so you can say:

                $ pkg-config --print-errors --define-variable=prefix=/foo \

                             --variable=prefix glib-2.0

                /foo

       --print-variables

              Returns a list of all variables defined in the package.

       --uninstalled

              Normally if you request the package "foo" and the package "foo-uninstalled" exists,

              pkg-config will prefer the "-uninstalled" variant. This allows  compilation/linking

              against uninstalled packages. If you specify the "--uninstalled" option, pkg-config

              will return successfully if any "-uninstalled" packages are being used, and  return

              failure  (false)  otherwise.  (The PKG_CONFIG_DISABLE_UNINSTALLED environment vari?

              able keeps pkg-config from implicitly choosing "-uninstalled" packages, so if  that

              variable  is  set, they will only have been used if you pass a name like "foo-unin?

              stalled" on the command line explicitly.)

       --exists

       --atleast-version=VERSION

       --exact-version=VERSION

       --max-version=VERSION

              These options test whether the package or list of packages on the command line  are

              known  to  pkg-config, and optionally whether the version number of a package meets

              certain constraints.  If all packages exist and meet  the  specified  version  con?

              straints,  pkg-config  exits  successfully. Otherwise it exits unsuccessfully. Only

              the first VERSION comparing option will be honored. Subsequent options of this type

              will be ignored.

              Rather  than  using  the  version-test  options, you can simply give a version con? Page 4/12



              straint after each package name, for example:

                $ pkg-config --exists 'glib-2.0 >= 1.3.4 libxml = 1.8.3'

              Remember to use --print-errors if you want error messages. When no  output  options

              are supplied to pkg-config, --exists is implied.

       --validate

              Checks  the  syntax of a package's .pc file for validity. This is the same as --ex?

              ists except that dependencies are not verified. This can be useful for package  de?

              velopers to test their .pc file prior to release:

                $ pkg-config --validate ./my-package.pc

       --msvc-syntax

              This  option is available only on Windows. It causes pkg-config to output -l and -L

              flags in the form recognized by the Microsoft Visual C++ command-line compiler, cl.

              Specifically, instead of -Lx:/some/path it prints /libpath:x/some/path, and instead

              of -lfoo it prints foo.lib. Note that the --libs output consists of flags  for  the

              linker, and should be placed on the cl command line after a /link switch.

       --define-prefix

       --dont-define-prefix

              These options control whether pkg-config overrides the value of the variable prefix

              in each .pc file. With --define-prefix, pkg-config uses the installed  location  of

              the  .pc file to determine the prefix. --dont-define-prefix prevents this behavior.

              The default is usually --define-prefix.

              When this feature is enabled and a .pc file is found in a directory  named  pkgcon?

              fig,  the prefix for that package is assumed to be the grandparent of the directory

              where the file was found, and the prefix variable is overridden for that  file  ac?

              cordingly.

              If  the value of a variable in a .pc file begins with the original, non-overridden,

              value of the prefix variable, then the overridden value of prefix is used  instead.

              This  allows  the feature to work even when the variables have been expanded in the

              .pc file.

       --prefix-variable=PREFIX

              Set the name of the variable that pkg-config overrides instead of prefix when using

              the --define-prefix feature.

       --static Page 5/12



              Output libraries suitable for static linking.  That means including any private li?

              braries in the output.  This relies on proper tagging in the .pc files, else a  too

              large number of libraries will ordinarily be output.

       --list-all

              List all modules found in the pkg-config path.

       --print-provides

              List all modules the given packages provides.

       --print-requires

              List all modules the given packages requires.

       --print-requires-private

              List all modules the given packages requires for static linking (see --static).

ENVIRONMENT VARIABLES

       PKG_CONFIG_PATH

              A  colon-separated  (on Windows, semicolon-separated) list of directories to search

              for .pc files.  The default directory will always be searched after  searching  the

              path;  the default is libdir/pkgconfig:datadir/pkgconfig where libdir is the libdir

              for pkg-config and datadir is the datadir for pkg-config when it was installed.

       PKG_CONFIG_DEBUG_SPEW

              If set, causes pkg-config to print all kinds of debugging  information  and  report

              all errors.

       PKG_CONFIG_TOP_BUILD_DIR

              A  value  to  set  for  the  magic variable pc_top_builddir which may appear in .pc

              files. If the environment variable is not set, the default value  '$(top_builddir)'

              will  be used. This variable should refer to the top builddir of the Makefile where

              the compile/link flags reported by pkg-config will be used.  This only matters when

              compiling/linking against a package that hasn't yet been installed.

       PKG_CONFIG_DISABLE_UNINSTALLED

              Normally if you request the package "foo" and the package "foo-uninstalled" exists,

              pkg-config will prefer the "-uninstalled" variant. This allows  compilation/linking

              against  uninstalled  packages.   If  this environment variable is set, it disables

              said behavior.

       PKG_CONFIG_SYSTEM_INCLUDE_PATH

              A path variable containing system directories searched by the  compiler.   This  is Page 6/12



              normally /usr/include.

       CPATH

       C_INCLUDE_PATH

       CPLUS_INCLUDE_PATH

              Additional  paths to append to PKG_CONFIG_SYSTEM_INCLUDE_PATH.  These correspond to

              environment variables used by many compilers to  affect  the  header  search  path.

              These are ignored on Windows builds when --msvc-syntax is in use.

       INCLUDE

              Additional paths to append to PKG_CONFIG_SYSTEM_INCLUDE_PATH on Windows builds when

              --msvc-syntax is in use. This corresponds to the environment variable used by  MSVC

              to add directories to the include file search path.

       PKG_CONFIG_ALLOW_SYSTEM_CFLAGS

              Don't  strip system paths out of Cflags. See PKG_CONFIG_SYSTEM_INCLUDE_PATH for the

              definition of system paths.

       PKG_CONFIG_SYSTEM_LIBRARY_PATH

              A path variable containing system directories searched by the linker.  This is nor?

              mally  /usr/lib:/lib but is dependent on the pkg-config build and can contain other

              directories such as /usr/lib64.

       PKG_CONFIG_ALLOW_SYSTEM_LIBS

              Don't strip system paths out of Libs. See  PKG_CONFIG_SYSTEM_LIBRARY_PATH  for  the

              definition of system paths.

       PKG_CONFIG_SYSROOT_DIR

              Modify  -I and -L to use the directories located in target sysroot.  this option is

              useful when cross-compiling packages that use pkg-config to  determine  CFLAGS  and

              LDFLAGS.  -I and -L are modified to point to the new system root. this means that a

              -I/usr/include/libfoo will become -I/var/target/usr/include/libfoo with a  PKG_CON?

              FIG_SYSROOT_DIR equal to /var/target (same rule apply to -L)

       PKG_CONFIG_LIBDIR

              Replaces   the   default  pkg-config  search  directory,  usually  /usr/lib/pkgcon?

              fig:/usr/share/pkgconfig.

       PKG_CONFIG_$PACKAGE_$VARIABLE

              Overrides the variable VARIABLE in the package PACKAGE.  The  environment  variable

              should have the package name and package variable upper cased with non-alphanumeric Page 7/12



              characters   converted   to   underscores.   For    example,    setting    PKG_CON?

              FIG_GLADEUI_2_0_CATALOGDIR   will   override   the  variable  "catalogdir"  in  the

              "gladeui-2.0" package.

PKG-CONFIG DERIVED VARIABLES

       pkg-config sets a few metadata variables that can be used in .pc files or queried at  run?

       time.

       pc_path

              The  default  search path used by pkg-config when searching for .pc files. This can

              be used in a query for the pkg-config module itself itself:

                $ pkg-config --variable pc_path pkg-config

       pcfiledir

              The installed location of the .pc file. This can be used to query the  location  of

              the .pc file for a particular module, but it can also be used to make .pc files re?

              locatable. For instance:

              prefix=${pcfiledir}/../..

              exec_prefix=${prefix}

              libdir=${exec_prefix}/lib

              includedir=${prefix}/include

       pc_sysrootdir

              The sysroot directory set by the user. When the sysroot directory has not been set,

              this  value is /.  See the PKG_CONFIG_SYSROOT_DIR environment variable for more de?

              tails.

       pc_top_builddir

              Location of the user's top build directory when calling pkg-config.  This is useful

              to dynamically set paths in uninstalled .pc files. See the PKG_CONFIG_TOP_BUILD_DIR

              environment variable for more details.

WINDOWS SPECIALITIES

       The pkg-config default search path is ignored on Windows. Instead, the search path is con?

       structed  by  using the installed directory of pkg-config and then appending lib\pkgconfig

       and share\pkgconfig.  This can be augmented or replaced  using  the  standard  environment

       variables described above.

AUTOCONF MACROS

       PKG_CHECK_MODULES(VARIABLE-PREFIX, MODULES [,ACTION-IF-FOUND [,ACTION-IF-NOT-FOUND]])Page 8/12



              The  macro  PKG_CHECK_MODULES  can be used in configure.ac to check whether modules

              exist. A typical usage would be:

               PKG_CHECK_MODULES([MYSTUFF], [gtk+-2.0 >= 1.3.5 libxml = 1.8.4])

              This would result in MYSTUFF_LIBS and MYSTUFF_CFLAGS substitution variables, set to

              the  libs  and cflags for the given module list.  If a module is missing or has the

              wrong version, by default configure will abort with a message. To replace  the  de?

              fault  action, specify an ACTION-IF-NOT-FOUND. PKG_CHECK_MODULES will not print any

              error messages if you specify your own ACTION-IF-NOT-FOUND.  However, it  will  set

              the variable MYSTUFF_PKG_ERRORS, which you can use to display what went wrong.

              Note  that  if there is a possibility the first call to PKG_CHECK_MODULES might not

              happen, you should be sure to include an explicit call  to  PKG_PROG_PKG_CONFIG  in

              your configure.ac.

              Also  note  that  repeated  usage of VARIABLE-PREFIX is not recommended.  After the

              first successful usage, subsequent calls with the same VARIABLE-PREFIX will  simply

              use  the  _LIBS  and  _CFLAGS variables set from the previous usage without calling

              pkg-config again.

       PKG_PREREQ(MIN-VERSION)

              Checks that the version of the pkg-config autoconf macros in use is at  least  MIN-

              VERSION.  This  can  be used to ensure a particular pkg-config macro will be avail?

              able.

       PKG_PROG_PKG_CONFIG([MIN-VERSION])

              Defines the PKG_CONFIG variable to the best pkg-config  available,  useful  if  you

              need pkg-config but don't want to use PKG_CHECK_MODULES.

              If the first call to PKG_PROG_PKG_CONFIG is conditional, then it will not work cor?

              rectly in all cases. Since many of the other macros such as  PKG_CHECK_MODULES  re?

              quire    PKG_PROG_PKG_CONFIG   to   know   which   pkg-config   program   to   run,

              PKG_PROG_PKG_CONFIG may be run for the first time from a conditional  from  one  of

              these  macros. Therefore, if any of the pkg-config macros will be used under a con?

              ditional, it's best to run PKG_PROG_PKG_CONFIG before any of the other  macros  are

              used.

       PKG_CHECK_MODULES_STATIC(VARIABLE-PREFIX,   MODULES   [,ACTION-IF-FOUND   [,ACTION-IF-NOT-

       FOUND]])

              Enables static linking through --static prior to calling PKG_CHECK_MODULES. Page 9/12



       PKG_CHECK_EXISTS(MODULES, [ACTION-IF-FOUND], [ACTION-IF-NOT-FOUND])

              Check to see whether a particular set of modules exists.  Similar to PKG_CHECK_MOD?

              ULES(), but does not set variables or print errors.

              Similar  to  PKG_CHECK_MODULES,  make  sure  that  the  first  instance  of this or

              PKG_CHECK_MODULES is called, or make sure to call PKG_PROG_PKGCONFIG manually.

       PKG_INSTALLDIR(DIRECTORY)

              Substitutes the variable pkgconfigdir as the location where a module should install

              pkg-config  .pc  files.  By default the directory is $libdir/pkgconfig, but the de?

              fault can be changed by passing DIRECTORY.   The  user  can  override  through  the

              --with-pkgconfigdir parameter.

       PKG_NOARCH_INSTALLDIR(DIRECTORY)

              Substitutes  the variable noarch_pkgconfigdir as the location where a module should

              install  arch-independent  pkg-config  .pc  files.  By  default  the  directory  is

              $datadir/pkgconfig,  but  the default can be changed by passing DIRECTORY. The user

              can override through the --with-noarch-pkgconfigdir parameter.

       PKG_CHECK_VAR(VARIABLE, MODULE, CONFIG-VARIABLE, [ACTION-IF-FOUND], [ACTION-IF-NOT-FOUND])

              Retrieves the value of the pkg-config  variable  CONFIG-VARIABLE  from  MODULE  and

              stores  it  in VARIABLE. Note that repeated usage of VARIABLE is not recommended as

              the check will be skipped if the variable is already set.

METADATA FILE SYNTAX

       To add a library to the set of packages pkg-config knows about, simply install a .pc file.

       You should install this file to libdir/pkgconfig.

       Here is an example file:

       # This is a comment

       prefix=/home/hp/unst   # this defines a variable

       exec_prefix=${prefix}  # defining another variable in terms of the first

       libdir=${exec_prefix}/lib

       includedir=${prefix}/include

       Name: GObject                            # human-readable name

       Description: Object/type system for GLib # human-readable description

       Version: 1.3.1

       URL: http://www.gtk.org

       Requires: glib-2.0 = 1.3.1 Page 10/12



       Conflicts: foobar <= 4.5

       Libs: -L${libdir} -lgobject-1.3

       Libs.private: -lm

       Cflags: -I${includedir}/glib-2.0 -I${libdir}/glib/include

       You  would normally generate the file using configure, so that the prefix, etc. are set to

       the proper values.  The GNU Autoconf manual recommends generating files like .pc files  at

       build time rather than configure time, so when you build the .pc file is a matter of taste

       and preference.

       Files have two kinds of line: keyword lines start with a keyword plus a colon,  and  vari?

       able  definitions  start with an alphanumeric string plus an equals sign. Keywords are de?

       fined in advance and have special meaning to pkg-config; variables do not,  you  can  have

       any  variables  that  you  wish (however, users may expect to retrieve the usual directory

       name variables).

       Note that variable references are written "${foo}"; you can escape literal "${" as "$${".

       Name:  This field should be a human-readable name for the package. Note that it is not the

              name passed as an argument to pkg-config.

       Description:

              This should be a brief description of the package

       URL:   An URL where people can get more information about and download the package

       Version:

              This should be the most-specific-possible package version string.

       Requires:

              This is a comma-separated list of packages that are required by your package. Flags

              from dependent packages will be merged in to the flags reported for  your  package.

              Optionally,  you  can specify the version of the required package (using the opera?

              tors =, <, >, >=, <=); specifying a version allows pkg-config to perform extra san?

              ity  checks.  You may only mention the same package one time on the Requires: line.

              If the version of a package is unspecified, any version will be used with no check?

              ing.

       Requires.private:

              A  list  of packages required by this package. The difference from Requires is that

              the packages listed under Requires.private are not taken into account when  a  flag

              list  is  computed  for  dynamically linked executable (i.e., when --static was not Page 11/12



              specified).  In the situation where each .pc file corresponds  to  a  library,  Re?

              quires.private  shall  be  used exclusively to specify the dependencies between the

              libraries.

       Conflicts:

              This optional line allows pkg-config to perform additional sanity checks, primarily

              to  detect  broken  user installations.  The syntax is the same as Requires: except

              that you can list the same package more than  once  here,  for  example  "foobar  =

              1.2.3,  foobar  =  1.2.5, foobar >= 1.3", if you have reason to do so. If a version

              isn't specified, then your package conflicts with all  versions  of  the  mentioned

              package.  If a user tries to use your package and a conflicting package at the same

              time, then pkg-config will complain.

       Libs:  This line should give the link flags specific to your package.  Don't add any flags

              for required packages; pkg-config will add those automatically.

       Libs.private:

              This  line  should  list  any  private libraries in use.  Private libraries are li?

              braries which are not exposed through your library, but are needed in the  case  of

              static  linking. This differs from Requires.private in that it references libraries

              that do not have package files installed.

       Cflags:

              This line should list the compile flags specific to your package.   Don't  add  any

              flags for required packages; pkg-config will add those automatically.

AUTHOR

       pkg-config  was written by James Henstridge, rewritten by Martijn van Beers, and rewritten

       again by Havoc Pennington. Tim Janik, Owen Taylor, and Raja Harinath submitted suggestions

       and  some  code.   gnome-config  was written by Miguel de Icaza, Raja Harinath and various

       hackers in the GNOME team.  It was inspired by Owen Taylor's gtk-config program.

BUGS

       pkg-config does not handle mixing of parameters with and without = well.  Stick with one.

       Bugs can be reported at http://bugs.freedesktop.org/ under the pkg-config component.

                                                                                    pkg-config(1)

Page 12/12


