
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlxs.1'

$ man perlxs.1

PERLXS(1) Perl Programmers Reference Guide PERLXS(1)

NAME

 perlxs - XS language reference manual

DESCRIPTION

 Introduction

 XS is an interface description file format used to create an extension interface between

 Perl and C code (or a C library) which one wishes to use with Perl. The XS interface is

 combined with the library to create a new library which can then be either dynamically

 loaded or statically linked into perl. The XS interface description is written in the XS

 language and is the core component of the Perl extension interface.

 Before writing XS, read the "CAVEATS" section below.

 An XSUB forms the basic unit of the XS interface. After compilation by the xsubpp

 compiler, each XSUB amounts to a C function definition which will provide the glue between

 Perl calling conventions and C calling conventions.

 The glue code pulls the arguments from the Perl stack, converts these Perl values to the

 formats expected by a C function, call this C function, transfers the return values of the

 C function back to Perl. Return values here may be a conventional C return value or any C

 function arguments that may serve as output parameters. These return values may be passed

 back to Perl either by putting them on the Perl stack, or by modifying the arguments

 supplied from the Perl side.

 The above is a somewhat simplified view of what really happens. Since Perl allows more

 flexible calling conventions than C, XSUBs may do much more in practice, such as checking

 input parameters for validity, throwing exceptions (or returning undef/empty list) if the Page 1/50

 return value from the C function indicates failure, calling different C functions based on

 numbers and types of the arguments, providing an object-oriented interface, etc.

 Of course, one could write such glue code directly in C. However, this would be a tedious

 task, especially if one needs to write glue for multiple C functions, and/or one is not

 familiar enough with the Perl stack discipline and other such arcana. XS comes to the

 rescue here: instead of writing this glue C code in long-hand, one can write a more

 concise short-hand description of what should be done by the glue, and let the XS compiler

 xsubpp handle the rest.

 The XS language allows one to describe the mapping between how the C routine is used, and

 how the corresponding Perl routine is used. It also allows creation of Perl routines

 which are directly translated to C code and which are not related to a pre-existing C

 function. In cases when the C interface coincides with the Perl interface, the XSUB

 declaration is almost identical to a declaration of a C function (in K&R style). In such

 circumstances, there is another tool called "h2xs" that is able to translate an entire C

 header file into a corresponding XS file that will provide glue to the functions/macros

 described in the header file.

 The XS compiler is called xsubpp. This compiler creates the constructs necessary to let

 an XSUB manipulate Perl values, and creates the glue necessary to let Perl call the XSUB.

 The compiler uses typemaps to determine how to map C function parameters and output values

 to Perl values and back. The default typemap (which comes with Perl) handles many common

 C types. A supplementary typemap may also be needed to handle any special structures and

 types for the library being linked. For more information on typemaps, see perlxstypemap.

 A file in XS format starts with a C language section which goes until the first "MODULE ="

 directive. Other XS directives and XSUB definitions may follow this line. The "language"

 used in this part of the file is usually referred to as the XS language. xsubpp

 recognizes and skips POD (see perlpod) in both the C and XS language sections, which

 allows the XS file to contain embedded documentation.

 See perlxstut for a tutorial on the whole extension creation process.

 Note: For some extensions, Dave Beazley's SWIG system may provide a significantly more

 convenient mechanism for creating the extension glue code. See <http://www.swig.org/> for

 more information.

 For simple bindings to C libraries as well as other machine code libraries, consider

 instead using the much simpler libffi <http://sourceware.org/libffi/> interface via CPAN Page 2/50

 modules like FFI::Platypus or FFI::Raw.

 On The Road

 Many of the examples which follow will concentrate on creating an interface between Perl

 and the ONC+ RPC bind library functions. The rpcb_gettime() function is used to

 demonstrate many features of the XS language. This function has two parameters; the first

 is an input parameter and the second is an output parameter. The function also returns a

 status value.

 bool_t rpcb_gettime(const char *host, time_t *timep);

 From C this function will be called with the following statements.

 #include <rpc/rpc.h>

 bool_t status;

 time_t timep;

 status = rpcb_gettime("localhost", &timep);

 If an XSUB is created to offer a direct translation between this function and Perl, then

 this XSUB will be used from Perl with the following code. The $status and $timep

 variables will contain the output of the function.

 use RPC;

 $status = rpcb_gettime("localhost", $timep);

 The following XS file shows an XS subroutine, or XSUB, which demonstrates one possible

 interface to the rpcb_gettime() function. This XSUB represents a direct translation

 between C and Perl and so preserves the interface even from Perl. This XSUB will be

 invoked from Perl with the usage shown above. Note that the first three #include

 statements, for "EXTERN.h", "perl.h", and "XSUB.h", will always be present at the

 beginning of an XS file. This approach and others will be expanded later in this

 document. A #define for "PERL_NO_GET_CONTEXT" should be present to fetch the interpreter

 context more efficiently, see perlguts for details.

 #define PERL_NO_GET_CONTEXT

 #include "EXTERN.h"

 #include "perl.h"

 #include "XSUB.h"

 #include <rpc/rpc.h>

 MODULE = RPC PACKAGE = RPC

 bool_t Page 3/50

 rpcb_gettime(host,timep)

 char *host

 time_t &timep

 OUTPUT:

 timep

 Any extension to Perl, including those containing XSUBs, should have a Perl module to

 serve as the bootstrap which pulls the extension into Perl. This module will export the

 extension's functions and variables to the Perl program and will cause the extension's

 XSUBs to be linked into Perl. The following module will be used for most of the examples

 in this document and should be used from Perl with the "use" command as shown earlier.

 Perl modules are explained in more detail later in this document.

 package RPC;

 require Exporter;

 require DynaLoader;

 @ISA = qw(Exporter DynaLoader);

 @EXPORT = qw(rpcb_gettime);

 bootstrap RPC;

 1;

 Throughout this document a variety of interfaces to the rpcb_gettime() XSUB will be

 explored. The XSUBs will take their parameters in different orders or will take different

 numbers of parameters. In each case the XSUB is an abstraction between Perl and the real

 C rpcb_gettime() function, and the XSUB must always ensure that the real rpcb_gettime()

 function is called with the correct parameters. This abstraction will allow the

 programmer to create a more Perl-like interface to the C function.

 The Anatomy of an XSUB

 The simplest XSUBs consist of 3 parts: a description of the return value, the name of the

 XSUB routine and the names of its arguments, and a description of types or formats of the

 arguments.

 The following XSUB allows a Perl program to access a C library function called sin(). The

 XSUB will imitate the C function which takes a single argument and returns a single value.

 double

 sin(x)

 double x Page 4/50

 Optionally, one can merge the description of types and the list of argument names,

 rewriting this as

 double

 sin(double x)

 This makes this XSUB look similar to an ANSI C declaration. An optional semicolon is

 allowed after the argument list, as in

 double

 sin(double x);

 Parameters with C pointer types can have different semantic: C functions with similar

 declarations

 bool string_looks_as_a_number(char *s);

 bool make_char_uppercase(char *c);

 are used in absolutely incompatible manner. Parameters to these functions could be

 described xsubpp like this:

 char * s

 char &c

 Both these XS declarations correspond to the "char*" C type, but they have different

 semantics, see "The & Unary Operator".

 It is convenient to think that the indirection operator "*" should be considered as a part

 of the type and the address operator "&" should be considered part of the variable. See

 perlxstypemap for more info about handling qualifiers and unary operators in C types.

 The function name and the return type must be placed on separate lines and should be flush

 left-adjusted.

 INCORRECT CORRECT

 double sin(x) double

 double x sin(x)

 double x

 The rest of the function description may be indented or left-adjusted. The following

 example shows a function with its body left-adjusted. Most examples in this document will

 indent the body for better readability.

 CORRECT

 double

 sin(x) Page 5/50

 double x

 More complicated XSUBs may contain many other sections. Each section of an XSUB starts

 with the corresponding keyword, such as INIT: or CLEANUP:. However, the first two lines

 of an XSUB always contain the same data: descriptions of the return type and the names of

 the function and its parameters. Whatever immediately follows these is considered to be

 an INPUT: section unless explicitly marked with another keyword. (See "The INPUT:

 Keyword".)

 An XSUB section continues until another section-start keyword is found.

 The Argument Stack

 The Perl argument stack is used to store the values which are sent as parameters to the

 XSUB and to store the XSUB's return value(s). In reality all Perl functions (including

 non-XSUB ones) keep their values on this stack all the same time, each limited to its own

 range of positions on the stack. In this document the first position on that stack which

 belongs to the active function will be referred to as position 0 for that function.

 XSUBs refer to their stack arguments with the macro ST(x), where x refers to a position in

 this XSUB's part of the stack. Position 0 for that function would be known to the XSUB as

 ST(0). The XSUB's incoming parameters and outgoing return values always begin at ST(0).

 For many simple cases the xsubpp compiler will generate the code necessary to handle the

 argument stack by embedding code fragments found in the typemaps. In more complex cases

 the programmer must supply the code.

 The RETVAL Variable

 The RETVAL variable is a special C variable that is declared automatically for you. The C

 type of RETVAL matches the return type of the C library function. The xsubpp compiler

 will declare this variable in each XSUB with non-"void" return type. By default the

 generated C function will use RETVAL to hold the return value of the C library function

 being called. In simple cases the value of RETVAL will be placed in ST(0) of the argument

 stack where it can be received by Perl as the return value of the XSUB.

 If the XSUB has a return type of "void" then the compiler will not declare a RETVAL

 variable for that function. When using a PPCODE: section no manipulation of the RETVAL

 variable is required, the section may use direct stack manipulation to place output values

 on the stack.

 If PPCODE: directive is not used, "void" return value should be used only for subroutines

 which do not return a value, even if CODE: directive is used which sets ST(0) explicitly. Page 6/50

 Older versions of this document recommended to use "void" return value in such cases. It

 was discovered that this could lead to segfaults in cases when XSUB was truly "void". This

 practice is now deprecated, and may be not supported at some future version. Use the

 return value "SV *" in such cases. (Currently "xsubpp" contains some heuristic code which

 tries to disambiguate between "truly-void" and "old-practice-declared-as-void" functions.

 Hence your code is at mercy of this heuristics unless you use "SV *" as return value.)

 Returning SVs, AVs and HVs through RETVAL

 When you're using RETVAL to return an "SV *", there's some magic going on behind the

 scenes that should be mentioned. When you're manipulating the argument stack using the

 ST(x) macro, for example, you usually have to pay special attention to reference counts.

 (For more about reference counts, see perlguts.) To make your life easier, the typemap

 file automatically makes "RETVAL" mortal when you're returning an "SV *". Thus, the

 following two XSUBs are more or less equivalent:

 void

 alpha()

 PPCODE:

 ST(0) = newSVpv("Hello World",0);

 sv_2mortal(ST(0));

 XSRETURN(1);

 SV *

 beta()

 CODE:

 RETVAL = newSVpv("Hello World",0);

 OUTPUT:

 RETVAL

 This is quite useful as it usually improves readability. While this works fine for an "SV

 *", it's unfortunately not as easy to have "AV *" or "HV *" as a return value. You should

 be able to write:

 AV *

 array()

 CODE:

 RETVAL = newAV();

 /* do something with RETVAL */ Page 7/50

 OUTPUT:

 RETVAL

 But due to an unfixable bug (fixing it would break lots of existing CPAN modules) in the

 typemap file, the reference count of the "AV *" is not properly decremented. Thus, the

 above XSUB would leak memory whenever it is being called. The same problem exists for "HV

 *", "CV *", and "SVREF" (which indicates a scalar reference, not a general "SV *"). In XS

 code on perls starting with perl 5.16, you can override the typemaps for any of these

 types with a version that has proper handling of refcounts. In your "TYPEMAP" section, do

 AV* T_AVREF_REFCOUNT_FIXED

 to get the repaired variant. For backward compatibility with older versions of perl, you

 can instead decrement the reference count manually when you're returning one of the

 aforementioned types using "sv_2mortal":

 AV *

 array()

 CODE:

 RETVAL = newAV();

 sv_2mortal((SV*)RETVAL);

 /* do something with RETVAL */

 OUTPUT:

 RETVAL

 Remember that you don't have to do this for an "SV *". The reference documentation for all

 core typemaps can be found in perlxstypemap.

 The MODULE Keyword

 The MODULE keyword is used to start the XS code and to specify the package of the

 functions which are being defined. All text preceding the first MODULE keyword is

 considered C code and is passed through to the output with POD stripped, but otherwise

 untouched. Every XS module will have a bootstrap function which is used to hook the XSUBs

 into Perl. The package name of this bootstrap function will match the value of the last

 MODULE statement in the XS source files. The value of MODULE should always remain

 constant within the same XS file, though this is not required.

 The following example will start the XS code and will place all functions in a package

 named RPC.

 MODULE = RPC Page 8/50

 The PACKAGE Keyword

 When functions within an XS source file must be separated into packages the PACKAGE

 keyword should be used. This keyword is used with the MODULE keyword and must follow

 immediately after it when used.

 MODULE = RPC PACKAGE = RPC

 [XS code in package RPC]

 MODULE = RPC PACKAGE = RPCB

 [XS code in package RPCB]

 MODULE = RPC PACKAGE = RPC

 [XS code in package RPC]

 The same package name can be used more than once, allowing for non-contiguous code. This

 is useful if you have a stronger ordering principle than package names.

 Although this keyword is optional and in some cases provides redundant information it

 should always be used. This keyword will ensure that the XSUBs appear in the desired

 package.

 The PREFIX Keyword

 The PREFIX keyword designates prefixes which should be removed from the Perl function

 names. If the C function is "rpcb_gettime()" and the PREFIX value is "rpcb_" then Perl

 will see this function as "gettime()".

 This keyword should follow the PACKAGE keyword when used. If PACKAGE is not used then

 PREFIX should follow the MODULE keyword.

 MODULE = RPC PREFIX = rpc_

 MODULE = RPC PACKAGE = RPCB PREFIX = rpcb_

 The OUTPUT: Keyword

 The OUTPUT: keyword indicates that certain function parameters should be updated (new

 values made visible to Perl) when the XSUB terminates or that certain values should be

 returned to the calling Perl function. For simple functions which have no CODE: or

 PPCODE: section, such as the sin() function above, the RETVAL variable is automatically

 designated as an output value. For more complex functions the xsubpp compiler will need

 help to determine which variables are output variables.

 This keyword will normally be used to complement the CODE: keyword. The RETVAL variable

 is not recognized as an output variable when the CODE: keyword is present. The OUTPUT:

 keyword is used in this situation to tell the compiler that RETVAL really is an output Page 9/50

 variable.

 The OUTPUT: keyword can also be used to indicate that function parameters are output

 variables. This may be necessary when a parameter has been modified within the function

 and the programmer would like the update to be seen by Perl.

 bool_t

 rpcb_gettime(host,timep)

 char *host

 time_t &timep

 OUTPUT:

 timep

 The OUTPUT: keyword will also allow an output parameter to be mapped to a matching piece

 of code rather than to a typemap.

 bool_t

 rpcb_gettime(host,timep)

 char *host

 time_t &timep

 OUTPUT:

 timep sv_setnv(ST(1), (double)timep);

 xsubpp emits an automatic "SvSETMAGIC()" for all parameters in the OUTPUT section of the

 XSUB, except RETVAL. This is the usually desired behavior, as it takes care of properly

 invoking 'set' magic on output parameters (needed for hash or array element parameters

 that must be created if they didn't exist). If for some reason, this behavior is not

 desired, the OUTPUT section may contain a "SETMAGIC: DISABLE" line to disable it for the

 remainder of the parameters in the OUTPUT section. Likewise, "SETMAGIC: ENABLE" can be

 used to reenable it for the remainder of the OUTPUT section. See perlguts for more

 details about 'set' magic.

 The NO_OUTPUT Keyword

 The NO_OUTPUT can be placed as the first token of the XSUB. This keyword indicates that

 while the C subroutine we provide an interface to has a non-"void" return type, the return

 value of this C subroutine should not be returned from the generated Perl subroutine.

 With this keyword present "The RETVAL Variable" is created, and in the generated call to

 the subroutine this variable is assigned to, but the value of this variable is not going

 to be used in the auto-generated code. Page 10/50

 This keyword makes sense only if "RETVAL" is going to be accessed by the user-supplied

 code. It is especially useful to make a function interface more Perl-like, especially

 when the C return value is just an error condition indicator. For example,

 NO_OUTPUT int

 delete_file(char *name)

 POSTCALL:

 if (RETVAL != 0)

 croak("Error %d while deleting file '%s'", RETVAL, name);

 Here the generated XS function returns nothing on success, and will die() with a

 meaningful error message on error.

 The CODE: Keyword

 This keyword is used in more complicated XSUBs which require special handling for the C

 function. The RETVAL variable is still declared, but it will not be returned unless it is

 specified in the OUTPUT: section.

 The following XSUB is for a C function which requires special handling of its parameters.

 The Perl usage is given first.

 $status = rpcb_gettime("localhost", $timep);

 The XSUB follows.

 bool_t

 rpcb_gettime(host,timep)

 char *host

 time_t timep

 CODE:

 RETVAL = rpcb_gettime(host, &timep);

 OUTPUT:

 timep

 RETVAL

 The INIT: Keyword

 The INIT: keyword allows initialization to be inserted into the XSUB before the compiler

 generates the call to the C function. Unlike the CODE: keyword above, this keyword does

 not affect the way the compiler handles RETVAL.

 bool_t

 rpcb_gettime(host,timep) Page 11/50

 char *host

 time_t &timep

 INIT:

 printf("# Host is %s\n", host);

 OUTPUT:

 timep

 Another use for the INIT: section is to check for preconditions before making a call to

 the C function:

 long long

 lldiv(a,b)

 long long a

 long long b

 INIT:

 if (a == 0 && b == 0)

 XSRETURN_UNDEF;

 if (b == 0)

 croak("lldiv: cannot divide by 0");

 The NO_INIT Keyword

 The NO_INIT keyword is used to indicate that a function parameter is being used only as an

 output value. The xsubpp compiler will normally generate code to read the values of all

 function parameters from the argument stack and assign them to C variables upon entry to

 the function. NO_INIT will tell the compiler that some parameters will be used for output

 rather than for input and that they will be handled before the function terminates.

 The following example shows a variation of the rpcb_gettime() function. This function

 uses the timep variable only as an output variable and does not care about its initial

 contents.

 bool_t

 rpcb_gettime(host,timep)

 char *host

 time_t &timep = NO_INIT

 OUTPUT:

 timep

 The TYPEMAP: Keyword Page 12/50

 Starting with Perl 5.16, you can embed typemaps into your XS code instead of or in

 addition to typemaps in a separate file. Multiple such embedded typemaps will be

 processed in order of appearance in the XS code and like local typemap files take

 precedence over the default typemap, the embedded typemaps may overwrite previous

 definitions of TYPEMAP, INPUT, and OUTPUT stanzas. The syntax for embedded typemaps is

 TYPEMAP: <<HERE

 ... your typemap code here ...

 HERE

 where the "TYPEMAP" keyword must appear in the first column of a new line.

 Refer to perlxstypemap for details on writing typemaps.

 Initializing Function Parameters

 C function parameters are normally initialized with their values from the argument stack

 (which in turn contains the parameters that were passed to the XSUB from Perl). The

 typemaps contain the code segments which are used to translate the Perl values to the C

 parameters. The programmer, however, is allowed to override the typemaps and supply

 alternate (or additional) initialization code. Initialization code starts with the first

 "=", ";" or "+" on a line in the INPUT: section. The only exception happens if this ";"

 terminates the line, then this ";" is quietly ignored.

 The following code demonstrates how to supply initialization code for function parameters.

 The initialization code is eval'ed within double quotes by the compiler before it is added

 to the output so anything which should be interpreted literally [mainly "$", "@", or "\\"]

 must be protected with backslashes. The variables $var, $arg, and $type can be used as in

 typemaps.

 bool_t

 rpcb_gettime(host,timep)

 char *host = (char *)SvPVbyte_nolen($arg);

 time_t &timep = 0;

 OUTPUT:

 timep

 This should not be used to supply default values for parameters. One would normally use

 this when a function parameter must be processed by another library function before it can

 be used. Default parameters are covered in the next section.

 If the initialization begins with "=", then it is output in the declaration for the input Page 13/50

 variable, replacing the initialization supplied by the typemap. If the initialization

 begins with ";" or "+", then it is performed after all of the input variables have been

 declared. In the ";" case the initialization normally supplied by the typemap is not

 performed. For the "+" case, the declaration for the variable will include the

 initialization from the typemap. A global variable, %v, is available for the truly rare

 case where information from one initialization is needed in another initialization.

 Here's a truly obscure example:

 bool_t

 rpcb_gettime(host,timep)

 time_t &timep; /* \$v{timep}=@{[$v{timep}=$arg]} */

 char *host + SvOK($v{timep}) ? SvPVbyte_nolen($arg) : NULL;

 OUTPUT:

 timep

 The construct "\$v{timep}=@{[$v{timep}=$arg]}" used in the above example has a two-fold

 purpose: first, when this line is processed by xsubpp, the Perl snippet "$v{timep}=$arg"

 is evaluated. Second, the text of the evaluated snippet is output into the generated C

 file (inside a C comment)! During the processing of "char *host" line, $arg will evaluate

 to ST(0), and $v{timep} will evaluate to ST(1).

 Default Parameter Values

 Default values for XSUB arguments can be specified by placing an assignment statement in

 the parameter list. The default value may be a number, a string or the special string

 "NO_INIT". Defaults should always be used on the right-most parameters only.

 To allow the XSUB for rpcb_gettime() to have a default host value the parameters to the

 XSUB could be rearranged. The XSUB will then call the real rpcb_gettime() function with

 the parameters in the correct order. This XSUB can be called from Perl with either of the

 following statements:

 $status = rpcb_gettime($timep, $host);

 $status = rpcb_gettime($timep);

 The XSUB will look like the code which follows. A CODE: block is used to call the real

 rpcb_gettime() function with the parameters in the correct order for that function.

 bool_t

 rpcb_gettime(timep,host="localhost")

 char *host Page 14/50

 time_t timep = NO_INIT

 CODE:

 RETVAL = rpcb_gettime(host, &timep);

 OUTPUT:

 timep

 RETVAL

 The PREINIT: Keyword

 The PREINIT: keyword allows extra variables to be declared immediately before or after the

 declarations of the parameters from the INPUT: section are emitted.

 If a variable is declared inside a CODE: section it will follow any typemap code that is

 emitted for the input parameters. This may result in the declaration ending up after C

 code, which is C syntax error. Similar errors may happen with an explicit ";"-type or

 "+"-type initialization of parameters is used (see "Initializing Function Parameters").

 Declaring these variables in an INIT: section will not help.

 In such cases, to force an additional variable to be declared together with declarations

 of other variables, place the declaration into a PREINIT: section. The PREINIT: keyword

 may be used one or more times within an XSUB.

 The following examples are equivalent, but if the code is using complex typemaps then the

 first example is safer.

 bool_t

 rpcb_gettime(timep)

 time_t timep = NO_INIT

 PREINIT:

 char *host = "localhost";

 CODE:

 RETVAL = rpcb_gettime(host, &timep);

 OUTPUT:

 timep

 RETVAL

 For this particular case an INIT: keyword would generate the same C code as the PREINIT:

 keyword. Another correct, but error-prone example:

 bool_t

 rpcb_gettime(timep) Page 15/50

 time_t timep = NO_INIT

 CODE:

 char *host = "localhost";

 RETVAL = rpcb_gettime(host, &timep);

 OUTPUT:

 timep

 RETVAL

 Another way to declare "host" is to use a C block in the CODE: section:

 bool_t

 rpcb_gettime(timep)

 time_t timep = NO_INIT

 CODE:

 {

 char *host = "localhost";

 RETVAL = rpcb_gettime(host, &timep);

 }

 OUTPUT:

 timep

 RETVAL

 The ability to put additional declarations before the typemap entries are processed is

 very handy in the cases when typemap conversions manipulate some global state:

 MyObject

 mutate(o)

 PREINIT:

 MyState st = global_state;

 INPUT:

 MyObject o;

 CLEANUP:

 reset_to(global_state, st);

 Here we suppose that conversion to "MyObject" in the INPUT: section and from MyObject when

 processing RETVAL will modify a global variable "global_state". After these conversions

 are performed, we restore the old value of "global_state" (to avoid memory leaks, for

 example). Page 16/50

 There is another way to trade clarity for compactness: INPUT sections allow declaration of

 C variables which do not appear in the parameter list of a subroutine. Thus the above

 code for mutate() can be rewritten as

 MyObject

 mutate(o)

 MyState st = global_state;

 MyObject o;

 CLEANUP:

 reset_to(global_state, st);

 and the code for rpcb_gettime() can be rewritten as

 bool_t

 rpcb_gettime(timep)

 time_t timep = NO_INIT

 char *host = "localhost";

 C_ARGS:

 host, &timep

 OUTPUT:

 timep

 RETVAL

 The SCOPE: Keyword

 The SCOPE: keyword allows scoping to be enabled for a particular XSUB. If enabled, the

 XSUB will invoke ENTER and LEAVE automatically.

 To support potentially complex type mappings, if a typemap entry used by an XSUB contains

 a comment like "/*scope*/" then scoping will be automatically enabled for that XSUB.

 To enable scoping:

 SCOPE: ENABLE

 To disable scoping:

 SCOPE: DISABLE

 The INPUT: Keyword

 The XSUB's parameters are usually evaluated immediately after entering the XSUB. The

 INPUT: keyword can be used to force those parameters to be evaluated a little later. The

 INPUT: keyword can be used multiple times within an XSUB and can be used to list one or

 more input variables. This keyword is used with the PREINIT: keyword. Page 17/50

 The following example shows how the input parameter "timep" can be evaluated late, after a

 PREINIT.

 bool_t

 rpcb_gettime(host,timep)

 char *host

 PREINIT:

 time_t tt;

 INPUT:

 time_t timep

 CODE:

 RETVAL = rpcb_gettime(host, &tt);

 timep = tt;

 OUTPUT:

 timep

 RETVAL

 The next example shows each input parameter evaluated late.

 bool_t

 rpcb_gettime(host,timep)

 PREINIT:

 time_t tt;

 INPUT:

 char *host

 PREINIT:

 char *h;

 INPUT:

 time_t timep

 CODE:

 h = host;

 RETVAL = rpcb_gettime(h, &tt);

 timep = tt;

 OUTPUT:

 timep

 RETVAL Page 18/50

 Since INPUT sections allow declaration of C variables which do not appear in the parameter

 list of a subroutine, this may be shortened to:

 bool_t

 rpcb_gettime(host,timep)

 time_t tt;

 char *host;

 char *h = host;

 time_t timep;

 CODE:

 RETVAL = rpcb_gettime(h, &tt);

 timep = tt;

 OUTPUT:

 timep

 RETVAL

 (We used our knowledge that input conversion for "char *" is a "simple" one, thus "host"

 is initialized on the declaration line, and our assignment "h = host" is not performed too

 early. Otherwise one would need to have the assignment "h = host" in a CODE: or INIT:

 section.)

 The IN/OUTLIST/IN_OUTLIST/OUT/IN_OUT Keywords

 In the list of parameters for an XSUB, one can precede parameter names by the

 "IN"/"OUTLIST"/"IN_OUTLIST"/"OUT"/"IN_OUT" keywords. "IN" keyword is the default, the

 other keywords indicate how the Perl interface should differ from the C interface.

 Parameters preceded by "OUTLIST"/"IN_OUTLIST"/"OUT"/"IN_OUT" keywords are considered to be

 used by the C subroutine via pointers. "OUTLIST"/"OUT" keywords indicate that the C

 subroutine does not inspect the memory pointed by this parameter, but will write through

 this pointer to provide additional return values.

 Parameters preceded by "OUTLIST" keyword do not appear in the usage signature of the

 generated Perl function.

 Parameters preceded by "IN_OUTLIST"/"IN_OUT"/"OUT" do appear as parameters to the Perl

 function. With the exception of "OUT"-parameters, these parameters are converted to the

 corresponding C type, then pointers to these data are given as arguments to the C

 function. It is expected that the C function will write through these pointers.

 The return list of the generated Perl function consists of the C return value from the Page 19/50

 function (unless the XSUB is of "void" return type or "The NO_OUTPUT Keyword" was used)

 followed by all the "OUTLIST" and "IN_OUTLIST" parameters (in the order of appearance).

 On the return from the XSUB the "IN_OUT"/"OUT" Perl parameter will be modified to have the

 values written by the C function.

 For example, an XSUB

 void

 day_month(OUTLIST day, IN unix_time, OUTLIST month)

 int day

 int unix_time

 int month

 should be used from Perl as

 my ($day, $month) = day_month(time);

 The C signature of the corresponding function should be

 void day_month(int *day, int unix_time, int *month);

 The "IN"/"OUTLIST"/"IN_OUTLIST"/"IN_OUT"/"OUT" keywords can be mixed with ANSI-style

 declarations, as in

 void

 day_month(OUTLIST int day, int unix_time, OUTLIST int month)

 (here the optional "IN" keyword is omitted).

 The "IN_OUT" parameters are identical with parameters introduced with "The & Unary

 Operator" and put into the "OUTPUT:" section (see "The OUTPUT: Keyword"). The

 "IN_OUTLIST" parameters are very similar, the only difference being that the value C

 function writes through the pointer would not modify the Perl parameter, but is put in the

 output list.

 The "OUTLIST"/"OUT" parameter differ from "IN_OUTLIST"/"IN_OUT" parameters only by the

 initial value of the Perl parameter not being read (and not being given to the C function

 - which gets some garbage instead). For example, the same C function as above can be

 interfaced with as

 void day_month(OUT int day, int unix_time, OUT int month);

 or

 void

 day_month(day, unix_time, month)

 int &day = NO_INIT Page 20/50

 int unix_time

 int &month = NO_INIT

 OUTPUT:

 day

 month

 However, the generated Perl function is called in very C-ish style:

 my ($day, $month);

 day_month($day, time, $month);

 The "length(NAME)" Keyword

 If one of the input arguments to the C function is the length of a string argument "NAME",

 one can substitute the name of the length-argument by "length(NAME)" in the XSUB

 declaration. This argument must be omitted when the generated Perl function is called.

 E.g.,

 void

 dump_chars(char *s, short l)

 {

 short n = 0;

 while (n < l) {

 printf("s[%d] = \"\\%#03o\"\n", n, (int)s[n]);

 n++;

 }

 }

 MODULE = x PACKAGE = x

 void dump_chars(char *s, short length(s))

 should be called as "dump_chars($string)".

 This directive is supported with ANSI-type function declarations only.

 Variable-length Parameter Lists

 XSUBs can have variable-length parameter lists by specifying an ellipsis "(...)" in the

 parameter list. This use of the ellipsis is similar to that found in ANSI C. The

 programmer is able to determine the number of arguments passed to the XSUB by examining

 the "items" variable which the xsubpp compiler supplies for all XSUBs. By using this

 mechanism one can create an XSUB which accepts a list of parameters of unknown length.

 The host parameter for the rpcb_gettime() XSUB can be optional so the ellipsis can be used Page 21/50

 to indicate that the XSUB will take a variable number of parameters. Perl should be able

 to call this XSUB with either of the following statements.

 $status = rpcb_gettime($timep, $host);

 $status = rpcb_gettime($timep);

 The XS code, with ellipsis, follows.

 bool_t

 rpcb_gettime(timep, ...)

 time_t timep = NO_INIT

 PREINIT:

 char *host = "localhost";

 CODE:

 if(items > 1)

 host = (char *)SvPVbyte_nolen(ST(1));

 RETVAL = rpcb_gettime(host, &timep);

 OUTPUT:

 timep

 RETVAL

 The C_ARGS: Keyword

 The C_ARGS: keyword allows creating of XSUBS which have different calling sequence from

 Perl than from C, without a need to write CODE: or PPCODE: section. The contents of the

 C_ARGS: paragraph is put as the argument to the called C function without any change.

 For example, suppose that a C function is declared as

 symbolic nth_derivative(int n, symbolic function, int flags);

 and that the default flags are kept in a global C variable "default_flags". Suppose that

 you want to create an interface which is called as

 $second_deriv = $function->nth_derivative(2);

 To do this, declare the XSUB as

 symbolic

 nth_derivative(function, n)

 symbolic function

 int n

 C_ARGS:

 n, function, default_flags Page 22/50

 The PPCODE: Keyword

 The PPCODE: keyword is an alternate form of the CODE: keyword and is used to tell the

 xsubpp compiler that the programmer is supplying the code to control the argument stack

 for the XSUBs return values. Occasionally one will want an XSUB to return a list of

 values rather than a single value. In these cases one must use PPCODE: and then

 explicitly push the list of values on the stack. The PPCODE: and CODE: keywords should

 not be used together within the same XSUB.

 The actual difference between PPCODE: and CODE: sections is in the initialization of "SP"

 macro (which stands for the current Perl stack pointer), and in the handling of data on

 the stack when returning from an XSUB. In CODE: sections SP preserves the value which was

 on entry to the XSUB: SP is on the function pointer (which follows the last parameter).

 In PPCODE: sections SP is moved backward to the beginning of the parameter list, which

 allows "PUSH*()" macros to place output values in the place Perl expects them to be when

 the XSUB returns back to Perl.

 The generated trailer for a CODE: section ensures that the number of return values Perl

 will see is either 0 or 1 (depending on the "void"ness of the return value of the C

 function, and heuristics mentioned in "The RETVAL Variable"). The trailer generated for a

 PPCODE: section is based on the number of return values and on the number of times "SP"

 was updated by "[X]PUSH*()" macros.

 Note that macros ST(i), "XST_m*()" and "XSRETURN*()" work equally well in CODE: sections

 and PPCODE: sections.

 The following XSUB will call the C rpcb_gettime() function and will return its two output

 values, timep and status, to Perl as a single list.

 void

 rpcb_gettime(host)

 char *host

 PREINIT:

 time_t timep;

 bool_t status;

 PPCODE:

 status = rpcb_gettime(host, &timep);

 EXTEND(SP, 2);

 PUSHs(sv_2mortal(newSViv(status))); Page 23/50

 PUSHs(sv_2mortal(newSViv(timep)));

 Notice that the programmer must supply the C code necessary to have the real

 rpcb_gettime() function called and to have the return values properly placed on the

 argument stack.

 The "void" return type for this function tells the xsubpp compiler that the RETVAL

 variable is not needed or used and that it should not be created. In most scenarios the

 void return type should be used with the PPCODE: directive.

 The EXTEND() macro is used to make room on the argument stack for 2 return values. The

 PPCODE: directive causes the xsubpp compiler to create a stack pointer available as "SP",

 and it is this pointer which is being used in the EXTEND() macro. The values are then

 pushed onto the stack with the PUSHs() macro.

 Now the rpcb_gettime() function can be used from Perl with the following statement.

 ($status, $timep) = rpcb_gettime("localhost");

 When handling output parameters with a PPCODE section, be sure to handle 'set' magic

 properly. See perlguts for details about 'set' magic.

 Returning Undef And Empty Lists

 Occasionally the programmer will want to return simply "undef" or an empty list if a

 function fails rather than a separate status value. The rpcb_gettime() function offers

 just this situation. If the function succeeds we would like to have it return the time

 and if it fails we would like to have undef returned. In the following Perl code the

 value of $timep will either be undef or it will be a valid time.

 $timep = rpcb_gettime("localhost");

 The following XSUB uses the "SV *" return type as a mnemonic only, and uses a CODE: block

 to indicate to the compiler that the programmer has supplied all the necessary code. The

 sv_newmortal() call will initialize the return value to undef, making that the default

 return value.

 SV *

 rpcb_gettime(host)

 char * host

 PREINIT:

 time_t timep;

 bool_t x;

 CODE: Page 24/50

 ST(0) = sv_newmortal();

 if(rpcb_gettime(host, &timep))

 sv_setnv(ST(0), (double)timep);

 The next example demonstrates how one would place an explicit undef in the return value,

 should the need arise.

 SV *

 rpcb_gettime(host)

 char * host

 PREINIT:

 time_t timep;

 bool_t x;

 CODE:

 if(rpcb_gettime(host, &timep)){

 ST(0) = sv_newmortal();

 sv_setnv(ST(0), (double)timep);

 }

 else{

 ST(0) = &PL_sv_undef;

 }

 To return an empty list one must use a PPCODE: block and then not push return values on

 the stack.

 void

 rpcb_gettime(host)

 char *host

 PREINIT:

 time_t timep;

 PPCODE:

 if(rpcb_gettime(host, &timep))

 PUSHs(sv_2mortal(newSViv(timep)));

 else{

 /* Nothing pushed on stack, so an empty

 * list is implicitly returned. */

 } Page 25/50

 Some people may be inclined to include an explicit "return" in the above XSUB, rather than

 letting control fall through to the end. In those situations "XSRETURN_EMPTY" should be

 used, instead. This will ensure that the XSUB stack is properly adjusted. Consult

 perlapi for other "XSRETURN" macros.

 Since "XSRETURN_*" macros can be used with CODE blocks as well, one can rewrite this

 example as:

 int

 rpcb_gettime(host)

 char *host

 PREINIT:

 time_t timep;

 CODE:

 RETVAL = rpcb_gettime(host, &timep);

 if (RETVAL == 0)

 XSRETURN_UNDEF;

 OUTPUT:

 RETVAL

 In fact, one can put this check into a POSTCALL: section as well. Together with PREINIT:

 simplifications, this leads to:

 int

 rpcb_gettime(host)

 char *host

 time_t timep;

 POSTCALL:

 if (RETVAL == 0)

 XSRETURN_UNDEF;

 The REQUIRE: Keyword

 The REQUIRE: keyword is used to indicate the minimum version of the xsubpp compiler needed

 to compile the XS module. An XS module which contains the following statement will

 compile with only xsubpp version 1.922 or greater:

 REQUIRE: 1.922

 The CLEANUP: Keyword

 This keyword can be used when an XSUB requires special cleanup procedures before it Page 26/50

 terminates. When the CLEANUP: keyword is used it must follow any CODE:, or OUTPUT: blocks

 which are present in the XSUB. The code specified for the cleanup block will be added as

 the last statements in the XSUB.

 The POSTCALL: Keyword

 This keyword can be used when an XSUB requires special procedures executed after the C

 subroutine call is performed. When the POSTCALL: keyword is used it must precede OUTPUT:

 and CLEANUP: blocks which are present in the XSUB.

 See examples in "The NO_OUTPUT Keyword" and "Returning Undef And Empty Lists".

 The POSTCALL: block does not make a lot of sense when the C subroutine call is supplied by

 user by providing either CODE: or PPCODE: section.

 The BOOT: Keyword

 The BOOT: keyword is used to add code to the extension's bootstrap function. The

 bootstrap function is generated by the xsubpp compiler and normally holds the statements

 necessary to register any XSUBs with Perl. With the BOOT: keyword the programmer can tell

 the compiler to add extra statements to the bootstrap function.

 This keyword may be used any time after the first MODULE keyword and should appear on a

 line by itself. The first blank line after the keyword will terminate the code block.

 BOOT:

 # The following message will be printed when the

 # bootstrap function executes.

 printf("Hello from the bootstrap!\n");

 The VERSIONCHECK: Keyword

 The VERSIONCHECK: keyword corresponds to xsubpp's "-versioncheck" and "-noversioncheck"

 options. This keyword overrides the command line options. Version checking is enabled by

 default. When version checking is enabled the XS module will attempt to verify that its

 version matches the version of the PM module.

 To enable version checking:

 VERSIONCHECK: ENABLE

 To disable version checking:

 VERSIONCHECK: DISABLE

 Note that if the version of the PM module is an NV (a floating point number), it will be

 stringified with a possible loss of precision (currently chopping to nine decimal places)

 so that it may not match the version of the XS module anymore. Quoting the $VERSION Page 27/50

 declaration to make it a string is recommended if long version numbers are used.

 The PROTOTYPES: Keyword

 The PROTOTYPES: keyword corresponds to xsubpp's "-prototypes" and "-noprototypes" options.

 This keyword overrides the command line options. Prototypes are disabled by default.

 When prototypes are enabled, XSUBs will be given Perl prototypes. This keyword may be

 used multiple times in an XS module to enable and disable prototypes for different parts

 of the module. Note that xsubpp will nag you if you don't explicitly enable or disable

 prototypes, with:

 Please specify prototyping behavior for Foo.xs (see perlxs manual)

 To enable prototypes:

 PROTOTYPES: ENABLE

 To disable prototypes:

 PROTOTYPES: DISABLE

 The PROTOTYPE: Keyword

 This keyword is similar to the PROTOTYPES: keyword above but can be used to force xsubpp

 to use a specific prototype for the XSUB. This keyword overrides all other prototype

 options and keywords but affects only the current XSUB. Consult "Prototypes" in perlsub

 for information about Perl prototypes.

 bool_t

 rpcb_gettime(timep, ...)

 time_t timep = NO_INIT

 PROTOTYPE: $;$

 PREINIT:

 char *host = "localhost";

 CODE:

 if(items > 1)

 host = (char *)SvPVbyte_nolen(ST(1));

 RETVAL = rpcb_gettime(host, &timep);

 OUTPUT:

 timep

 RETVAL

 If the prototypes are enabled, you can disable it locally for a given XSUB as in the

 following example: Page 28/50

 void

 rpcb_gettime_noproto()

 PROTOTYPE: DISABLE

 ...

 The ALIAS: Keyword

 The ALIAS: keyword allows an XSUB to have two or more unique Perl names and to know which

 of those names was used when it was invoked. The Perl names may be fully-qualified with

 package names. Each alias is given an index. The compiler will setup a variable called

 "ix" which contain the index of the alias which was used. When the XSUB is called with

 its declared name "ix" will be 0.

 The following example will create aliases "FOO::gettime()" and "BAR::getit()" for this

 function.

 bool_t

 rpcb_gettime(host,timep)

 char *host

 time_t &timep

 ALIAS:

 FOO::gettime = 1

 BAR::getit = 2

 INIT:

 printf("# ix = %d\n", ix);

 OUTPUT:

 timep

 The OVERLOAD: Keyword

 Instead of writing an overloaded interface using pure Perl, you can also use the OVERLOAD

 keyword to define additional Perl names for your functions (like the ALIAS: keyword

 above). However, the overloaded functions must be defined in such a way as to accept the

 number of parameters supplied by perl's overload system. For most overload methods, it

 will be three parameters; for the "nomethod" function it will be four. However, the

 bitwise operators "&", "|", "^", and "~" may be called with three or five arguments (see

 overload).

 If any function has the OVERLOAD: keyword, several additional lines will be defined in the

 c file generated by xsubpp in order to register with the overload magic. Page 29/50

 Since blessed objects are actually stored as RV's, it is useful to use the typemap

 features to preprocess parameters and extract the actual SV stored within the blessed RV.

 See the sample for T_PTROBJ_SPECIAL below.

 To use the OVERLOAD: keyword, create an XS function which takes three input parameters (or

 use the C-style '...' definition) like this:

 SV *

 cmp (lobj, robj, swap)

 My_Module_obj lobj

 My_Module_obj robj

 IV swap

 OVERLOAD: cmp <=>

 { /* function defined here */}

 In this case, the function will overload both of the three way comparison operators. For

 all overload operations using non-alpha characters, you must type the parameter without

 quoting, separating multiple overloads with whitespace. Note that "" (the stringify

 overload) should be entered as \"\" (i.e. escaped).

 Since, as mentioned above, bitwise operators may take extra arguments, you may want to use

 something like "(lobj, robj, swap, ...)" (with literal "...") as your parameter list.

 The FALLBACK: Keyword

 In addition to the OVERLOAD keyword, if you need to control how Perl autogenerates missing

 overloaded operators, you can set the FALLBACK keyword in the module header section, like

 this:

 MODULE = RPC PACKAGE = RPC

 FALLBACK: TRUE

 ...

 where FALLBACK can take any of the three values TRUE, FALSE, or UNDEF. If you do not set

 any FALLBACK value when using OVERLOAD, it defaults to UNDEF. FALLBACK is not used except

 when one or more functions using OVERLOAD have been defined. Please see "fallback" in

 overload for more details.

 The INTERFACE: Keyword

 This keyword declares the current XSUB as a keeper of the given calling signature. If

 some text follows this keyword, it is considered as a list of functions which have this

 signature, and should be attached to the current XSUB. Page 30/50

 For example, if you have 4 C functions multiply(), divide(), add(), subtract() all having

 the signature:

 symbolic f(symbolic, symbolic);

 you can make them all to use the same XSUB using this:

 symbolic

 interface_s_ss(arg1, arg2)

 symbolic arg1

 symbolic arg2

 INTERFACE:

 multiply divide

 add subtract

 (This is the complete XSUB code for 4 Perl functions!) Four generated Perl function share

 names with corresponding C functions.

 The advantage of this approach comparing to ALIAS: keyword is that there is no need to

 code a switch statement, each Perl function (which shares the same XSUB) knows which C

 function it should call. Additionally, one can attach an extra function remainder() at

 runtime by using

 CV *mycv = newXSproto("Symbolic::remainder",

 XS_Symbolic_interface_s_ss, __FILE__, "$$");

 XSINTERFACE_FUNC_SET(mycv, remainder);

 say, from another XSUB. (This example supposes that there was no INTERFACE_MACRO:

 section, otherwise one needs to use something else instead of "XSINTERFACE_FUNC_SET", see

 the next section.)

 The INTERFACE_MACRO: Keyword

 This keyword allows one to define an INTERFACE using a different way to extract a function

 pointer from an XSUB. The text which follows this keyword should give the name of macros

 which would extract/set a function pointer. The extractor macro is given return type,

 "CV*", and "XSANY.any_dptr" for this "CV*". The setter macro is given cv, and the

 function pointer.

 The default value is "XSINTERFACE_FUNC" and "XSINTERFACE_FUNC_SET". An INTERFACE keyword

 with an empty list of functions can be omitted if INTERFACE_MACRO keyword is used.

 Suppose that in the previous example functions pointers for multiply(), divide(), add(),

 subtract() are kept in a global C array "fp[]" with offsets being "multiply_off", Page 31/50

 "divide_off", "add_off", "subtract_off". Then one can use

 #define XSINTERFACE_FUNC_BYOFFSET(ret,cv,f) \

 ((XSINTERFACE_CVT_ANON(ret))fp[CvXSUBANY(cv).any_i32])

 #define XSINTERFACE_FUNC_BYOFFSET_set(cv,f) \

 CvXSUBANY(cv).any_i32 = CAT2(f, _off)

 in C section,

 symbolic

 interface_s_ss(arg1, arg2)

 symbolic arg1

 symbolic arg2

 INTERFACE_MACRO:

 XSINTERFACE_FUNC_BYOFFSET

 XSINTERFACE_FUNC_BYOFFSET_set

 INTERFACE:

 multiply divide

 add subtract

 in XSUB section.

 The INCLUDE: Keyword

 This keyword can be used to pull other files into the XS module. The other files may have

 XS code. INCLUDE: can also be used to run a command to generate the XS code to be pulled

 into the module.

 The file Rpcb1.xsh contains our "rpcb_gettime()" function:

 bool_t

 rpcb_gettime(host,timep)

 char *host

 time_t &timep

 OUTPUT:

 timep

 The XS module can use INCLUDE: to pull that file into it.

 INCLUDE: Rpcb1.xsh

 If the parameters to the INCLUDE: keyword are followed by a pipe ("|") then the compiler

 will interpret the parameters as a command. This feature is mildly deprecated in favour of

 the "INCLUDE_COMMAND:" directive, as documented below. Page 32/50

 INCLUDE: cat Rpcb1.xsh |

 Do not use this to run perl: "INCLUDE: perl |" will run the perl that happens to be the

 first in your path and not necessarily the same perl that is used to run "xsubpp". See

 "The INCLUDE_COMMAND: Keyword".

 The INCLUDE_COMMAND: Keyword

 Runs the supplied command and includes its output into the current XS document.

 "INCLUDE_COMMAND" assigns special meaning to the $^X token in that it runs the same perl

 interpreter that is running "xsubpp":

 INCLUDE_COMMAND: cat Rpcb1.xsh

 INCLUDE_COMMAND: $^X -e ...

 The CASE: Keyword

 The CASE: keyword allows an XSUB to have multiple distinct parts with each part acting as

 a virtual XSUB. CASE: is greedy and if it is used then all other XS keywords must be

 contained within a CASE:. This means nothing may precede the first CASE: in the XSUB and

 anything following the last CASE: is included in that case.

 A CASE: might switch via a parameter of the XSUB, via the "ix" ALIAS: variable (see "The

 ALIAS: Keyword"), or maybe via the "items" variable (see "Variable-length Parameter

 Lists"). The last CASE: becomes the default case if it is not associated with a

 conditional. The following example shows CASE switched via "ix" with a function

 "rpcb_gettime()" having an alias "x_gettime()". When the function is called as

 "rpcb_gettime()" its parameters are the usual "(char *host, time_t *timep)", but when the

 function is called as "x_gettime()" its parameters are reversed, "(time_t *timep, char

 *host)".

 long

 rpcb_gettime(a,b)

 CASE: ix == 1

 ALIAS:

 x_gettime = 1

 INPUT:

 # 'a' is timep, 'b' is host

 char *b

 time_t a = NO_INIT

 CODE: Page 33/50

 RETVAL = rpcb_gettime(b, &a);

 OUTPUT:

 a

 RETVAL

 CASE:

 # 'a' is host, 'b' is timep

 char *a

 time_t &b = NO_INIT

 OUTPUT:

 b

 RETVAL

 That function can be called with either of the following statements. Note the different

 argument lists.

 $status = rpcb_gettime($host, $timep);

 $status = x_gettime($timep, $host);

 The EXPORT_XSUB_SYMBOLS: Keyword

 The EXPORT_XSUB_SYMBOLS: keyword is likely something you will never need. In perl

 versions earlier than 5.16.0, this keyword does nothing. Starting with 5.16, XSUB symbols

 are no longer exported by default. That is, they are "static" functions. If you include

 EXPORT_XSUB_SYMBOLS: ENABLE

 in your XS code, the XSUBs following this line will not be declared "static". You can

 later disable this with

 EXPORT_XSUB_SYMBOLS: DISABLE

 which, again, is the default that you should probably never change. You cannot use this

 keyword on versions of perl before 5.16 to make XSUBs "static".

 The & Unary Operator

 The "&" unary operator in the INPUT: section is used to tell xsubpp that it should convert

 a Perl value to/from C using the C type to the left of "&", but provide a pointer to this

 value when the C function is called.

 This is useful to avoid a CODE: block for a C function which takes a parameter by

 reference. Typically, the parameter should be not a pointer type (an "int" or "long" but

 not an "int*" or "long*").

 The following XSUB will generate incorrect C code. The xsubpp compiler will turn this Page 34/50

 into code which calls "rpcb_gettime()" with parameters "(char *host, time_t timep)", but

 the real "rpcb_gettime()" wants the "timep" parameter to be of type "time_t*" rather than

 "time_t".

 bool_t

 rpcb_gettime(host,timep)

 char *host

 time_t timep

 OUTPUT:

 timep

 That problem is corrected by using the "&" operator. The xsubpp compiler will now turn

 this into code which calls "rpcb_gettime()" correctly with parameters "(char *host, time_t

 *timep)". It does this by carrying the "&" through, so the function call looks like

 "rpcb_gettime(host, &timep)".

 bool_t

 rpcb_gettime(host,timep)

 char *host

 time_t &timep

 OUTPUT:

 timep

 Inserting POD, Comments and C Preprocessor Directives

 C preprocessor directives are allowed within BOOT:, PREINIT: INIT:, CODE:, PPCODE:,

 POSTCALL:, and CLEANUP: blocks, as well as outside the functions. Comments are allowed

 anywhere after the MODULE keyword. The compiler will pass the preprocessor directives

 through untouched and will remove the commented lines. POD documentation is allowed at any

 point, both in the C and XS language sections. POD must be terminated with a "=cut"

 command; "xsubpp" will exit with an error if it does not. It is very unlikely that human

 generated C code will be mistaken for POD, as most indenting styles result in whitespace

 in front of any line starting with "=". Machine generated XS files may fall into this trap

 unless care is taken to ensure that a space breaks the sequence "\n=".

 Comments can be added to XSUBs by placing a "#" as the first non-whitespace of a line.

 Care should be taken to avoid making the comment look like a C preprocessor directive,

 lest it be interpreted as such. The simplest way to prevent this is to put whitespace in

 front of the "#". Page 35/50

 If you use preprocessor directives to choose one of two versions of a function, use

 #if ... version1

 #else /* ... version2 */

 #endif

 and not

 #if ... version1

 #endif

 #if ... version2

 #endif

 because otherwise xsubpp will believe that you made a duplicate definition of the

 function. Also, put a blank line before the #else/#endif so it will not be seen as part

 of the function body.

 Using XS With C++

 If an XSUB name contains "::", it is considered to be a C++ method. The generated Perl

 function will assume that its first argument is an object pointer. The object pointer

 will be stored in a variable called THIS. The object should have been created by C++ with

 the new() function and should be blessed by Perl with the sv_setref_pv() macro. The

 blessing of the object by Perl can be handled by a typemap. An example typemap is shown

 at the end of this section.

 If the return type of the XSUB includes "static", the method is considered to be a static

 method. It will call the C++ function using the class::method() syntax. If the method is

 not static the function will be called using the THIS->method() syntax.

 The next examples will use the following C++ class.

 class color {

 public:

 color();

 ~color();

 int blue();

 void set_blue(int);

 private:

 int c_blue;

 };

 The XSUBs for the blue() and set_blue() methods are defined with the class name but the Page 36/50

 parameter for the object (THIS, or "self") is implicit and is not listed.

 int

 color::blue()

 void

 color::set_blue(val)

 int val

 Both Perl functions will expect an object as the first parameter. In the generated C++

 code the object is called "THIS", and the method call will be performed on this object.

 So in the C++ code the blue() and set_blue() methods will be called as this:

 RETVAL = THIS->blue();

 THIS->set_blue(val);

 You could also write a single get/set method using an optional argument:

 int

 color::blue(val = NO_INIT)

 int val

 PROTOTYPE $;$

 CODE:

 if (items > 1)

 THIS->set_blue(val);

 RETVAL = THIS->blue();

 OUTPUT:

 RETVAL

 If the function's name is DESTROY then the C++ "delete" function will be called and "THIS"

 will be given as its parameter. The generated C++ code for

 void

 color::DESTROY()

 will look like this:

 color *THIS = ...; // Initialized as in typemap

 delete THIS;

 If the function's name is new then the C++ "new" function will be called to create a

 dynamic C++ object. The XSUB will expect the class name, which will be kept in a variable

 called "CLASS", to be given as the first argument.

 color * Page 37/50

 color::new()

 The generated C++ code will call "new".

 RETVAL = new color();

 The following is an example of a typemap that could be used for this C++ example.

 TYPEMAP

 color * O_OBJECT

 OUTPUT

 # The Perl object is blessed into 'CLASS', which should be a

 # char* having the name of the package for the blessing.

 O_OBJECT

 sv_setref_pv($arg, CLASS, (void*)$var);

 INPUT

 O_OBJECT

 if(sv_isobject($arg) && (SvTYPE(SvRV($arg)) == SVt_PVMG))

 $var = ($type)SvIV((SV*)SvRV($arg));

 else{

 warn(\"${Package}::$func_name() -- \"

 \"$var is not a blessed SV reference\");

 XSRETURN_UNDEF;

 }

 Interface Strategy

 When designing an interface between Perl and a C library a straight translation from C to

 XS (such as created by "h2xs -x") is often sufficient. However, sometimes the interface

 will look very C-like and occasionally nonintuitive, especially when the C function

 modifies one of its parameters, or returns failure inband (as in "negative return values

 mean failure"). In cases where the programmer wishes to create a more Perl-like interface

 the following strategy may help to identify the more critical parts of the interface.

 Identify the C functions with input/output or output parameters. The XSUBs for these

 functions may be able to return lists to Perl.

 Identify the C functions which use some inband info as an indication of failure. They may

 be candidates to return undef or an empty list in case of failure. If the failure may be

 detected without a call to the C function, you may want to use an INIT: section to report

 the failure. For failures detectable after the C function returns one may want to use a Page 38/50

 POSTCALL: section to process the failure. In more complicated cases use CODE: or PPCODE:

 sections.

 If many functions use the same failure indication based on the return value, you may want

 to create a special typedef to handle this situation. Put

 typedef int negative_is_failure;

 near the beginning of XS file, and create an OUTPUT typemap entry for

 "negative_is_failure" which converts negative values to "undef", or maybe croak()s. After

 this the return value of type "negative_is_failure" will create more Perl-like interface.

 Identify which values are used by only the C and XSUB functions themselves, say, when a

 parameter to a function should be a contents of a global variable. If Perl does not need

 to access the contents of the value then it may not be necessary to provide a translation

 for that value from C to Perl.

 Identify the pointers in the C function parameter lists and return values. Some pointers

 may be used to implement input/output or output parameters, they can be handled in XS with

 the "&" unary operator, and, possibly, using the NO_INIT keyword. Some others will

 require handling of types like "int *", and one needs to decide what a useful Perl

 translation will do in such a case. When the semantic is clear, it is advisable to put

 the translation into a typemap file.

 Identify the structures used by the C functions. In many cases it may be helpful to use

 the T_PTROBJ typemap for these structures so they can be manipulated by Perl as blessed

 objects. (This is handled automatically by "h2xs -x".)

 If the same C type is used in several different contexts which require different

 translations, "typedef" several new types mapped to this C type, and create separate

 typemap entries for these new types. Use these types in declarations of return type and

 parameters to XSUBs.

 Perl Objects And C Structures

 When dealing with C structures one should select either T_PTROBJ or T_PTRREF for the XS

 type. Both types are designed to handle pointers to complex objects. The T_PTRREF type

 will allow the Perl object to be unblessed while the T_PTROBJ type requires that the

 object be blessed. By using T_PTROBJ one can achieve a form of type-checking because the

 XSUB will attempt to verify that the Perl object is of the expected type.

 The following XS code shows the getnetconfigent() function which is used with ONC+ TIRPC.

 The getnetconfigent() function will return a pointer to a C structure and has the C Page 39/50

 prototype shown below. The example will demonstrate how the C pointer will become a Perl

 reference. Perl will consider this reference to be a pointer to a blessed object and will

 attempt to call a destructor for the object. A destructor will be provided in the XS

 source to free the memory used by getnetconfigent(). Destructors in XS can be created by

 specifying an XSUB function whose name ends with the word DESTROY. XS destructors can be

 used to free memory which may have been malloc'd by another XSUB.

 struct netconfig *getnetconfigent(const char *netid);

 A "typedef" will be created for "struct netconfig". The Perl object will be blessed in a

 class matching the name of the C type, with the tag "Ptr" appended, and the name should

 not have embedded spaces if it will be a Perl package name. The destructor will be placed

 in a class corresponding to the class of the object and the PREFIX keyword will be used to

 trim the name to the word DESTROY as Perl will expect.

 typedef struct netconfig Netconfig;

 MODULE = RPC PACKAGE = RPC

 Netconfig *

 getnetconfigent(netid)

 char *netid

 MODULE = RPC PACKAGE = NetconfigPtr PREFIX = rpcb_

 void

 rpcb_DESTROY(netconf)

 Netconfig *netconf

 CODE:

 printf("Now in NetconfigPtr::DESTROY\n");

 free(netconf);

 This example requires the following typemap entry. Consult perlxstypemap for more

 information about adding new typemaps for an extension.

 TYPEMAP

 Netconfig * T_PTROBJ

 This example will be used with the following Perl statements.

 use RPC;

 $netconf = getnetconfigent("udp");

 When Perl destroys the object referenced by $netconf it will send the object to the

 supplied XSUB DESTROY function. Perl cannot determine, and does not care, that this Page 40/50

 object is a C struct and not a Perl object. In this sense, there is no difference between

 the object created by the getnetconfigent() XSUB and an object created by a normal Perl

 subroutine.

 Safely Storing Static Data in XS

 Starting with Perl 5.8, a macro framework has been defined to allow static data to be

 safely stored in XS modules that will be accessed from a multi-threaded Perl.

 Although primarily designed for use with multi-threaded Perl, the macros have been

 designed so that they will work with non-threaded Perl as well.

 It is therefore strongly recommended that these macros be used by all XS modules that make

 use of static data.

 The easiest way to get a template set of macros to use is by specifying the "-g"

 ("--global") option with h2xs (see h2xs).

 Below is an example module that makes use of the macros.

 #define PERL_NO_GET_CONTEXT

 #include "EXTERN.h"

 #include "perl.h"

 #include "XSUB.h"

 /* Global Data */

 #define MY_CXT_KEY "BlindMice::_guts" XS_VERSION

 typedef struct {

 int count;

 char name[3][100];

 } my_cxt_t;

 START_MY_CXT

 MODULE = BlindMice PACKAGE = BlindMice

 BOOT:

 {

 MY_CXT_INIT;

 MY_CXT.count = 0;

 strcpy(MY_CXT.name[0], "None");

 strcpy(MY_CXT.name[1], "None");

 strcpy(MY_CXT.name[2], "None");

 } Page 41/50

 int

 newMouse(char * name)

 PREINIT:

 dMY_CXT;

 CODE:

 if (MY_CXT.count >= 3) {

 warn("Already have 3 blind mice");

 RETVAL = 0;

 }

 else {

 RETVAL = ++ MY_CXT.count;

 strcpy(MY_CXT.name[MY_CXT.count - 1], name);

 }

 OUTPUT:

 RETVAL

 char *

 get_mouse_name(index)

 int index

 PREINIT:

 dMY_CXT;

 CODE:

 if (index > MY_CXT.count)

 croak("There are only 3 blind mice.");

 else

 RETVAL = MY_CXT.name[index - 1];

 OUTPUT:

 RETVAL

 void

 CLONE(...)

 CODE:

 MY_CXT_CLONE;

 MY_CXT REFERENCE

 MY_CXT_KEY Page 42/50

 This macro is used to define a unique key to refer to the static data for an XS

 module. The suggested naming scheme, as used by h2xs, is to use a string that

 consists of the module name, the string "::_guts" and the module version number.

 #define MY_CXT_KEY "MyModule::_guts" XS_VERSION

 typedef my_cxt_t

 This struct typedef must always be called "my_cxt_t". The other "CXT*" macros assume

 the existence of the "my_cxt_t" typedef name.

 Declare a typedef named "my_cxt_t" that is a structure that contains all the data

 that needs to be interpreter-local.

 typedef struct {

 int some_value;

 } my_cxt_t;

 START_MY_CXT

 Always place the START_MY_CXT macro directly after the declaration of "my_cxt_t".

 MY_CXT_INIT

 The MY_CXT_INIT macro initializes storage for the "my_cxt_t" struct.

 It must be called exactly once, typically in a BOOT: section. If you are maintaining

 multiple interpreters, it should be called once in each interpreter instance, except

 for interpreters cloned from existing ones. (But see "MY_CXT_CLONE" below.)

 dMY_CXT

 Use the dMY_CXT macro (a declaration) in all the functions that access MY_CXT.

 MY_CXT

 Use the MY_CXT macro to access members of the "my_cxt_t" struct. For example, if

 "my_cxt_t" is

 typedef struct {

 int index;

 } my_cxt_t;

 then use this to access the "index" member

 dMY_CXT;

 MY_CXT.index = 2;

 aMY_CXT/pMY_CXT

 "dMY_CXT" may be quite expensive to calculate, and to avoid the overhead of invoking

 it in each function it is possible to pass the declaration onto other functions using Page 43/50

 the "aMY_CXT"/"pMY_CXT" macros, eg

 void sub1() {

 dMY_CXT;

 MY_CXT.index = 1;

 sub2(aMY_CXT);

 }

 void sub2(pMY_CXT) {

 MY_CXT.index = 2;

 }

 Analogously to "pTHX", there are equivalent forms for when the macro is the first or

 last in multiple arguments, where an underscore represents a comma, i.e. "_aMY_CXT",

 "aMY_CXT_", "_pMY_CXT" and "pMY_CXT_".

 MY_CXT_CLONE

 By default, when a new interpreter is created as a copy of an existing one (eg via

 "threads->create()"), both interpreters share the same physical my_cxt_t structure.

 Calling "MY_CXT_CLONE" (typically via the package's "CLONE()" function), causes a

 byte-for-byte copy of the structure to be taken, and any future dMY_CXT will cause

 the copy to be accessed instead.

 MY_CXT_INIT_INTERP(my_perl)

 dMY_CXT_INTERP(my_perl)

 These are versions of the macros which take an explicit interpreter as an argument.

 Note that these macros will only work together within the same source file; that is, a

 dMY_CTX in one source file will access a different structure than a dMY_CTX in another

 source file.

 Thread-aware system interfaces

 Starting from Perl 5.8, in C/C++ level Perl knows how to wrap system/library interfaces

 that have thread-aware versions (e.g. getpwent_r()) into frontend macros (e.g. getpwent())

 that correctly handle the multithreaded interaction with the Perl interpreter. This will

 happen transparently, the only thing you need to do is to instantiate a Perl interpreter.

 This wrapping happens always when compiling Perl core source (PERL_CORE is defined) or the

 Perl core extensions (PERL_EXT is defined). When compiling XS code outside of the Perl

 core, the wrapping does not take place before Perl 5.28. Starting in that release you can

 #define PERL_REENTRANT Page 44/50

 in your code to enable the wrapping. It is advisable to do so if you are using such

 functions, as intermixing the "_r"-forms (as Perl compiled for multithreaded operation

 will do) and the "_r"-less forms is neither well-defined (inconsistent results, data

 corruption, or even crashes become more likely), nor is it very portable. Unfortunately,

 not all systems have all the "_r" forms, but using this "#define" gives you whatever

 protection that Perl is aware is available on each system.

EXAMPLES

 File "RPC.xs": Interface to some ONC+ RPC bind library functions.

 #define PERL_NO_GET_CONTEXT

 #include "EXTERN.h"

 #include "perl.h"

 #include "XSUB.h"

 /* Note: On glibc 2.13 and earlier, this needs be <rpc/rpc.h> */

 #include <tirpc/rpc.h>

 typedef struct netconfig Netconfig;

 MODULE = RPC PACKAGE = RPC

 SV *

 rpcb_gettime(host="localhost")

 char *host

 PREINIT:

 time_t timep;

 CODE:

 ST(0) = sv_newmortal();

 if(rpcb_gettime(host, &timep))

 sv_setnv(ST(0), (double)timep);

 Netconfig *

 getnetconfigent(netid="udp")

 char *netid

 MODULE = RPC PACKAGE = NetconfigPtr PREFIX = rpcb_

 void

 rpcb_DESTROY(netconf)

 Netconfig *netconf

 CODE: Page 45/50

 printf("NetconfigPtr::DESTROY\n");

 free(netconf);

 File "typemap": Custom typemap for RPC.xs. (cf. perlxstypemap)

 TYPEMAP

 Netconfig * T_PTROBJ

 File "RPC.pm": Perl module for the RPC extension.

 package RPC;

 require Exporter;

 require DynaLoader;

 @ISA = qw(Exporter DynaLoader);

 @EXPORT = qw(rpcb_gettime getnetconfigent);

 bootstrap RPC;

 1;

 File "rpctest.pl": Perl test program for the RPC extension.

 use RPC;

 $netconf = getnetconfigent();

 $a = rpcb_gettime();

 print "time = $a\n";

 print "netconf = $netconf\n";

 $netconf = getnetconfigent("tcp");

 $a = rpcb_gettime("poplar");

 print "time = $a\n";

 print "netconf = $netconf\n";

 In Makefile.PL add -ltirpc and -I/usr/include/tirpc.

CAVEATS

 XS code has full access to system calls including C library functions. It thus has the

 capability of interfering with things that the Perl core or other modules have set up,

 such as signal handlers or file handles. It could mess with the memory, or any number of

 harmful things. Don't.

 Some modules have an event loop, waiting for user-input. It is highly unlikely that two

 such modules would work adequately together in a single Perl application.

 In general, the perl interpreter views itself as the center of the universe as far as the

 Perl program goes. XS code is viewed as a help-mate, to accomplish things that perl Page 46/50

 doesn't do, or doesn't do fast enough, but always subservient to perl. The closer XS code

 adheres to this model, the less likely conflicts will occur.

 One area where there has been conflict is in regards to C locales. (See perllocale.)

 perl, with one exception and unless told otherwise, sets up the underlying locale the

 program is running in to the locale passed into it from the environment. This is an

 important difference from a generic C language program, where the underlying locale is the

 "C" locale unless the program changes it. As of v5.20, this underlying locale is

 completely hidden from pure Perl code outside the lexical scope of "use?locale" except for

 a couple of function calls in the POSIX module which of necessity use it. But the

 underlying locale, with that one exception is exposed to XS code, affecting all C library

 routines whose behavior is locale-dependent. Your XS code better not assume that the

 underlying locale is "C". The exception is the "LC_NUMERIC" locale category, and the

 reason it is an exception is that experience has shown that it can be problematic for XS

 code, whereas we have not had reports of problems with the other locale categories. And

 the reason for this one category being problematic is that the character used as a decimal

 point can vary. Many European languages use a comma, whereas English, and hence Perl are

 expecting a dot (U+002E: FULL STOP). Many modules can handle only the radix character

 being a dot, and so perl attempts to make it so. Up through Perl v5.20, the attempt was

 merely to set "LC_NUMERIC" upon startup to the "C" locale. Any setlocale() otherwise

 would change it; this caused some failures. Therefore, starting in v5.22, perl tries to

 keep "LC_NUMERIC" always set to "C" for XS code.

 To summarize, here's what to expect and how to handle locales in XS code:

 Non-locale-aware XS code

 Keep in mind that even if you think your code is not locale-aware, it may call a

 library function that is. Hopefully the man page for such a function will indicate

 that dependency, but the documentation is imperfect.

 The current locale is exposed to XS code except possibly "LC_NUMERIC" (explained in

 the next paragraph). There have not been reports of problems with the other

 categories. Perl initializes things on start-up so that the current locale is the one

 which is indicated by the user's environment in effect at that time. See

 "ENVIRONMENT" in perllocale.

 However, up through v5.20, Perl initialized things on start-up so that "LC_NUMERIC"

 was set to the "C" locale. But if any code anywhere changed it, it would stay Page 47/50

 changed. This means that your module can't count on "LC_NUMERIC" being something in

 particular, and you can't expect floating point numbers (including version strings) to

 have dots in them. If you don't allow for a non-dot, your code could break if anyone

 anywhere changed the locale. For this reason, v5.22 changed the behavior so that Perl

 tries to keep "LC_NUMERIC" in the "C" locale except around the operations internally

 where it should be something else. Misbehaving XS code will always be able to change

 the locale anyway, but the most common instance of this is checked for and handled.

 Locale-aware XS code

 If the locale from the user's environment is desired, there should be no need for XS

 code to set the locale except for "LC_NUMERIC", as perl has already set the others up.

 XS code should avoid changing the locale, as it can adversely affect other, unrelated,

 code and may not be thread-safe. To minimize problems, the macros

 "STORE_LC_NUMERIC_SET_TO_NEEDED" in perlapi, "STORE_LC_NUMERIC_FORCE_TO_UNDERLYING" in

 perlapi, and "RESTORE_LC_NUMERIC" in perlapi should be used to affect any needed

 change.

 But, starting with Perl v5.28, locales are thread-safe on platforms that support this

 functionality. Windows has this starting with Visual Studio 2005. Many other modern

 platforms support the thread-safe POSIX 2008 functions. The C "#define"

 "USE_THREAD_SAFE_LOCALE" will be defined iff this build is using these. From Perl-

 space, the read-only variable "${SAFE_LOCALES}" is 1 if either the build is not

 threaded, or if "USE_THREAD_SAFE_LOCALE" is defined; otherwise it is 0.

 The way this works under-the-hood is that every thread has a choice of using a locale

 specific to it (this is the Windows and POSIX 2008 functionality), or the global

 locale that is accessible to all threads (this is the functionality that has always

 been there). The implementations for Windows and POSIX are completely different. On

 Windows, the runtime can be set up so that the standard setlocale(3) function either

 only knows about the global locale or the locale for this thread. On POSIX,

 "setlocale" always deals with the global locale, and other functions have been created

 to handle per-thread locales. Perl makes this transparent to perl-space code. It

 continues to use "POSIX::setlocale()", and the interpreter translates that into the

 per-thread functions.

 All other locale-sensitive functions automatically use the per-thread locale, if that

 is turned on, and failing that, the global locale. Thus calls to "setlocale" are Page 48/50

 ineffective on POSIX systems for the current thread if that thread is using a per-

 thread locale. If perl is compiled for single-thread operation, it does not use the

 per-thread functions, so "setlocale" does work as expected.

 If you have loaded the "POSIX" module you can use the methods given in perlcall to

 call "POSIX::setlocale" to safely change or query the locale (on systems where it is

 safe to do so), or you can use the new 5.28 function "Perl_setlocale" in perlapi

 instead, which is a drop-in replacement for the system setlocale(3), and handles

 single-threaded and multi-threaded applications transparently.

 There are some locale-related library calls that still aren't thread-safe because they

 return data in a buffer global to all threads. In the past, these didn't matter as

 locales weren't thread-safe at all. But now you have to be aware of them in case your

 module is called in a multi-threaded application. The known ones are

 asctime()

 ctime()

 gcvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]

 getdate()

 wcrtomb() if its final argument is NULL

 wcsrtombs() if its final argument is NULL

 wcstombs()

 wctomb()

 Some of these shouldn't really be called in a Perl application, and for others there

 are thread-safe versions of these already implemented:

 asctime_r()

 ctime_r()

 Perl_langinfo()

 The "_r" forms are automatically used, starting in Perl 5.28, if you compile your

 code, with

 #define PERL_REENTRANT

 See also "Perl_langinfo" in perlapi. You can use the methods given in perlcall, to

 get the best available locale-safe versions of these

 POSIX::localeconv()

 POSIX::wcstombs()

 POSIX::wctomb() Page 49/50

 And note, that some items returned by "Localeconv" are available through

 "Perl_langinfo" in perlapi.

 The others shouldn't be used in a threaded application.

 Some modules may call a non-perl library that is locale-aware. This is fine as long

 as it doesn't try to query or change the locale using the system "setlocale". But if

 these do call the system "setlocale", those calls may be ineffective. Instead,

 "Perl_setlocale" works in all circumstances. Plain setlocale is ineffective on multi-

 threaded POSIX 2008 systems. It operates only on the global locale, whereas each

 thread has its own locale, paying no attention to the global one. Since converting

 these non-Perl libraries to "Perl_setlocale" is out of the question, there is a new

 function in v5.28 "switch_to_global_locale" that will switch the thread it is called

 from so that any system "setlocale" calls will have their desired effect. The

 function "sync_locale" must be called before returning to perl.

 This thread can change the locale all it wants and it won't affect any other thread,

 except any that also have been switched to the global locale. This means that a

 multi-threaded application can have a single thread using an alien library without a

 problem; but no more than a single thread can be so-occupied. Bad results likely will

 happen.

 In perls without multi-thread locale support, some alien libraries, such as "Gtk"

 change locales. This can cause problems for the Perl core and other modules. For

 these, before control is returned to perl, starting in v5.20.1, calling the function

 sync_locale() from XS should be sufficient to avoid most of these problems. Prior to

 this, you need a pure Perl statement that does this:

 POSIX::setlocale(LC_ALL, POSIX::setlocale(LC_ALL));

 or use the methods given in perlcall.

XS VERSION

 This document covers features supported by "ExtUtils::ParseXS" (also known as "xsubpp")

 3.13_01.

AUTHOR

 Originally written by Dean Roehrich <roehrich@cray.com>.

 Maintained since 1996 by The Perl Porters <perlbug@perl.org>.

perl v5.34.0 2023-11-23 PERLXS(1)

Page 50/50

