
Rocky Enterprise Linux 9.2 Manual Pages on command 'pkeys.7'

$ man pkeys.7

PKEYS(7) Linux Programmer's Manual PKEYS(7)

NAME

 pkeys - overview of Memory Protection Keys

DESCRIPTION

 Memory Protection Keys (pkeys) are an extension to existing page-based memory permissions.

 Normal page permissions using page tables require expensive system calls and TLB invalida?

 tions when changing permissions. Memory Protection Keys provide a mechanism for changing

 protections without requiring modification of the page tables on every permission change.

 To use pkeys, software must first "tag" a page in the page tables with a pkey. After this

 tag is in place, an application only has to change the contents of a register in order to

 remove write access, or all access to a tagged page.

 Protection keys work in conjunction with the existing PROT_READ/ PROT_WRITE/ PROT_EXEC

 permissions passed to system calls such as mprotect(2) and mmap(2), but always act to fur?

 ther restrict these traditional permission mechanisms.

 If a process performs an access that violates pkey restrictions, it receives a SIGSEGV

 signal. See sigaction(2) for details of the information available with that signal.

 To use the pkeys feature, the processor must support it, and the kernel must contain sup?

 port for the feature on a given processor. As of early 2016 only future Intel x86 proces?

 sors are supported, and this hardware supports 16 protection keys in each process. How?

 ever, pkey 0 is used as the default key, so a maximum of 15 are available for actual ap?

 plication use. The default key is assigned to any memory region for which a pkey has not

 been explicitly assigned via pkey_mprotect(2).

 Protection keys have the potential to add a layer of security and reliability to applica? Page 1/6

 tions. But they have not been primarily designed as a security feature. For instance,

 WRPKRU is a completely unprivileged instruction, so pkeys are useless in any case that an

 attacker controls the PKRU register or can execute arbitrary instructions.

 Applications should be very careful to ensure that they do not "leak" protection keys.

 For instance, before calling pkey_free(2), the application should be sure that no memory

 has that pkey assigned. If the application left the freed pkey assigned, a future user of

 that pkey might inadvertently change the permissions of an unrelated data structure, which

 could impact security or stability. The kernel currently allows in-use pkeys to have

 pkey_free(2) called on them because it would have processor or memory performance implica?

 tions to perform the additional checks needed to disallow it. Implementation of the nec?

 essary checks is left up to applications. Applications may implement these checks by

 searching the /proc/[pid]/smaps file for memory regions with the pkey assigned. Further

 details can be found in proc(5).

 Any application wanting to use protection keys needs to be able to function without them.

 They might be unavailable because the hardware that the application runs on does not sup?

 port them, the kernel code does not contain support, the kernel support has been disabled,

 or because the keys have all been allocated, perhaps by a library the application is us?

 ing. It is recommended that applications wanting to use protection keys should simply

 call pkey_alloc(2) and test whether the call succeeds, instead of attempting to detect

 support for the feature in any other way.

 Although unnecessary, hardware support for protection keys may be enumerated with the

 cpuid instruction. Details of how to do this can be found in the Intel Software Develop?

 ers Manual. The kernel performs this enumeration and exposes the information in

 /proc/cpuinfo under the "flags" field. The string "pku" in this field indicates hardware

 support for protection keys and the string "ospke" indicates that the kernel contains and

 has enabled protection keys support.

 Applications using threads and protection keys should be especially careful. Threads in?

 herit the protection key rights of the parent at the time of the clone(2), system call.

 Applications should either ensure that their own permissions are appropriate for child

 threads at the time when clone(2) is called, or ensure that each child thread can perform

 its own initialization of protection key rights.

 Signal Handler Behavior

 Each time a signal handler is invoked (including nested signals), the thread is temporar? Page 2/6

 ily given a new, default set of protection key rights that override the rights from the

 interrupted context. This means that applications must re-establish their desired protec?

 tion key rights upon entering a signal handler if the desired rights differ from the de?

 faults. The rights of any interrupted context are restored when the signal handler re?

 turns.

 This signal behavior is unusual and is due to the fact that the x86 PKRU register (which

 stores protection key access rights) is managed with the same hardware mechanism (XSAVE)

 that manages floating-point registers. The signal behavior is the same as that of float?

 ing-point registers.

 Protection Keys system calls

 The Linux kernel implements the following pkey-related system calls: pkey_mprotect(2),

 pkey_alloc(2), and pkey_free(2).

 The Linux pkey system calls are available only if the kernel was configured and built with

 the CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS option.

EXAMPLES

 The program below allocates a page of memory with read and write permissions. It then

 writes some data to the memory and successfully reads it back. After that, it attempts to

 allocate a protection key and disallows access to the page by using the WRPKRU instruc?

 tion. It then tries to access the page, which we now expect to cause a fatal signal to

 the application.

 $./a.out

 buffer contains: 73

 about to read buffer again...

 Segmentation fault (core dumped)

 Program source

 #define _GNU_SOURCE

 #include <unistd.h>

 #include <sys/syscall.h>

 #include <stdio.h>

 #include <sys/mman.h>

 static inline void

 wrpkru(unsigned int pkru)

 { Page 3/6

 unsigned int eax = pkru;

 unsigned int ecx = 0;

 unsigned int edx = 0;

 asm volatile(".byte 0x0f,0x01,0xef\n\t"

 : : "a" (eax), "c" (ecx), "d" (edx));

 }

 int

 pkey_set(int pkey, unsigned long rights, unsigned long flags)

 {

 unsigned int pkru = (rights << (2 * pkey));

 return wrpkru(pkru);

 }

 int

 pkey_mprotect(void *ptr, size_t size, unsigned long orig_prot,

 unsigned long pkey)

 {

 return syscall(SYS_pkey_mprotect, ptr, size, orig_prot, pkey);

 }

 int

 pkey_alloc(void)

 {

 return syscall(SYS_pkey_alloc, 0, 0);

 }

 int

 pkey_free(unsigned long pkey)

 {

 return syscall(SYS_pkey_free, pkey);

 }

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 int

 main(void)

 { Page 4/6

 int status;

 int pkey;

 int *buffer;

 /*

 *Allocate one page of memory

 */

 buffer = mmap(NULL, getpagesize(), PROT_READ | PROT_WRITE,

 MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);

 if (buffer == MAP_FAILED)

 errExit("mmap");

 /*

 * Put some random data into the page (still OK to touch)

 */

 *buffer = __LINE__;

 printf("buffer contains: %d\n", *buffer);

 /*

 * Allocate a protection key:

 */

 pkey = pkey_alloc();

 if (pkey == -1)

 errExit("pkey_alloc");

 /*

 * Disable access to any memory with "pkey" set,

 * even though there is none right now

 */

 status = pkey_set(pkey, PKEY_DISABLE_ACCESS, 0);

 if (status)

 errExit("pkey_set");

 /*

 * Set the protection key on "buffer".

 * Note that it is still read/write as far as mprotect() is

 * concerned and the previous pkey_set() overrides it.

 */ Page 5/6

 status = pkey_mprotect(buffer, getpagesize(),

 PROT_READ | PROT_WRITE, pkey);

 if (status == -1)

 errExit("pkey_mprotect");

 printf("about to read buffer again...\n");

 /*

 * This will crash, because we have disallowed access

 */

 printf("buffer contains: %d\n", *buffer);

 status = pkey_free(pkey);

 if (status == -1)

 errExit("pkey_free");

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 pkey_alloc(2), pkey_free(2), pkey_mprotect(2), sigaction(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PKEYS(7)

Page 6/6

