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NAME

       pkeys - overview of Memory Protection Keys

DESCRIPTION

       Memory Protection Keys (pkeys) are an extension to existing page-based memory permissions.

       Normal page permissions using page tables require expensive system calls and TLB invalida?

       tions  when changing permissions.  Memory Protection Keys provide a mechanism for changing

       protections without requiring modification of the page tables on every permission change.

       To use pkeys, software must first "tag" a page in the page tables with a pkey.  After this

       tag  is in place, an application only has to change the contents of a register in order to

       remove write access, or all access to a tagged page.

       Protection keys work in conjunction with the  existing  PROT_READ/  PROT_WRITE/  PROT_EXEC

       permissions passed to system calls such as mprotect(2) and mmap(2), but always act to fur?

       ther restrict these traditional permission mechanisms.

       If a process performs an access that violates pkey restrictions,  it  receives  a  SIGSEGV

       signal.  See sigaction(2) for details of the information available with that signal.

       To  use the pkeys feature, the processor must support it, and the kernel must contain sup?

       port for the feature on a given processor.  As of early 2016 only future Intel x86 proces?

       sors  are  supported, and this hardware supports 16 protection keys in each process.  How?

       ever, pkey 0 is used as the default key, so a maximum of 15 are available for  actual  ap?

       plication  use.  The default key is assigned to any memory region for which a pkey has not

       been explicitly assigned via pkey_mprotect(2).
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       tions.   But  they  have not been primarily designed as a security feature.  For instance,

       WRPKRU is a completely unprivileged instruction, so pkeys are useless in any case that  an

       attacker controls the PKRU register or can execute arbitrary instructions.

       Applications  should  be  very  careful to ensure that they do not "leak" protection keys.

       For instance, before calling pkey_free(2), the application should be sure that  no  memory

       has that pkey assigned.  If the application left the freed pkey assigned, a future user of

       that pkey might inadvertently change the permissions of an unrelated data structure, which

       could  impact  security  or  stability.   The kernel currently allows in-use pkeys to have

       pkey_free(2) called on them because it would have processor or memory performance implica?

       tions  to perform the additional checks needed to disallow it.  Implementation of the nec?

       essary checks is left up to applications.  Applications  may  implement  these  checks  by

       searching  the  /proc/[pid]/smaps file for memory regions with the pkey assigned.  Further

       details can be found in proc(5).

       Any application wanting to use protection keys needs to be able to function without  them.

       They  might be unavailable because the hardware that the application runs on does not sup?

       port them, the kernel code does not contain support, the kernel support has been disabled,

       or  because  the keys have all been allocated, perhaps by a library the application is us?

       ing.  It is recommended that applications wanting to use  protection  keys  should  simply

       call  pkey_alloc(2)  and  test  whether the call succeeds, instead of attempting to detect

       support for the feature in any other way.

       Although unnecessary, hardware support for protection keys  may  be  enumerated  with  the

       cpuid  instruction.  Details of how to do this can be found in the Intel Software Develop?

       ers Manual.   The  kernel  performs  this  enumeration  and  exposes  the  information  in

       /proc/cpuinfo  under the "flags" field.  The string "pku" in this field indicates hardware

       support for protection keys and the string "ospke" indicates that the kernel contains  and

       has enabled protection keys support.

       Applications  using threads and protection keys should be especially careful.  Threads in?

       herit the protection key rights of the parent at the time of the  clone(2),  system  call.

       Applications  should  either  ensure  that their own permissions are appropriate for child

       threads at the time when clone(2) is called, or ensure that each child thread can  perform

       its own initialization of protection key rights.

   Signal Handler Behavior

       Each  time a signal handler is invoked (including nested signals), the thread is temporar? Page 2/6



       ily given a new, default set of protection key rights that override the  rights  from  the

       interrupted context.  This means that applications must re-establish their desired protec?

       tion key rights upon entering a signal handler if the desired rights differ from  the  de?

       faults.   The  rights  of any interrupted context are restored when the signal handler re?

       turns.

       This signal behavior is unusual and is due to the fact that the x86 PKRU  register  (which

       stores  protection  key access rights) is managed with the same hardware mechanism (XSAVE)

       that manages floating-point registers.  The signal behavior is the same as that of  float?

       ing-point registers.

   Protection Keys system calls

       The  Linux  kernel  implements  the following pkey-related system calls: pkey_mprotect(2),

       pkey_alloc(2), and pkey_free(2).

       The Linux pkey system calls are available only if the kernel was configured and built with

       the CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS option.

EXAMPLES

       The  program  below  allocates  a page of memory with read and write permissions.  It then

       writes some data to the memory and successfully reads it back.  After that, it attempts to

       allocate  a  protection  key and disallows access to the page by using the WRPKRU instruc?

       tion.  It then tries to access the page, which we now expect to cause a  fatal  signal  to

       the application.

           $ ./a.out

           buffer contains: 73

           about to read buffer again...

           Segmentation fault (core dumped)

   Program source

       #define _GNU_SOURCE

       #include <unistd.h>

       #include <sys/syscall.h>

       #include <stdio.h>

       #include <sys/mman.h>

       static inline void

       wrpkru(unsigned int pkru)
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           unsigned int eax = pkru;

           unsigned int ecx = 0;

           unsigned int edx = 0;

           asm volatile(".byte 0x0f,0x01,0xef\n\t"

                        : : "a" (eax), "c" (ecx), "d" (edx));

       }

       int

       pkey_set(int pkey, unsigned long rights, unsigned long flags)

       {

           unsigned int pkru = (rights << (2 * pkey));

           return wrpkru(pkru);

       }

       int

       pkey_mprotect(void *ptr, size_t size, unsigned long orig_prot,

                     unsigned long pkey)

       {

           return syscall(SYS_pkey_mprotect, ptr, size, orig_prot, pkey);

       }

       int

       pkey_alloc(void)

       {

           return syscall(SYS_pkey_alloc, 0, 0);

       }

       int

       pkey_free(unsigned long pkey)

       {

           return syscall(SYS_pkey_free, pkey);

       }

       #define errExit(msg)    do { perror(msg); exit(EXIT_FAILURE); \

                                  } while (0)

       int

       main(void)
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           int status;

           int pkey;

           int *buffer;

           /*

            *Allocate one page of memory

            */

           buffer = mmap(NULL, getpagesize(), PROT_READ | PROT_WRITE,

                         MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);

           if (buffer == MAP_FAILED)

               errExit("mmap");

           /*

            * Put some random data into the page (still OK to touch)

            */

           *buffer = __LINE__;

           printf("buffer contains: %d\n", *buffer);

           /*

            * Allocate a protection key:

            */

           pkey = pkey_alloc();

           if (pkey == -1)

               errExit("pkey_alloc");

           /*

            * Disable access to any memory with "pkey" set,

            * even though there is none right now

            */

           status = pkey_set(pkey, PKEY_DISABLE_ACCESS, 0);

           if (status)

               errExit("pkey_set");

           /*

            * Set the protection key on "buffer".

            * Note that it is still read/write as far as mprotect() is

            * concerned and the previous pkey_set() overrides it.
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           status = pkey_mprotect(buffer, getpagesize(),

                                  PROT_READ | PROT_WRITE, pkey);

           if (status == -1)

               errExit("pkey_mprotect");

           printf("about to read buffer again...\n");

           /*

            * This will crash, because we have disallowed access

            */

           printf("buffer contains: %d\n", *buffer);

           status = pkey_free(pkey);

           if (status == -1)

               errExit("pkey_free");

           exit(EXIT_SUCCESS);

       }

SEE ALSO

       pkey_alloc(2), pkey_free(2), pkey_mprotect(2), sigaction(2)

COLOPHON

       This  page  is  part of release 5.10 of the Linux man-pages project.  A description of the

       project, information about reporting bugs, and the latest version of  this  page,  can  be

       found at https://www.kernel.org/doc/man-pages/.
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