
Rocky Enterprise Linux 9.2 Manual Pages on command 'pivot_root.2'

$ man pivot_root.2

PIVOT_ROOT(2) Linux Programmer's Manual PIVOT_ROOT(2)

NAME

 pivot_root - change the root mount

SYNOPSIS

 int pivot_root(const char *new_root, const char *put_old);

 Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

 pivot_root() changes the root mount in the mount namespace of the calling process. More

 precisely, it moves the root mount to the directory put_old and makes new_root the new

 root mount. The calling process must have the CAP_SYS_ADMIN capability in the user name?

 space that owns the caller's mount namespace.

 pivot_root() changes the root directory and the current working directory of each process

 or thread in the same mount namespace to new_root if they point to the old root directory.

 (See also NOTES.) On the other hand, pivot_root() does not change the caller's current

 working directory (unless it is on the old root directory), and thus it should be followed

 by a chdir("/") call.

 The following restrictions apply:

 - new_root and put_old must be directories.

 - new_root and put_old must not be on the same mount as the current root.

 - put_old must be at or underneath new_root; that is, adding some nonnegative number of

 "/.." prefixes to the pathname pointed to by put_old must yield the same directory as

 new_root.

 - new_root must be a path to a mount point, but can't be "/". A path that is not already Page 1/7

 a mount point can be converted into one by bind mounting the path onto itself.

 - The propagation type of the parent mount of new_root and the parent mount of the cur?

 rent root directory must not be MS_SHARED; similarly, if put_old is an existing mount

 point, its propagation type must not be MS_SHARED. These restrictions ensure that

 pivot_root() never propagates any changes to another mount namespace.

 - The current root directory must be a mount point.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

 pivot_root() may fail with any of the same errors as stat(2). Additionally, it may fail

 with the following errors:

 EBUSY new_root or put_old is on the current root mount. (This error covers the patholog?

 ical case where new_root is "/".)

 EINVAL new_root is not a mount point.

 EINVAL put_old is not at or underneath new_root.

 EINVAL The current root directory is not a mount point (because of an earlier chroot(2)).

 EINVAL The current root is on the rootfs (initial ramfs) mount; see NOTES.

 EINVAL Either the mount point at new_root, or the parent mount of that mount point, has

 propagation type MS_SHARED.

 EINVAL put_old is a mount point and has the propagation type MS_SHARED.

 ENOTDIR

 new_root or put_old is not a directory.

 EPERM The calling process does not have the CAP_SYS_ADMIN capability.

VERSIONS

 pivot_root() was introduced in Linux 2.3.41.

CONFORMING TO

 pivot_root() is Linux-specific and hence is not portable.

NOTES

 Glibc does not provide a wrapper for this system call; call it using syscall(2).

 A command-line interface for this system call is provided by pivot_root(8).

 pivot_root() allows the caller to switch to a new root filesystem while at the same time

 placing the old root mount at a location under new_root from where it can subsequently be

 unmounted. (The fact that it moves all processes that have a root directory or current Page 2/7

 working directory on the old root directory to the new root frees the old root directory

 of users, allowing the old root mount to be unmounted more easily.)

 One use of pivot_root() is during system startup, when the system mounts a temporary root

 filesystem (e.g., an initrd(4)), then mounts the real root filesystem, and eventually

 turns the latter into the root directory of all relevant processes and threads. A modern

 use is to set up a root filesystem during the creation of a container.

 The fact that pivot_root() modifies process root and current working directories in the

 manner noted in DESCRIPTION is necessary in order to prevent kernel threads from keeping

 the old root mount busy with their root and current working directories, even if they

 never access the filesystem in any way.

 The rootfs (initial ramfs) cannot be pivot_root()ed. The recommended method of changing

 the root filesystem in this case is to delete everything in rootfs, overmount rootfs with

 the new root, attach stdin/stdout/stderr to the new /dev/console, and exec the new

 init(1). Helper programs for this process exist; see switch_root(8).

 pivot_root(".", ".")

 new_root and put_old may be the same directory. In particular, the following sequence al?

 lows a pivot-root operation without needing to create and remove a temporary directory:

 chdir(new_root);

 pivot_root(".", ".");

 umount2(".", MNT_DETACH);

 This sequence succeeds because the pivot_root() call stacks the old root mount point on

 top of the new root mount point at /. At that point, the calling process's root directory

 and current working directory refer to the new root mount point (new_root). During the

 subsequent umount() call, resolution of "." starts with new_root and then moves up the

 list of mounts stacked at /, with the result that old root mount point is unmounted.

 Historical notes

 For many years, this manual page carried the following text:

 pivot_root() may or may not change the current root and the current working direc?

 tory of any processes or threads which use the old root directory. The caller of

 pivot_root() must ensure that processes with root or current working directory at

 the old root operate correctly in either case. An easy way to ensure this is to

 change their root and current working directory to new_root before invoking

 pivot_root(). Page 3/7

 This text, written before the system call implementation was even finalized in the kernel,

 was probably intended to warn users at that time that the implementation might change be?

 fore final release. However, the behavior stated in DESCRIPTION has remained consistent

 since this system call was first implemented and will not change now.

EXAMPLES

 The program below demonstrates the use of pivot_root() inside a mount namespace that is

 created using clone(2). After pivoting to the root directory named in the program's first

 command-line argument, the child created by clone(2) then executes the program named in

 the remaining command-line arguments.

 We demonstrate the program by creating a directory that will serve as the new root

 filesystem and placing a copy of the (statically linked) busybox(1) executable in that di?

 rectory.

 $ mkdir /tmp/rootfs

 $ ls -id /tmp/rootfs # Show inode number of new root directory

 319459 /tmp/rootfs

 $ cp $(which busybox) /tmp/rootfs

 $ PS1='bbsh$ ' sudo ./pivot_root_demo /tmp/rootfs /busybox sh

 bbsh$ PATH=/

 bbsh$ busybox ln busybox ln

 bbsh$ ln busybox echo

 bbsh$ ln busybox ls

 bbsh$ ls

 busybox echo ln ls

 bbsh$ ls -id / # Compare with inode number above

 319459 /

 bbsh$ echo 'hello world'

 hello world

 Program source

 /* pivot_root_demo.c */

 #define _GNU_SOURCE

 #include <sched.h>

 #include <stdio.h>

 #include <stdlib.h> Page 4/7

 #include <unistd.h>

 #include <sys/wait.h>

 #include <sys/syscall.h>

 #include <sys/mount.h>

 #include <sys/stat.h>

 #include <limits.h>

 #include <sys/mman.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 static int

 pivot_root(const char *new_root, const char *put_old)

 {

 return syscall(SYS_pivot_root, new_root, put_old);

 }

 #define STACK_SIZE (1024 * 1024)

 static int /* Startup function for cloned child */

 child(void *arg)

 {

 char **args = arg;

 char *new_root = args[0];

 const char *put_old = "/oldrootfs";

 char path[PATH_MAX];

 /* Ensure that 'new_root' and its parent mount don't have

 shared propagation (which would cause pivot_root() to

 return an error), and prevent propagation of mount

 events to the initial mount namespace */

 if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL) == -1)

 errExit("mount-MS_PRIVATE");

 /* Ensure that 'new_root' is a mount point */

 if (mount(new_root, new_root, NULL, MS_BIND, NULL) == -1)

 errExit("mount-MS_BIND");

 /* Create directory to which old root will be pivoted */

 snprintf(path, sizeof(path), "%s/%s", new_root, put_old); Page 5/7

 if (mkdir(path, 0777) == -1)

 errExit("mkdir");

 /* And pivot the root filesystem */

 if (pivot_root(new_root, path) == -1)

 errExit("pivot_root");

 /* Switch the current working directory to "/" */

 if (chdir("/") == -1)

 errExit("chdir");

 /* Unmount old root and remove mount point */

 if (umount2(put_old, MNT_DETACH) == -1)

 perror("umount2");

 if (rmdir(put_old) == -1)

 perror("rmdir");

 /* Execute the command specified in argv[1]... */

 execv(args[1], &args[1]);

 errExit("execv");

 }

 int

 main(int argc, char *argv[])

 {

 /* Create a child process in a new mount namespace */

 char *stack = mmap(NULL, STACK_SIZE, PROT_READ | PROT_WRITE,

 MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);

 if (stack == MAP_FAILED)

 errExit("mmap");

 if (clone(child, stack + STACK_SIZE,

 CLONE_NEWNS | SIGCHLD, &argv[1]) == -1)

 errExit("clone");

 /* Parent falls through to here; wait for child */

 if (wait(NULL) == -1)

 errExit("wait");

 exit(EXIT_SUCCESS);

 } Page 6/7

SEE ALSO

 chdir(2), chroot(2), mount(2), stat(2), initrd(4), mount_namespaces(7), pivot_root(8),

 switch_root(8)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 PIVOT_ROOT(2)

Page 7/7

