
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlsolaris.1'

$ man perlsolaris.1

PERLSOLARIS(1) Perl Programmers Reference Guide PERLSOLARIS(1)

NAME

 perlsolaris - Perl version 5 on Solaris systems

DESCRIPTION

 This document describes various features of Sun's Solaris operating system that will

 affect how Perl version 5 (hereafter just perl) is compiled and/or runs. Some issues

 relating to the older SunOS 4.x are also discussed, though they may be out of date.

 For the most part, everything should just work.

 Starting with Solaris 8, perl5.00503 (or higher) is supplied with the operating system, so

 you might not even need to build a newer version of perl at all. The Sun-supplied version

 is installed in /usr/perl5 with /usr/bin/perl pointing to /usr/perl5/bin/perl. Do not

 disturb that installation unless you really know what you are doing. If you remove the

 perl supplied with the OS, you will render some bits of your system inoperable. If you

 wish to install a newer version of perl, install it under a different prefix from

 /usr/perl5. Common prefixes to use are /usr/local and /opt/perl.

 You may wish to put your version of perl in the PATH of all users by changing the link

 /usr/bin/perl. This is probably OK, as most perl scripts shipped with Solaris use an

 explicit path. (There are a few exceptions, such as /usr/bin/rpm2cpio and

 /etc/rcm/scripts/README, but these are also sufficiently generic that the actual version

 of perl probably doesn't matter too much.)

 Solaris ships with a range of Solaris-specific modules. If you choose to install your own

 version of perl you will find the source of many of these modules is available on CPAN

 under the Sun::Solaris:: namespace. Page 1/15

 Solaris may include two versions of perl, e.g. Solaris 9 includes both 5.005_03 and 5.6.1.

 This is to provide stability across Solaris releases, in cases where a later perl version

 has incompatibilities with the version included in the preceding Solaris release. The

 default perl version will always be the most recent, and in general the old version will

 only be retained for one Solaris release. Note also that the default perl will NOT be

 configured to search for modules in the older version, again due to

 compatibility/stability concerns. As a consequence if you upgrade Solaris, you will have

 to rebuild/reinstall any additional CPAN modules that you installed for the previous

 Solaris version. See the CPAN manpage under 'autobundle' for a quick way of doing this.

 As an interim measure, you may either change the #! line of your scripts to specifically

 refer to the old perl version, e.g. on Solaris 9 use #!/usr/perl5/5.00503/bin/perl to use

 the perl version that was the default for Solaris 8, or if you have a large number of

 scripts it may be more convenient to make the old version of perl the default on your

 system. You can do this by changing the appropriate symlinks under /usr/perl5 as follows

 (example for Solaris 9):

 # cd /usr/perl5

 # rm bin man pod

 # ln -s ./5.00503/bin

 # ln -s ./5.00503/man

 # ln -s ./5.00503/lib/pod

 # rm /usr/bin/perl

 # ln -s ../perl5/5.00503/bin/perl /usr/bin/perl

 In both cases this should only be considered to be a temporary measure - you should

 upgrade to the later version of perl as soon as is practicable.

 Note also that the perl command-line utilities (e.g. perldoc) and any that are added by

 modules that you install will be under /usr/perl5/bin, so that directory should be added

 to your PATH.

 Solaris Version Numbers.

 For consistency with common usage, perl's Configure script performs some minor

 manipulations on the operating system name and version number as reported by uname.

 Here's a partial translation table:

 Sun: perl's Configure:

 uname uname -r Name osname osvers Page 2/15

 SunOS 4.1.3 Solaris 1.1 sunos 4.1.3

 SunOS 5.6 Solaris 2.6 solaris 2.6

 SunOS 5.8 Solaris 8 solaris 2.8

 SunOS 5.9 Solaris 9 solaris 2.9

 SunOS 5.10 Solaris 10 solaris 2.10

 The complete table can be found in the Sun Managers' FAQ

 <ftp://ftp.cs.toronto.edu/pub/jdd/sunmanagers/faq> under "9.1) Which Sun models run which

 versions of SunOS?".

RESOURCES

 There are many, many sources for Solaris information. A few of the important ones for

 perl:

 Solaris FAQ

 The Solaris FAQ is available at <http://www.science.uva.nl/pub/solaris/solaris2.html>.

 The Sun Managers' FAQ is available at

 <ftp://ftp.cs.toronto.edu/pub/jdd/sunmanagers/faq>

 Precompiled Binaries

 Precompiled binaries, links to many sites, and much, much more are available at

 <http://www.sunfreeware.com/> and <http://www.blastwave.org/>.

 Solaris Documentation

 All Solaris documentation is available on-line at <http://docs.sun.com/>.

SETTING UP

 File Extraction Problems on Solaris.

 Be sure to use a tar program compiled under Solaris (not SunOS 4.x) to extract the

 perl-5.x.x.tar.gz file. Do not use GNU tar compiled for SunOS4 on Solaris. (GNU tar

 compiled for Solaris should be fine.) When you run SunOS4 binaries on Solaris, the run-

 time system magically alters pathnames matching m#lib/locale# so that when tar tries to

 create lib/locale.pm, a file named lib/oldlocale.pm gets created instead. If you found

 this advice too late and used a SunOS4-compiled tar anyway, you must find the incorrectly

 renamed file and move it back to lib/locale.pm.

 Compiler and Related Tools on Solaris.

 You must use an ANSI C compiler to build perl. Perl can be compiled with either Sun's

 add-on C compiler or with gcc. The C compiler that shipped with SunOS4 will not do.

 Include /usr/ccs/bin/ in your PATH. Page 3/15

 Several tools needed to build perl are located in /usr/ccs/bin/: ar, as, ld, and make.

 Make sure that /usr/ccs/bin/ is in your PATH.

 On all the released versions of Solaris (8, 9 and 10) you need to make sure the following

 packages are installed (this info is extracted from the Solaris FAQ):

 for tools (sccs, lex, yacc, make, nm, truss, ld, as): SUNWbtool, SUNWsprot, SUNWtoo

 for libraries & headers: SUNWhea, SUNWarc, SUNWlibm, SUNWlibms, SUNWdfbh, SUNWcg6h,

 SUNWxwinc

 Additionally, on Solaris 8 and 9 you also need:

 for 64 bit development: SUNWarcx, SUNWbtoox, SUNWdplx, SUNWscpux, SUNWsprox, SUNWtoox,

 SUNWlmsx, SUNWlmx, SUNWlibCx

 And only on Solaris 8 you also need:

 for libraries & headers: SUNWolinc

 If you are in doubt which package contains a file you are missing, try to find an

 installation that has that file. Then do a

 $ grep /my/missing/file /var/sadm/install/contents

 This will display a line like this:

 /usr/include/sys/errno.h f none 0644 root bin 7471 37605 956241356 SUNWhea

 The last item listed (SUNWhea in this example) is the package you need.

 Avoid /usr/ucb/cc.

 You don't need to have /usr/ucb/ in your PATH to build perl. If you want /usr/ucb/ in

 your PATH anyway, make sure that /usr/ucb/ is NOT in your PATH before the directory

 containing the right C compiler.

 Sun's C Compiler

 If you use Sun's C compiler, make sure the correct directory (usually /opt/SUNWspro/bin/)

 is in your PATH (before /usr/ucb/).

 GCC

 If you use gcc, make sure your installation is recent and complete. perl versions since

 5.6.0 build fine with gcc > 2.8.1 on Solaris >= 2.6.

 You must Configure perl with

 $ sh Configure -Dcc=gcc

 If you don't, you may experience strange build errors.

 If you have updated your Solaris version, you may also have to update your gcc. For

 example, if you are running Solaris 2.6 and your gcc is installed under /usr/local, check Page 4/15

 in /usr/local/lib/gcc-lib and make sure you have the appropriate directory,

 sparc-sun-solaris2.6/ or i386-pc-solaris2.6/. If gcc's directory is for a different

 version of Solaris than you are running, then you will need to rebuild gcc for your new

 version of Solaris.

 You can get a precompiled version of gcc from <http://www.sunfreeware.com/> or

 <http://www.blastwave.org/>. Make sure you pick up the package for your Solaris release.

 If you wish to use gcc to build add-on modules for use with the perl shipped with Solaris,

 you should use the Solaris::PerlGcc module which is available from CPAN. The perl shipped

 with Solaris is configured and built with the Sun compilers, and the compiler

 configuration information stored in Config.pm is therefore only relevant to the Sun

 compilers. The Solaris:PerlGcc module contains a replacement Config.pm that is correct

 for gcc - see the module for details.

 GNU as and GNU ld

 The following information applies to gcc version 2. Volunteers to update it as

 appropriately for gcc version 3 would be appreciated.

 The versions of as and ld supplied with Solaris work fine for building perl. There is

 normally no need to install the GNU versions to compile perl.

 If you decide to ignore this advice and use the GNU versions anyway, then be sure that

 they are relatively recent. Versions newer than 2.7 are apparently new enough. Older

 versions may have trouble with dynamic loading.

 If you wish to use GNU ld, then you need to pass it the -Wl,-E flag. The

 hints/solaris_2.sh file tries to do this automatically by setting the following Configure

 variables:

 ccdlflags="$ccdlflags -Wl,-E"

 lddlflags="$lddlflags -Wl,-E -G"

 However, over the years, changes in gcc, GNU ld, and Solaris ld have made it difficult to

 automatically detect which ld ultimately gets called. You may have to manually edit

 config.sh and add the -Wl,-E flags yourself, or else run Configure interactively and add

 the flags at the appropriate prompts.

 If your gcc is configured to use GNU as and ld but you want to use the Solaris ones

 instead to build perl, then you'll need to add -B/usr/ccs/bin/ to the gcc command line.

 One convenient way to do that is with

 $ sh Configure -Dcc='gcc -B/usr/ccs/bin/' Page 5/15

 Note that the trailing slash is required. This will result in some harmless warnings as

 Configure is run:

 gcc: file path prefix `/usr/ccs/bin/' never used

 These messages may safely be ignored. (Note that for a SunOS4 system, you must use

 -B/bin/ instead.)

 Alternatively, you can use the GCC_EXEC_PREFIX environment variable to ensure that Sun's

 as and ld are used. Consult your gcc documentation for further information on the -B

 option and the GCC_EXEC_PREFIX variable.

 Sun and GNU make

 The make under /usr/ccs/bin works fine for building perl. If you have the Sun C

 compilers, you will also have a parallel version of make (dmake). This works fine to

 build perl, but can sometimes cause problems when running 'make test' due to

 underspecified dependencies between the different test harness files. The same problem

 can also affect the building of some add-on modules, so in those cases either specify '-m

 serial' on the dmake command line, or use /usr/ccs/bin/make instead. If you wish to use

 GNU make, be sure that the set-group-id bit is not set. If it is, then arrange your PATH

 so that /usr/ccs/bin/make is before GNU make or else have the system administrator disable

 the set-group-id bit on GNU make.

 Avoid libucb.

 Solaris provides some BSD-compatibility functions in /usr/ucblib/libucb.a. Perl will not

 build and run correctly if linked against -lucb since it contains routines that are

 incompatible with the standard Solaris libc. Normally this is not a problem since the

 solaris hints file prevents Configure from even looking in /usr/ucblib for libraries, and

 also explicitly omits -lucb.

 Environment for Compiling perl on Solaris

 PATH

 Make sure your PATH includes the compiler (/opt/SUNWspro/bin/ if you're using Sun's

 compiler) as well as /usr/ccs/bin/ to pick up the other development tools (such as make,

 ar, as, and ld). Make sure your path either doesn't include /usr/ucb or that it includes

 it after the compiler and compiler tools and other standard Solaris directories. You

 definitely don't want /usr/ucb/cc.

 LD_LIBRARY_PATH

 If you have the LD_LIBRARY_PATH environment variable set, be sure that it does NOT include Page 6/15

 /lib or /usr/lib. If you will be building extensions that call third-party shared

 libraries (e.g. Berkeley DB) then make sure that your LD_LIBRARY_PATH environment variable

 includes the directory with that library (e.g. /usr/local/lib).

 If you get an error message

 dlopen: stub interception failed

 it is probably because your LD_LIBRARY_PATH environment variable includes a directory

 which is a symlink to /usr/lib (such as /lib). The reason this causes a problem is quite

 subtle. The file libdl.so.1.0 actually *only* contains functions which generate 'stub

 interception failed' errors! The runtime linker intercepts links to

 "/usr/lib/libdl.so.1.0" and links in internal implementations of those functions instead.

 [Thanks to Tim Bunce for this explanation.]

RUN CONFIGURE.

 See the INSTALL file for general information regarding Configure. Only Solaris-specific

 issues are discussed here. Usually, the defaults should be fine.

 64-bit perl on Solaris.

 See the INSTALL file for general information regarding 64-bit compiles. In general, the

 defaults should be fine for most people.

 By default, perl-5.6.0 (or later) is compiled as a 32-bit application with largefile and

 long-long support.

 General 32-bit vs. 64-bit issues.

 Solaris 7 and above will run in either 32 bit or 64 bit mode on SPARC CPUs, via a reboot.

 You can build 64 bit apps whilst running 32 bit mode and vice-versa. 32 bit apps will run

 under Solaris running in either 32 or 64 bit mode. 64 bit apps require Solaris to be

 running 64 bit mode.

 Existing 32 bit apps are properly known as LP32, i.e. Longs and Pointers are 32 bit.

 64-bit apps are more properly known as LP64. The discriminating feature of a LP64 bit app

 is its ability to utilise a 64-bit address space. It is perfectly possible to have a LP32

 bit app that supports both 64-bit integers (long long) and largefiles (> 2GB), and this is

 the default for perl-5.6.0.

 For a more complete explanation of 64-bit issues, see the "Solaris 64-bit Developer's

 Guide" at <http://docs.sun.com/>

 You can detect the OS mode using "isainfo -v", e.g.

 $ isainfo -v # Ultra 30 in 64 bit mode Page 7/15

 64-bit sparcv9 applications

 32-bit sparc applications

 By default, perl will be compiled as a 32-bit application. Unless you want to allocate

 more than ~ 4GB of memory inside perl, or unless you need more than 255 open file

 descriptors, you probably don't need perl to be a 64-bit app.

 Large File Support

 For Solaris 2.6 and onwards, there are two different ways for 32-bit applications to

 manipulate large files (files whose size is > 2GByte). (A 64-bit application

 automatically has largefile support built in by default.)

 First is the "transitional compilation environment", described in lfcompile64(5).

 According to the man page,

 The transitional compilation environment exports all the

 explicit 64-bit functions (xxx64()) and types in addition to

 all the regular functions (xxx()) and types. Both xxx() and

 xxx64() functions are available to the program source. A

 32-bit application must use the xxx64() functions in order

 to access large files. See the lf64(5) manual page for a

 complete listing of the 64-bit transitional interfaces.

 The transitional compilation environment is obtained with the following compiler and

 linker flags:

 getconf LFS64_CFLAGS -D_LARGEFILE64_SOURCE

 getconf LFS64_LDFLAG # nothing special needed

 getconf LFS64_LIBS # nothing special needed

 Second is the "large file compilation environment", described in lfcompile(5). According

 to the man page,

 Each interface named xxx() that needs to access 64-bit entities

 to access large files maps to a xxx64() call in the

 resulting binary. All relevant data types are defined to be

 of correct size (for example, off_t has a typedef definition

 for a 64-bit entity).

 An application compiled in this environment is able to use

 the xxx() source interfaces to access both large and small

 files, rather than having to explicitly utilize the transitional Page 8/15

 xxx64() interface calls to access large files.

 Two exceptions are fseek() and ftell(). 32-bit applications should use fseeko(3C) and

 ftello(3C). These will get automatically mapped to fseeko64() and ftello64().

 The large file compilation environment is obtained with

 getconf LFS_CFLAGS -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64

 getconf LFS_LDFLAGS # nothing special needed

 getconf LFS_LIBS # nothing special needed

 By default, perl uses the large file compilation environment and relies on Solaris to do

 the underlying mapping of interfaces.

 Building an LP64 perl

 To compile a 64-bit application on an UltraSparc with a recent Sun Compiler, you need to

 use the flag "-xarch=v9". getconf(1) will tell you this, e.g.

 $ getconf -a | grep v9

 XBS5_LP64_OFF64_CFLAGS: -xarch=v9

 XBS5_LP64_OFF64_LDFLAGS: -xarch=v9

 XBS5_LP64_OFF64_LINTFLAGS: -xarch=v9

 XBS5_LPBIG_OFFBIG_CFLAGS: -xarch=v9

 XBS5_LPBIG_OFFBIG_LDFLAGS: -xarch=v9

 XBS5_LPBIG_OFFBIG_LINTFLAGS: -xarch=v9

 _XBS5_LP64_OFF64_CFLAGS: -xarch=v9

 _XBS5_LP64_OFF64_LDFLAGS: -xarch=v9

 _XBS5_LP64_OFF64_LINTFLAGS: -xarch=v9

 _XBS5_LPBIG_OFFBIG_CFLAGS: -xarch=v9

 _XBS5_LPBIG_OFFBIG_LDFLAGS: -xarch=v9

 _XBS5_LPBIG_OFFBIG_LINTFLAGS: -xarch=v9

 This flag is supported in Sun WorkShop Compilers 5.0 and onwards (now marketed under the

 name Forte) when used on Solaris 7 or later on UltraSparc systems.

 If you are using gcc, you would need to use -mcpu=v9 -m64 instead. This option is not yet

 supported as of gcc 2.95.2; from install/SPECIFIC in that release:

 GCC version 2.95 is not able to compile code correctly for sparc64

 targets. Users of the Linux kernel, at least, can use the sparc32

 program to start up a new shell invocation with an environment that

 causes configure to recognize (via uname -a) the system as sparc-*-* Page 9/15

 instead.

 All this should be handled automatically by the hints file, if requested.

 Long Doubles.

 As of 5.8.1, long doubles are working if you use the Sun compilers (needed for additional

 math routines not included in libm).

 Threads in perl on Solaris.

 It is possible to build a threaded version of perl on Solaris. The entire perl thread

 implementation is still experimental, however, so beware.

 Malloc Issues with perl on Solaris.

 Starting from perl 5.7.1 perl uses the Solaris malloc, since the perl malloc breaks when

 dealing with more than 2GB of memory, and the Solaris malloc also seems to be faster.

 If you for some reason (such as binary backward compatibility) really need to use perl's

 malloc, you can rebuild perl from the sources and Configure the build with

 $ sh Configure -Dusemymalloc

 You should not use perl's malloc if you are building with gcc. There are reports of core

 dumps, especially in the PDL module. The problem appears to go away under -DDEBUGGING, so

 it has been difficult to track down. Sun's compiler appears to be okay with or without

 perl's malloc. [XXX further investigation is needed here.]

MAKE PROBLEMS.

 Dynamic Loading Problems With GNU as and GNU ld

 If you have problems with dynamic loading using gcc on SunOS or Solaris, and you are

 using GNU as and GNU ld, see the section "GNU as and GNU ld" above.

 ld.so.1: ./perl: fatal: relocation error:

 If you get this message on SunOS or Solaris, and you're using gcc, it's probably the

 GNU as or GNU ld problem in the previous item "GNU as and GNU ld".

 dlopen: stub interception failed

 The primary cause of the 'dlopen: stub interception failed' message is that the

 LD_LIBRARY_PATH environment variable includes a directory which is a symlink to

 /usr/lib (such as /lib). See "LD_LIBRARY_PATH" above.

 #error "No DATAMODEL_NATIVE specified"

 This is a common error when trying to build perl on Solaris 2.6 with a gcc

 installation from Solaris 2.5 or 2.5.1. The Solaris header files changed, so you need

 to update your gcc installation. You can either rerun the fixincludes script from gcc Page 10/15

 or take the opportunity to update your gcc installation.

 sh: ar: not found

 This is a message from your shell telling you that the command 'ar' was not found.

 You need to check your PATH environment variable to make sure that it includes the

 directory with the 'ar' command. This is a common problem on Solaris, where 'ar' is

 in the /usr/ccs/bin/ directory.

MAKE TEST

 op/stat.t test 4 in Solaris

 op/stat.t test 4 may fail if you are on a tmpfs of some sort. Building in /tmp sometimes

 shows this behavior. The test suite detects if you are building in /tmp, but it may not

 be able to catch all tmpfs situations.

 nss_delete core dump from op/pwent or op/grent

 See "nss_delete core dump from op/pwent or op/grent" in perlhpux.

CROSS-COMPILATION

 Nothing too unusual here. You can easily do this if you have a cross-compiler available;

 A usual Configure invocation when targetting a Solaris x86 looks something like this:

 sh ./Configure -des -Dusecrosscompile \

 -Dcc=i386-pc-solaris2.11-gcc \

 -Dsysroot=$SYSROOT \

 -Alddlflags=" -Wl,-z,notext" \

 -Dtargethost=... # The usual cross-compilation options

 The lddlflags addition is the only abnormal bit.

PREBUILT BINARIES OF PERL FOR SOLARIS.

 You can pick up prebuilt binaries for Solaris from <http://www.sunfreeware.com/>,

 <http://www.blastwave.org>, ActiveState <http://www.activestate.com/>, and

 <http://www.perl.com/> under the Binaries list at the top of the page. There are probably

 other sources as well. Please note that these sites are under the control of their

 respective owners, not the perl developers.

RUNTIME ISSUES FOR PERL ON SOLARIS.

 Limits on Numbers of Open Files on Solaris.

 The stdio(3C) manpage notes that for LP32 applications, only 255 files may be opened using

 fopen(), and only file descriptors 0 through 255 can be used in a stream. Since perl

 calls open() and then fdopen(3C) with the resulting file descriptor, perl is limited to Page 11/15

 255 simultaneous open files, even if sysopen() is used. If this proves to be an

 insurmountable problem, you can compile perl as a LP64 application, see "Building an LP64

 perl" for details. Note also that the default resource limit for open file descriptors on

 Solaris is 255, so you will have to modify your ulimit or rctl (Solaris 9 onwards)

 appropriately.

SOLARIS-SPECIFIC MODULES.

 See the modules under the Solaris:: and Sun::Solaris namespaces on CPAN, see

 <http://www.cpan.org/modules/by-module/Solaris/> and

 <http://www.cpan.org/modules/by-module/Sun/>.

SOLARIS-SPECIFIC PROBLEMS WITH MODULES.

 Proc::ProcessTable on Solaris

 Proc::ProcessTable does not compile on Solaris with perl5.6.0 and higher if you have

 LARGEFILES defined. Since largefile support is the default in 5.6.0 and later, you have

 to take special steps to use this module.

 The problem is that various structures visible via procfs use off_t, and if you compile

 with largefile support these change from 32 bits to 64 bits. Thus what you get back from

 procfs doesn't match up with the structures in perl, resulting in garbage. See proc(4)

 for further discussion.

 A fix for Proc::ProcessTable is to edit Makefile to explicitly remove the largefile flags

 from the ones MakeMaker picks up from Config.pm. This will result in Proc::ProcessTable

 being built under the correct environment. Everything should then be OK as long as

 Proc::ProcessTable doesn't try to share off_t's with the rest of perl, or if it does they

 should be explicitly specified as off64_t.

 BSD::Resource on Solaris

 BSD::Resource versions earlier than 1.09 do not compile on Solaris with perl 5.6.0 and

 higher, for the same reasons as Proc::ProcessTable. BSD::Resource versions starting from

 1.09 have a workaround for the problem.

 Net::SSLeay on Solaris

 Net::SSLeay requires a /dev/urandom to be present. This device is available from Solaris 9

 onwards. For earlier Solaris versions you can either get the package SUNWski (packaged

 with several Sun software products, for example the Sun WebServer, which is part of the

 Solaris Server Intranet Extension, or the Sun Directory Services, part of Solaris for

 ISPs) or download the ANDIrand package from <http://www.cosy.sbg.ac.at/~andi/>. If you use Page 12/15

 SUNWski, make a symbolic link /dev/urandom pointing to /dev/random. For more details, see

 Document ID27606 entitled "Differing /dev/random support requirements within Solaris[TM]

 Operating Environments", available at <http://sunsolve.sun.com> .

 It may be possible to use the Entropy Gathering Daemon (written in Perl!), available from

 <http://www.lothar.com/tech/crypto/>.

SunOS 4.x

 In SunOS 4.x you most probably want to use the SunOS ld, /usr/bin/ld, since the more

 recent versions of GNU ld (like 2.13) do not seem to work for building Perl anymore. When

 linking the extensions, the GNU ld gets very unhappy and spews a lot of errors like this

 ... relocation truncated to fit: BASE13 ...

 and dies. Therefore the SunOS 4.1 hints file explicitly sets the ld to be /usr/bin/ld.

 As of Perl 5.8.1 the dynamic loading of libraries (DynaLoader, XSLoader) also seems to

 have become broken in in SunOS 4.x. Therefore the default is to build Perl statically.

 Running the test suite in SunOS 4.1 is a bit tricky since the dist/Tie-File/t/09_gen_rs.t

 test hangs (subtest #51, FWIW) for some unknown reason. Just stop the test and kill that

 particular Perl process.

 There are various other failures, that as of SunOS 4.1.4 and gcc 3.2.2 look a lot like gcc

 bugs. Many of the failures happen in the Encode tests, where for example when the test

 expects "0" you get "0" which should after a little squinting look very odd indeed.

 Another example is earlier in t/run/fresh_perl where chr(0xff) is expected but the test

 fails because the result is chr(0xff). Exactly.

 This is the "make test" result from the said combination:

 Failed 27 test scripts out of 745, 96.38% okay.

 Running the "harness" is painful because of the many failing Unicode-related tests will

 output megabytes of failure messages, but if one patiently waits, one gets these results:

 Failed Test Stat Wstat Total Fail Failed List of Failed

 ...

 ../ext/Encode/t/at-cn.t 4 1024 29 4 13.79% 14-17

 ../ext/Encode/t/at-tw.t 10 2560 17 10 58.82% 2 4 6 8 10 12

 14-17

 ../ext/Encode/t/enc_data.t 29 7424 ?? ?? % ??

 ../ext/Encode/t/enc_eucjp.t 29 7424 ?? ?? % ?? Page 13/15

 ../ext/Encode/t/enc_module.t 29 7424 ?? ?? % ??

 ../ext/Encode/t/encoding.t 29 7424 ?? ?? % ??

 ../ext/Encode/t/grow.t 12 3072 24 12 50.00% 2 4 6 8 10 12 14

 16 18 20 22 24

 Failed Test Stat Wstat Total Fail Failed List of Failed

 --

 ../ext/Encode/t/guess.t 255 65280 29 40 137.93% 10-29

 ../ext/Encode/t/jperl.t 29 7424 15 30 200.00% 1-15

 ../ext/Encode/t/mime-header.t 2 512 10 2 20.00% 2-3

 ../ext/Encode/t/perlio.t 22 5632 38 22 57.89% 1-4 9-16 19-20

 23-24 27-32

 ../ext/List/Util/t/shuffle.t 0 139 ?? ?? % ??

 ../ext/PerlIO/t/encoding.t 14 1 7.14% 11

 ../ext/PerlIO/t/fallback.t 9 2 22.22% 3 5

 ../ext/Socket/t/socketpair.t 0 2 45 70 155.56% 11-45

 ../lib/CPAN/t/vcmp.t 30 1 3.33% 25

 ../lib/Tie/File/t/09_gen_rs.t 0 15 ?? ?? % ??

 ../lib/Unicode/Collate/t/test.t 199 30 15.08% 7 26-27 71-75

 81-88 95 101

 103-104 106 108-

 109 122 124 161

 169-172

 ../lib/sort.t 0 139 119 26 21.85% 107-119

 op/alarm.t 4 1 25.00% 4

 op/utfhash.t 97 1 1.03% 31

 run/fresh_perl.t 91 1 1.10% 32

 uni/tr_7jis.t ?? ?? % ??

 uni/tr_eucjp.t 29 7424 6 12 200.00% 1-6

 uni/tr_sjis.t 29 7424 6 12 200.00% 1-6

 56 tests and 467 subtests skipped.

 Failed 27/811 test scripts, 96.67% okay. 1383/75399 subtests failed,

 98.17% okay.

 The alarm() test failure is caused by system() apparently blocking alarm(). That is Page 14/15

 probably a libc bug, and given that SunOS 4.x has been end-of-lifed years ago, don't hold

 your breath for a fix. In addition to that, don't try anything too Unicode-y, especially

 with Encode, and you should be fine in SunOS 4.x.

AUTHOR

 The original was written by Andy Dougherty doughera@lafayette.edu drawing heavily on

 advice from Alan Burlison, Nick Ing-Simmons, Tim Bunce, and many other Solaris users over

 the years.

 Please report any errors, updates, or suggestions to

 <https://github.com/Perl/perl5/issues>.

perl v5.34.0 2023-11-23 PERLSOLARIS(1)

Page 15/15

