
Rocky Enterprise Linux 9.2 Manual Pages on command 'pidfd_open.2'

$ man pidfd_open.2

PIDFD_OPEN(2) Linux Programmer's Manual PIDFD_OPEN(2)

NAME

 pidfd_open - obtain a file descriptor that refers to a process

SYNOPSIS

 #include <sys/types.h>

 int pidfd_open(pid_t pid, unsigned int flags);

DESCRIPTION

 The pidfd_open() system call creates a file descriptor that refers to the process whose

 PID is specified in pid. The file descriptor is returned as the function result; the

 close-on-exec flag is set on the file descriptor.

 The flags argument is reserved for future use; currently, this argument must be specified

 as 0.

RETURN VALUE

 On success, pidfd_open() returns a file descriptor (a nonnegative integer). On error, -1

 is returned and errno is set to indicate the cause of the error.

ERRORS

 EINVAL flags is not 0.

 EINVAL pid is not valid.

 EMFILE The per-process limit on the number of open file descriptors has been reached (see

 the description of RLIMIT_NOFILE in getrlimit(2)).

 ENFILE The system-wide limit on the total number of open files has been reached.

 ENODEV The anonymous inode filesystem is not available in this kernel.

 ENOMEM Insufficient kernel memory was available. Page 1/5

 ESRCH The process specified by pid does not exist.

VERSIONS

 pidfd_open() first appeared in Linux 5.3.

CONFORMING TO

 pidfd_open() is Linux specific.

NOTES

 Currently, there is no glibc wrapper for this system call; call it using syscall(2).

 The following code sequence can be used to obtain a file descriptor for the child of

 fork(2):

 pid = fork();

 if (pid > 0) { /* If parent */

 pidfd = pidfd_open(pid, 0);

 ...

 }

 Even if the child has already terminated by the time of the pidfd_open() call, its PID

 will not have been recycled and the returned file descriptor will refer to the resulting

 zombie process. Note, however, that this is guaranteed only if the following conditions

 hold true:

 ? the disposition of SIGCHLD has not been explicitly set to SIG_IGN (see sigaction(2));

 ? the SA_NOCLDWAIT flag was not specified while establishing a handler for SIGCHLD or

 while setting the disposition of that signal to SIG_DFL (see sigaction(2)); and

 ? the zombie process was not reaped elsewhere in the program (e.g., either by an asyn?

 chronously executed signal handler or by wait(2) or similar in another thread).

 If any of these conditions does not hold, then the child process (along with a PID file

 descriptor that refers to it) should instead be created using clone(2) with the

 CLONE_PIDFD flag.

 Use cases for PID file descriptors

 A PID file descriptor returned by pidfd_open() (or by clone(2) with the CLONE_PID flag)

 can be used for the following purposes:

 ? The pidfd_send_signal(2) system call can be used to send a signal to the process re?

 ferred to by a PID file descriptor.

 ? A PID file descriptor can be monitored using poll(2), select(2), and epoll(7). When the

 process that it refers to terminates, these interfaces indicate the file descriptor as Page 2/5

 readable. Note, however, that in the current implementation, nothing can be read from

 the file descriptor (read(2) on the file descriptor fails with the error EINVAL).

 ? If the PID file descriptor refers to a child of the calling process, then it can be

 waited on using waitid(2).

 ? The pidfd_getfd(2) system call can be used to obtain a duplicate of a file descriptor of

 another process referred to by a PID file descriptor.

 ? A PID file descriptor can be used as the argument of setns(2) in order to move into one

 or more of the same namespaces as the process referred to by the file descriptor.

 The pidfd_open() system call is the preferred way of obtaining a PID file descriptor for

 an already existing process. The alternative is to obtain a file descriptor by opening a

 /proc/[pid] directory. However, the latter technique is possible only if the proc(5)

 filesystem is mounted; furthermore, the file descriptor obtained in this way is not pol?

 lable and can't be waited on with waitid(2).

EXAMPLES

 The program below opens a PID file descriptor for the process whose PID is specified as

 its command-line argument. It then uses poll(2) to monitor the file descriptor for

 process exit, as indicated by an EPOLLIN event.

 Program source

 #define _GNU_SOURCE

 #include <sys/types.h>

 #include <sys/syscall.h>

 #include <unistd.h>

 #include <poll.h>

 #include <stdlib.h>

 #include <stdio.h>

 #ifndef __NR_pidfd_open

 #define __NR_pidfd_open 434 /* System call # on most architectures */

 #endif

 static int

 pidfd_open(pid_t pid, unsigned int flags)

 {

 return syscall(__NR_pidfd_open, pid, flags);

 } Page 3/5

 int

 main(int argc, char *argv[])

 {

 struct pollfd pollfd;

 int pidfd, ready;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s <pid>\n", argv[0]);

 exit(EXIT_SUCCESS);

 }

 pidfd = pidfd_open(atoi(argv[1]), 0);

 if (pidfd == -1) {

 perror("pidfd_open");

 exit(EXIT_FAILURE);

 }

 pollfd.fd = pidfd;

 pollfd.events = POLLIN;

 ready = poll(&pollfd, 1, -1);

 if (ready == -1) {

 perror("poll");

 exit(EXIT_FAILURE);

 }

 printf("Events (%#x): POLLIN is %sset\n", pollfd.revents,

 (pollfd.revents & POLLIN) ? "" : "not ");

 close(pidfd);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 clone(2), kill(2), pidfd_getfd(2), pidfd_send_signal(2), poll(2), select(2), setns(2),

 waitid(2), epoll(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/. Page 4/5

Linux 2020-08-13 PIDFD_OPEN(2)

Page 5/5

