
Rocky Enterprise Linux 9.2 Manual Pages on command 'pipe.2'

$ man pipe.2

PIPE(2) Linux Programmer's Manual PIPE(2)

NAME

 pipe, pipe2 - create pipe

SYNOPSIS

 #include <unistd.h>

 /* On Alpha, IA-64, MIPS, SuperH, and SPARC/SPARC64; see NOTES */

 struct fd_pair {

 long fd[2];

 };

 struct fd_pair pipe();

 /* On all other architectures */

 int pipe(int pipefd[2]);

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <fcntl.h> /* Obtain O_* constant definitions */

 #include <unistd.h>

 int pipe2(int pipefd[2], int flags);

DESCRIPTION

 pipe() creates a pipe, a unidirectional data channel that can be used for interprocess

 communication. The array pipefd is used to return two file descriptors referring to the

 ends of the pipe. pipefd[0] refers to the read end of the pipe. pipefd[1] refers to the

 write end of the pipe. Data written to the write end of the pipe is buffered by the ker?

 nel until it is read from the read end of the pipe. For further details, see pipe(7).

 If flags is 0, then pipe2() is the same as pipe(). The following values can be bitwise Page 1/5

 ORed in flags to obtain different behavior:

 O_CLOEXEC

 Set the close-on-exec (FD_CLOEXEC) flag on the two new file descriptors. See the

 description of the same flag in open(2) for reasons why this may be useful.

 O_DIRECT (since Linux 3.4)

 Create a pipe that performs I/O in "packet" mode. Each write(2) to the pipe is

 dealt with as a separate packet, and read(2)s from the pipe will read one packet at

 a time. Note the following points:

 * Writes of greater than PIPE_BUF bytes (see pipe(7)) will be split into multiple

 packets. The constant PIPE_BUF is defined in <limits.h>.

 * If a read(2) specifies a buffer size that is smaller than the next packet, then

 the requested number of bytes are read, and the excess bytes in the packet are

 discarded. Specifying a buffer size of PIPE_BUF will be sufficient to read the

 largest possible packets (see the previous point).

 * Zero-length packets are not supported. (A read(2) that specifies a buffer size

 of zero is a no-op, and returns 0.)

 Older kernels that do not support this flag will indicate this via an EINVAL error.

 Since Linux 4.5, it is possible to change the O_DIRECT setting of a pipe file de?

 scriptor using fcntl(2).

 O_NONBLOCK

 Set the O_NONBLOCK file status flag on the open file descriptions referred to by

 the new file descriptors. Using this flag saves extra calls to fcntl(2) to achieve

 the same result.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, errno is set appropriately, and

 pipefd is left unchanged.

 On Linux (and other systems), pipe() does not modify pipefd on failure. A requirement

 standardizing this behavior was added in POSIX.1-2008 TC2. The Linux-specific pipe2()

 system call likewise does not modify pipefd on failure.

ERRORS

 EFAULT pipefd is not valid.

 EINVAL (pipe2()) Invalid value in flags.

 EMFILE The per-process limit on the number of open file descriptors has been reached. Page 2/5

 ENFILE The system-wide limit on the total number of open files has been reached.

 ENFILE The user hard limit on memory that can be allocated for pipes has been reached and

 the caller is not privileged; see pipe(7).

VERSIONS

 pipe2() was added to Linux in version 2.6.27; glibc support is available starting with

 version 2.9.

CONFORMING TO

 pipe(): POSIX.1-2001, POSIX.1-2008.

 pipe2() is Linux-specific.

NOTES

 The System V ABI on some architectures allows the use of more than one register for re?

 turning multiple values; several architectures (namely, Alpha, IA-64, MIPS, SuperH, and

 SPARC/SPARC64) (ab)use this feature in order to implement the pipe() system call in a

 functional manner: the call doesn't take any arguments and returns a pair of file descrip?

 tors as the return value on success. The glibc pipe() wrapper function transparently

 deals with this. See syscall(2) for information regarding registers used for storing sec?

 ond file descriptor.

EXAMPLES

 The following program creates a pipe, and then fork(2)s to create a child process; the

 child inherits a duplicate set of file descriptors that refer to the same pipe. After the

 fork(2), each process closes the file descriptors that it doesn't need for the pipe (see

 pipe(7)). The parent then writes the string contained in the program's command-line argu?

 ment to the pipe, and the child reads this string a byte at a time from the pipe and

 echoes it on standard output.

 Program source

 #include <sys/types.h>

 #include <sys/wait.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <string.h>

 int

 main(int argc, char *argv[]) Page 3/5

 {

 int pipefd[2];

 pid_t cpid;

 char buf;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s <string>\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 if (pipe(pipefd) == -1) {

 perror("pipe");

 exit(EXIT_FAILURE);

 }

 cpid = fork();

 if (cpid == -1) {

 perror("fork");

 exit(EXIT_FAILURE);

 }

 if (cpid == 0) { /* Child reads from pipe */

 close(pipefd[1]); /* Close unused write end */

 while (read(pipefd[0], &buf, 1) > 0)

 write(STDOUT_FILENO, &buf, 1);

 write(STDOUT_FILENO, "\n", 1);

 close(pipefd[0]);

 _exit(EXIT_SUCCESS);

 } else { /* Parent writes argv[1] to pipe */

 close(pipefd[0]); /* Close unused read end */

 write(pipefd[1], argv[1], strlen(argv[1]));

 close(pipefd[1]); /* Reader will see EOF */

 wait(NULL); /* Wait for child */

 exit(EXIT_SUCCESS);

 }

 }

SEE ALSO Page 4/5

 fork(2), read(2), socketpair(2), splice(2), tee(2), vmsplice(2), write(2), popen(3),

 pipe(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PIPE(2)

Page 5/5

