
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlipc.1'

$ man perlipc.1

PERLIPC(1) Perl Programmers Reference Guide PERLIPC(1)

NAME

 perlipc - Perl interprocess communication (signals, fifos, pipes, safe subprocesses,

 sockets, and semaphores)

DESCRIPTION

 The basic IPC facilities of Perl are built out of the good old Unix signals, named pipes,

 pipe opens, the Berkeley socket routines, and SysV IPC calls. Each is used in slightly

 different situations.

Signals

 Perl uses a simple signal handling model: the %SIG hash contains names or references of

 user-installed signal handlers. These handlers will be called with an argument which is

 the name of the signal that triggered it. A signal may be generated intentionally from a

 particular keyboard sequence like control-C or control-Z, sent to you from another

 process, or triggered automatically by the kernel when special events transpire, like a

 child process exiting, your own process running out of stack space, or hitting a process

 file-size limit.

 For example, to trap an interrupt signal, set up a handler like this:

 our $shucks;

 sub catch_zap {

 my $signame = shift;

 $shucks++;

 die "Somebody sent me a SIG$signame";

 } Page 1/42

 $SIG{INT} = __PACKAGE__ . "::catch_zap";

 $SIG{INT} = \&catch_zap; # best strategy

 Prior to Perl 5.8.0 it was necessary to do as little as you possibly could in your

 handler; notice how all we do is set a global variable and then raise an exception.

 That's because on most systems, libraries are not re-entrant; particularly, memory

 allocation and I/O routines are not. That meant that doing nearly anything in your

 handler could in theory trigger a memory fault and subsequent core dump - see "Deferred

 Signals (Safe Signals)" below.

 The names of the signals are the ones listed out by "kill -l" on your system, or you can

 retrieve them using the CPAN module IPC::Signal.

 You may also choose to assign the strings "IGNORE" or "DEFAULT" as the handler, in which

 case Perl will try to discard the signal or do the default thing.

 On most Unix platforms, the "CHLD" (sometimes also known as "CLD") signal has special

 behavior with respect to a value of "IGNORE". Setting $SIG{CHLD} to "IGNORE" on such a

 platform has the effect of not creating zombie processes when the parent process fails to

 "wait()" on its child processes (i.e., child processes are automatically reaped). Calling

 "wait()" with $SIG{CHLD} set to "IGNORE" usually returns "-1" on such platforms.

 Some signals can be neither trapped nor ignored, such as the KILL and STOP (but not the

 TSTP) signals. Note that ignoring signals makes them disappear. If you only want them

 blocked temporarily without them getting lost you'll have to use the "POSIX" module's

 sigprocmask.

 Sending a signal to a negative process ID means that you send the signal to the entire

 Unix process group. This code sends a hang-up signal to all processes in the current

 process group, and also sets $SIG{HUP} to "IGNORE" so it doesn't kill itself:

 # block scope for local

 {

 local $SIG{HUP} = "IGNORE";

 kill HUP => -getpgrp();

 # snazzy writing of: kill("HUP", -getpgrp())

 }

 Another interesting signal to send is signal number zero. This doesn't actually affect a

 child process, but instead checks whether it's alive or has changed its UIDs.

 unless (kill 0 => $kid_pid) { Page 2/42

 warn "something wicked happened to $kid_pid";

 }

 Signal number zero may fail because you lack permission to send the signal when directed

 at a process whose real or saved UID is not identical to the real or effective UID of the

 sending process, even though the process is alive. You may be able to determine the cause

 of failure using $! or "%!".

 unless (kill(0 => $pid) || $!{EPERM}) {

 warn "$pid looks dead";

 }

 You might also want to employ anonymous functions for simple signal handlers:

 $SIG{INT} = sub { die "\nOutta here!\n" };

 SIGCHLD handlers require some special care. If a second child dies while in the signal

 handler caused by the first death, we won't get another signal. So must loop here else we

 will leave the unreaped child as a zombie. And the next time two children die we get

 another zombie. And so on.

 use POSIX ":sys_wait_h";

 $SIG{CHLD} = sub {

 while ((my $child = waitpid(-1, WNOHANG)) > 0) {

 $Kid_Status{$child} = $?;

 }

 };

 # do something that forks...

 Be careful: qx(), system(), and some modules for calling external commands do a fork(),

 then wait() for the result. Thus, your signal handler will be called. Because wait() was

 already called by system() or qx(), the wait() in the signal handler will see no more

 zombies and will therefore block.

 The best way to prevent this issue is to use waitpid(), as in the following example:

 use POSIX ":sys_wait_h"; # for nonblocking read

 my %children;

 $SIG{CHLD} = sub {

 # don't change $! and $? outside handler

 local ($!, $?);

 while ((my $pid = waitpid(-1, WNOHANG)) > 0) { Page 3/42

 delete $children{$pid};

 cleanup_child($pid, $?);

 }

 };

 while (1) {

 my $pid = fork();

 die "cannot fork" unless defined $pid;

 if ($pid == 0) {

 # ...

 exit 0;

 } else {

 $children{$pid}=1;

 # ...

 system($command);

 # ...

 }

 }

 Signal handling is also used for timeouts in Unix. While safely protected within an

 "eval{}" block, you set a signal handler to trap alarm signals and then schedule to have

 one delivered to you in some number of seconds. Then try your blocking operation,

 clearing the alarm when it's done but not before you've exited your "eval{}" block. If it

 goes off, you'll use die() to jump out of the block.

 Here's an example:

 my $ALARM_EXCEPTION = "alarm clock restart";

 eval {

 local $SIG{ALRM} = sub { die $ALARM_EXCEPTION };

 alarm 10;

 flock($fh, 2) # blocking write lock

 || die "cannot flock: $!";

 alarm 0;

 };

 if ($@ && $@ !~ quotemeta($ALARM_EXCEPTION)) { die }

 If the operation being timed out is system() or qx(), this technique is liable to generate Page 4/42

 zombies. If this matters to you, you'll need to do your own fork() and exec(), and kill

 the errant child process.

 For more complex signal handling, you might see the standard POSIX module. Lamentably,

 this is almost entirely undocumented, but the ext/POSIX/t/sigaction.t file from the Perl

 source distribution has some examples in it.

 Handling the SIGHUP Signal in Daemons

 A process that usually starts when the system boots and shuts down when the system is shut

 down is called a daemon (Disk And Execution MONitor). If a daemon process has a

 configuration file which is modified after the process has been started, there should be a

 way to tell that process to reread its configuration file without stopping the process.

 Many daemons provide this mechanism using a "SIGHUP" signal handler. When you want to tell

 the daemon to reread the file, simply send it the "SIGHUP" signal.

 The following example implements a simple daemon, which restarts itself every time the

 "SIGHUP" signal is received. The actual code is located in the subroutine "code()", which

 just prints some debugging info to show that it works; it should be replaced with the real

 code.

 #!/usr/bin/perl

 use strict;

 use warnings;

 use POSIX ();

 use FindBin ();

 use File::Basename ();

 use File::Spec::Functions qw(catfile);

 $| = 1;

 # make the daemon cross-platform, so exec always calls the script

 # itself with the right path, no matter how the script was invoked.

 my $script = File::Basename::basename($0);

 my $SELF = catfile($FindBin::Bin, $script);

 # POSIX unmasks the sigprocmask properly

 $SIG{HUP} = sub {

 print "got SIGHUP\n";

 exec($SELF, @ARGV) || die "$0: couldn't restart: $!";

 }; Page 5/42

 code();

 sub code {

 print "PID: $$\n";

 print "ARGV: @ARGV\n";

 my $count = 0;

 while (1) {

 sleep 2;

 print ++$count, "\n";

 }

 }

 Deferred Signals (Safe Signals)

 Before Perl 5.8.0, installing Perl code to deal with signals exposed you to danger from

 two things. First, few system library functions are re-entrant. If the signal interrupts

 while Perl is executing one function (like malloc(3) or printf(3)), and your signal

 handler then calls the same function again, you could get unpredictable behavior--often, a

 core dump. Second, Perl isn't itself re-entrant at the lowest levels. If the signal

 interrupts Perl while Perl is changing its own internal data structures, similarly

 unpredictable behavior may result.

 There were two things you could do, knowing this: be paranoid or be pragmatic. The

 paranoid approach was to do as little as possible in your signal handler. Set an existing

 integer variable that already has a value, and return. This doesn't help you if you're in

 a slow system call, which will just restart. That means you have to "die" to longjmp(3)

 out of the handler. Even this is a little cavalier for the true paranoiac, who avoids

 "die" in a handler because the system is out to get you. The pragmatic approach was to

 say "I know the risks, but prefer the convenience", and to do anything you wanted in your

 signal handler, and be prepared to clean up core dumps now and again.

 Perl 5.8.0 and later avoid these problems by "deferring" signals. That is, when the

 signal is delivered to the process by the system (to the C code that implements Perl) a

 flag is set, and the handler returns immediately. Then at strategic "safe" points in the

 Perl interpreter (e.g. when it is about to execute a new opcode) the flags are checked and

 the Perl level handler from %SIG is executed. The "deferred" scheme allows much more

 flexibility in the coding of signal handlers as we know the Perl interpreter is in a safe

 state, and that we are not in a system library function when the handler is called. Page 6/42

 However the implementation does differ from previous Perls in the following ways:

 Long-running opcodes

 As the Perl interpreter looks at signal flags only when it is about to execute a new

 opcode, a signal that arrives during a long-running opcode (e.g. a regular expression

 operation on a very large string) will not be seen until the current opcode completes.

 If a signal of any given type fires multiple times during an opcode (such as from a

 fine-grained timer), the handler for that signal will be called only once, after the

 opcode completes; all other instances will be discarded. Furthermore, if your

 system's signal queue gets flooded to the point that there are signals that have been

 raised but not yet caught (and thus not deferred) at the time an opcode completes,

 those signals may well be caught and deferred during subsequent opcodes, with

 sometimes surprising results. For example, you may see alarms delivered even after

 calling alarm(0) as the latter stops the raising of alarms but does not cancel the

 delivery of alarms raised but not yet caught. Do not depend on the behaviors

 described in this paragraph as they are side effects of the current implementation and

 may change in future versions of Perl.

 Interrupting IO

 When a signal is delivered (e.g., SIGINT from a control-C) the operating system breaks

 into IO operations like read(2), which is used to implement Perl's readline()

 function, the "<>" operator. On older Perls the handler was called immediately (and as

 "read" is not "unsafe", this worked well). With the "deferred" scheme the handler is

 not called immediately, and if Perl is using the system's "stdio" library that library

 may restart the "read" without returning to Perl to give it a chance to call the %SIG

 handler. If this happens on your system the solution is to use the ":perlio" layer to

 do IO--at least on those handles that you want to be able to break into with signals.

 (The ":perlio" layer checks the signal flags and calls %SIG handlers before resuming

 IO operation.)

 The default in Perl 5.8.0 and later is to automatically use the ":perlio" layer.

 Note that it is not advisable to access a file handle within a signal handler where

 that signal has interrupted an I/O operation on that same handle. While perl will at

 least try hard not to crash, there are no guarantees of data integrity; for example,

 some data might get dropped or written twice.

 Some networking library functions like gethostbyname() are known to have their own Page 7/42

 implementations of timeouts which may conflict with your timeouts. If you have

 problems with such functions, try using the POSIX sigaction() function, which bypasses

 Perl safe signals. Be warned that this does subject you to possible memory

 corruption, as described above.

 Instead of setting $SIG{ALRM}:

 local $SIG{ALRM} = sub { die "alarm" };

 try something like the following:

 use POSIX qw(SIGALRM);

 POSIX::sigaction(SIGALRM,

 POSIX::SigAction->new(sub { die "alarm" }))

 || die "Error setting SIGALRM handler: $!\n";

 Another way to disable the safe signal behavior locally is to use the

 "Perl::Unsafe::Signals" module from CPAN, which affects all signals.

 Restartable system calls

 On systems that supported it, older versions of Perl used the SA_RESTART flag when

 installing %SIG handlers. This meant that restartable system calls would continue

 rather than returning when a signal arrived. In order to deliver deferred signals

 promptly, Perl 5.8.0 and later do not use SA_RESTART. Consequently, restartable

 system calls can fail (with $! set to "EINTR") in places where they previously would

 have succeeded.

 The default ":perlio" layer retries "read", "write" and "close" as described above;

 interrupted "wait" and "waitpid" calls will always be retried.

 Signals as "faults"

 Certain signals like SEGV, ILL, and BUS are generated by virtual memory addressing

 errors and similar "faults". These are normally fatal: there is little a Perl-level

 handler can do with them. So Perl delivers them immediately rather than attempting to

 defer them.

 Signals triggered by operating system state

 On some operating systems certain signal handlers are supposed to "do something"

 before returning. One example can be CHLD or CLD, which indicates a child process has

 completed. On some operating systems the signal handler is expected to "wait" for the

 completed child process. On such systems the deferred signal scheme will not work for

 those signals: it does not do the "wait". Again the failure will look like a loop as Page 8/42

 the operating system will reissue the signal because there are completed child

 processes that have not yet been "wait"ed for.

 If you want the old signal behavior back despite possible memory corruption, set the

 environment variable "PERL_SIGNALS" to "unsafe". This feature first appeared in Perl

 5.8.1.

Named Pipes

 A named pipe (often referred to as a FIFO) is an old Unix IPC mechanism for processes

 communicating on the same machine. It works just like regular anonymous pipes, except

 that the processes rendezvous using a filename and need not be related.

 To create a named pipe, use the "POSIX::mkfifo()" function.

 use POSIX qw(mkfifo);

 mkfifo($path, 0700) || die "mkfifo $path failed: $!";

 You can also use the Unix command mknod(1), or on some systems, mkfifo(1). These may not

 be in your normal path, though.

 # system return val is backwards, so && not ||

 #

 $ENV{PATH} .= ":/etc:/usr/etc";

 if (system("mknod", $path, "p")

 && system("mkfifo", $path))

 {

 die "mk{nod,fifo} $path failed";

 }

 A fifo is convenient when you want to connect a process to an unrelated one. When you

 open a fifo, the program will block until there's something on the other end.

 For example, let's say you'd like to have your .signature file be a named pipe that has a

 Perl program on the other end. Now every time any program (like a mailer, news reader,

 finger program, etc.) tries to read from that file, the reading program will read the new

 signature from your program. We'll use the pipe-checking file-test operator, -p, to find

 out whether anyone (or anything) has accidentally removed our fifo.

 chdir(); # go home

 my $FIFO = ".signature";

 while (1) {

 unless (-p $FIFO) { Page 9/42

 unlink $FIFO; # discard any failure, will catch later

 require POSIX; # delayed loading of heavy module

 POSIX::mkfifo($FIFO, 0700)

 || die "can't mkfifo $FIFO: $!";

 }

 # next line blocks till there's a reader

 open (my $fh, ">", $FIFO) || die "can't open $FIFO: $!";

 print $fh "John Smith (smith\@host.org)\n", `fortune -s`;

 close($fh) || die "can't close $FIFO: $!";

 sleep 2; # to avoid dup signals

 }

Using open() for IPC

 Perl's basic open() statement can also be used for unidirectional interprocess

 communication by specifying the open mode as "|-" or "-|". Here's how to start something

 up in a child process you intend to write to:

 open(my $spooler, "|-", "cat -v | lpr -h 2>/dev/null")

 || die "can't fork: $!";

 local $SIG{PIPE} = sub { die "spooler pipe broke" };

 print $spooler "stuff\n";

 close $spooler || die "bad spool: $! $?";

 And here's how to start up a child process you intend to read from:

 open(my $status, "-|", "netstat -an 2>&1")

 || die "can't fork: $!";

 while (<$status>) {

 next if /^(tcp|udp)/;

 print;

 }

 close $status || die "bad netstat: $! $?";

 Be aware that these operations are full Unix forks, which means they may not be correctly

 implemented on all alien systems. See "open" in perlport for portability details.

 In the two-argument form of open(), a pipe open can be achieved by either appending or

 prepending a pipe symbol to the second argument:

 open(my $spooler, "| cat -v | lpr -h 2>/dev/null") Page 10/42

 || die "can't fork: $!";

 open(my $status, "netstat -an 2>&1 |")

 || die "can't fork: $!";

 This can be used even on systems that do not support forking, but this possibly allows

 code intended to read files to unexpectedly execute programs. If one can be sure that a

 particular program is a Perl script expecting filenames in @ARGV using the two-argument

 form of open() or the "<>" operator, the clever programmer can write something like this:

 % program f1 "cmd1|" - f2 "cmd2|" f3 < tmpfile

 and no matter which sort of shell it's called from, the Perl program will read from the

 file f1, the process cmd1, standard input (tmpfile in this case), the f2 file, the cmd2

 command, and finally the f3 file. Pretty nifty, eh?

 You might notice that you could use backticks for much the same effect as opening a pipe

 for reading:

 print grep { !/^(tcp|udp)/ } `netstat -an 2>&1`;

 die "bad netstatus ($?)" if $?;

 While this is true on the surface, it's much more efficient to process the file one line

 or record at a time because then you don't have to read the whole thing into memory at

 once. It also gives you finer control of the whole process, letting you kill off the

 child process early if you'd like.

 Be careful to check the return values from both open() and close(). If you're writing to

 a pipe, you should also trap SIGPIPE. Otherwise, think of what happens when you start up

 a pipe to a command that doesn't exist: the open() will in all likelihood succeed (it only

 reflects the fork()'s success), but then your output will fail--spectacularly. Perl can't

 know whether the command worked, because your command is actually running in a separate

 process whose exec() might have failed. Therefore, while readers of bogus commands return

 just a quick EOF, writers to bogus commands will get hit with a signal, which they'd best

 be prepared to handle. Consider:

 open(my $fh, "|-", "bogus") || die "can't fork: $!";

 print $fh "bang\n"; # neither necessary nor sufficient

 # to check print retval!

 close($fh) || die "can't close: $!";

 The reason for not checking the return value from print() is because of pipe buffering;

 physical writes are delayed. That won't blow up until the close, and it will blow up with Page 11/42

 a SIGPIPE. To catch it, you could use this:

 $SIG{PIPE} = "IGNORE";

 open(my $fh, "|-", "bogus") || die "can't fork: $!";

 print $fh "bang\n";

 close($fh) || die "can't close: status=$?";

 Filehandles

 Both the main process and any child processes it forks share the same STDIN, STDOUT, and

 STDERR filehandles. If both processes try to access them at once, strange things can

 happen. You may also want to close or reopen the filehandles for the child. You can get

 around this by opening your pipe with open(), but on some systems this means that the

 child process cannot outlive the parent.

 Background Processes

 You can run a command in the background with:

 system("cmd &");

 The command's STDOUT and STDERR (and possibly STDIN, depending on your shell) will be the

 same as the parent's. You won't need to catch SIGCHLD because of the double-fork taking

 place; see below for details.

 Complete Dissociation of Child from Parent

 In some cases (starting server processes, for instance) you'll want to completely

 dissociate the child process from the parent. This is often called daemonization. A

 well-behaved daemon will also chdir() to the root directory so it doesn't prevent

 unmounting the filesystem containing the directory from which it was launched, and

 redirect its standard file descriptors from and to /dev/null so that random output doesn't

 wind up on the user's terminal.

 use POSIX "setsid";

 sub daemonize {

 chdir("/") || die "can't chdir to /: $!";

 open(STDIN, "<", "/dev/null") || die "can't read /dev/null: $!";

 open(STDOUT, ">", "/dev/null") || die "can't write /dev/null: $!";

 defined(my $pid = fork()) || die "can't fork: $!";

 exit if $pid; # non-zero now means I am the parent

 (setsid() != -1) || die "Can't start a new session: $!";

 open(STDERR, ">&", STDOUT) || die "can't dup stdout: $!"; Page 12/42

 }

 The fork() has to come before the setsid() to ensure you aren't a process group leader;

 the setsid() will fail if you are. If your system doesn't have the setsid() function,

 open /dev/tty and use the "TIOCNOTTY" ioctl() on it instead. See tty(4) for details.

 Non-Unix users should check their "Your_OS::Process" module for other possible solutions.

 Safe Pipe Opens

 Another interesting approach to IPC is making your single program go multiprocess and

 communicate between--or even amongst--yourselves. The two-argument form of the open()

 function will accept a file argument of either "-|" or "|-" to do a very interesting

 thing: it forks a child connected to the filehandle you've opened. The child is running

 the same program as the parent. This is useful for safely opening a file when running

 under an assumed UID or GID, for example. If you open a pipe to minus, you can write to

 the filehandle you opened and your kid will find it in his STDIN. If you open a pipe from

 minus, you can read from the filehandle you opened whatever your kid writes to his STDOUT.

 my $PRECIOUS = "/path/to/some/safe/file";

 my $sleep_count;

 my $pid;

 my $kid_to_write;

 do {

 $pid = open($kid_to_write, "|-");

 unless (defined $pid) {

 warn "cannot fork: $!";

 die "bailing out" if $sleep_count++ > 6;

 sleep 10;

 }

 } until defined $pid;

 if ($pid) { # I am the parent

 print $kid_to_write @some_data;

 close($kid_to_write) || warn "kid exited $?";

 } else { # I am the child

 # drop permissions in setuid and/or setgid programs:

 ($>, $)) = ($<, $();

 open (my $outfile, ">", $PRECIOUS) Page 13/42

 || die "can't open $PRECIOUS: $!";

 while (<STDIN>) {

 print $outfile; # child STDIN is parent $kid_to_write

 }

 close($outfile) || die "can't close $PRECIOUS: $!";

 exit(0); # don't forget this!!

 }

 Another common use for this construct is when you need to execute something without the

 shell's interference. With system(), it's straightforward, but you can't use a pipe open

 or backticks safely. That's because there's no way to stop the shell from getting its

 hands on your arguments. Instead, use lower-level control to call exec() directly.

 Here's a safe backtick or pipe open for read:

 my $pid = open(my $kid_to_read, "-|");

 defined($pid) || die "can't fork: $!";

 if ($pid) { # parent

 while (<$kid_to_read>) {

 # do something interesting

 }

 close($kid_to_read) || warn "kid exited $?";

 } else { # child

 ($>, $)) = ($<, $(); # suid only

 exec($program, @options, @args)

 || die "can't exec program: $!";

 # NOTREACHED

 }

 And here's a safe pipe open for writing:

 my $pid = open(my $kid_to_write, "|-");

 defined($pid) || die "can't fork: $!";

 $SIG{PIPE} = sub { die "whoops, $program pipe broke" };

 if ($pid) { # parent

 print $kid_to_write @data;

 close($kid_to_write) || warn "kid exited $?";

 } else { # child Page 14/42

 ($>, $)) = ($<, $();

 exec($program, @options, @args)

 || die "can't exec program: $!";

 # NOTREACHED

 }

 It is very easy to dead-lock a process using this form of open(), or indeed with any use

 of pipe() with multiple subprocesses. The example above is "safe" because it is simple

 and calls exec(). See "Avoiding Pipe Deadlocks" for general safety principles, but there

 are extra gotchas with Safe Pipe Opens.

 In particular, if you opened the pipe using "open $fh, "|-"", then you cannot simply use

 close() in the parent process to close an unwanted writer. Consider this code:

 my $pid = open(my $writer, "|-"); # fork open a kid

 defined($pid) || die "first fork failed: $!";

 if ($pid) {

 if (my $sub_pid = fork()) {

 defined($sub_pid) || die "second fork failed: $!";

 close($writer) || die "couldn't close writer: $!";

 # now do something else...

 }

 else {

 # first write to $writer

 # ...

 # then when finished

 close($writer) || die "couldn't close writer: $!";

 exit(0);

 }

 }

 else {

 # first do something with STDIN, then

 exit(0);

 }

 In the example above, the true parent does not want to write to the $writer filehandle, so

 it closes it. However, because $writer was opened using "open $fh, "|-"", it has a Page 15/42

 special behavior: closing it calls waitpid() (see "waitpid" in perlfunc), which waits for

 the subprocess to exit. If the child process ends up waiting for something happening in

 the section marked "do something else", you have deadlock.

 This can also be a problem with intermediate subprocesses in more complicated code, which

 will call waitpid() on all open filehandles during global destruction--in no predictable

 order.

 To solve this, you must manually use pipe(), fork(), and the form of open() which sets one

 file descriptor to another, as shown below:

 pipe(my $reader, my $writer) || die "pipe failed: $!";

 my $pid = fork();

 defined($pid) || die "first fork failed: $!";

 if ($pid) {

 close $reader;

 if (my $sub_pid = fork()) {

 defined($sub_pid) || die "first fork failed: $!";

 close($writer) || die "can't close writer: $!";

 }

 else {

 # write to $writer...

 # ...

 # then when finished

 close($writer) || die "can't close writer: $!";

 exit(0);

 }

 # write to $writer...

 }

 else {

 open(STDIN, "<&", $reader) || die "can't reopen STDIN: $!";

 close($writer) || die "can't close writer: $!";

 # do something...

 exit(0);

 }

 Since Perl 5.8.0, you can also use the list form of "open" for pipes. This is preferred Page 16/42

 when you wish to avoid having the shell interpret metacharacters that may be in your

 command string.

 So for example, instead of using:

 open(my $ps_pipe, "-|", "ps aux") || die "can't open ps pipe: $!";

 One would use either of these:

 open(my $ps_pipe, "-|", "ps", "aux")

 || die "can't open ps pipe: $!";

 my @ps_args = qw[ps aux];

 open(my $ps_pipe, "-|", @ps_args)

 || die "can't open @ps_args|: $!";

 Because there are more than three arguments to open(), it forks the ps(1) command without

 spawning a shell, and reads its standard output via the $ps_pipe filehandle. The

 corresponding syntax to write to command pipes is to use "|-" in place of "-|".

 This was admittedly a rather silly example, because you're using string literals whose

 content is perfectly safe. There is therefore no cause to resort to the harder-to-read,

 multi-argument form of pipe open(). However, whenever you cannot be assured that the

 program arguments are free of shell metacharacters, the fancier form of open() should be

 used. For example:

 my @grep_args = ("egrep", "-i", $some_pattern, @many_files);

 open(my $grep_pipe, "-|", @grep_args)

 || die "can't open @grep_args|: $!";

 Here the multi-argument form of pipe open() is preferred because the pattern and indeed

 even the filenames themselves might hold metacharacters.

 Avoiding Pipe Deadlocks

 Whenever you have more than one subprocess, you must be careful that each closes whichever

 half of any pipes created for interprocess communication it is not using. This is because

 any child process reading from the pipe and expecting an EOF will never receive it, and

 therefore never exit. A single process closing a pipe is not enough to close it; the last

 process with the pipe open must close it for it to read EOF.

 Certain built-in Unix features help prevent this most of the time. For instance,

 filehandles have a "close on exec" flag, which is set en masse under control of the $^F

 variable. This is so any filehandles you didn't explicitly route to the STDIN, STDOUT or

 STDERR of a child program will be automatically closed. Page 17/42

 Always explicitly and immediately call close() on the writable end of any pipe, unless

 that process is actually writing to it. Even if you don't explicitly call close(), Perl

 will still close() all filehandles during global destruction. As previously discussed, if

 those filehandles have been opened with Safe Pipe Open, this will result in calling

 waitpid(), which may again deadlock.

 Bidirectional Communication with Another Process

 While this works reasonably well for unidirectional communication, what about

 bidirectional communication? The most obvious approach doesn't work:

 # THIS DOES NOT WORK!!

 open(my $prog_for_reading_and_writing, "| some program |")

 If you forget to "use warnings", you'll miss out entirely on the helpful diagnostic

 message:

 Can't do bidirectional pipe at -e line 1.

 If you really want to, you can use the standard open2() from the IPC::Open2 module to

 catch both ends. There's also an open3() in IPC::Open3 for tridirectional I/O so you can

 also catch your child's STDERR, but doing so would then require an awkward select() loop

 and wouldn't allow you to use normal Perl input operations.

 If you look at its source, you'll see that open2() uses low-level primitives like the

 pipe() and exec() syscalls to create all the connections. Although it might have been

 more efficient by using socketpair(), this would have been even less portable than it

 already is. The open2() and open3() functions are unlikely to work anywhere except on a

 Unix system, or at least one purporting POSIX compliance.

 Here's an example of using open2():

 use IPC::Open2;

 my $pid = open2(my $reader, my $writer, "cat -un");

 print $writer "stuff\n";

 my $got = <$reader>;

 waitpid $pid, 0;

 The problem with this is that buffering is really going to ruin your day. Even though

 your $writer filehandle is auto-flushed so the process on the other end gets your data in

 a timely manner, you can't usually do anything to force that process to give its data to

 you in a similarly quick fashion. In this special case, we could actually so, because we

 gave cat a -u flag to make it unbuffered. But very few commands are designed to operate Page 18/42

 over pipes, so this seldom works unless you yourself wrote the program on the other end of

 the double-ended pipe.

 A solution to this is to use a library which uses pseudottys to make your program behave

 more reasonably. This way you don't have to have control over the source code of the

 program you're using. The "Expect" module from CPAN also addresses this kind of thing.

 This module requires two other modules from CPAN, "IO::Pty" and "IO::Stty". It sets up a

 pseudo terminal to interact with programs that insist on talking to the terminal device

 driver. If your system is supported, this may be your best bet.

 Bidirectional Communication with Yourself

 If you want, you may make low-level pipe() and fork() syscalls to stitch this together by

 hand. This example only talks to itself, but you could reopen the appropriate handles to

 STDIN and STDOUT and call other processes. (The following example lacks proper error

 checking.)

 #!/usr/bin/perl

 # pipe1 - bidirectional communication using two pipe pairs

 # designed for the socketpair-challenged

 use strict;

 use warnings;

 use IO::Handle; # enable autoflush method before Perl 5.14

 pipe(my $parent_rdr, my $child_wtr); # XXX: check failure?

 pipe(my $child_rdr, my $parent_wtr); # XXX: check failure?

 $child_wtr->autoflush(1);

 $parent_wtr->autoflush(1);

 if ($pid = fork()) {

 close $parent_rdr;

 close $parent_wtr;

 print $child_wtr "Parent Pid $$ is sending this\n";

 chomp(my $line = <$child_rdr>);

 print "Parent Pid $$ just read this: '$line'\n";

 close $child_rdr; close $child_wtr;

 waitpid($pid, 0);

 } else {

 die "cannot fork: $!" unless defined $pid; Page 19/42

 close $child_rdr;

 close $child_wtr;

 chomp(my $line = <$parent_rdr>);

 print "Child Pid $$ just read this: '$line'\n";

 print $parent_wtr "Child Pid $$ is sending this\n";

 close $parent_rdr;

 close $parent_wtr;

 exit(0);

 }

 But you don't actually have to make two pipe calls. If you have the socketpair() system

 call, it will do this all for you.

 #!/usr/bin/perl

 # pipe2 - bidirectional communication using socketpair

 # "the best ones always go both ways"

 use strict;

 use warnings;

 use Socket;

 use IO::Handle; # enable autoflush method before Perl 5.14

 # We say AF_UNIX because although *_LOCAL is the

 # POSIX 1003.1g form of the constant, many machines

 # still don't have it.

 socketpair(my $child, my $parent, AF_UNIX, SOCK_STREAM, PF_UNSPEC)

 || die "socketpair: $!";

 $child->autoflush(1);

 $parent->autoflush(1);

 if ($pid = fork()) {

 close $parent;

 print $child "Parent Pid $$ is sending this\n";

 chomp(my $line = <$child>);

 print "Parent Pid $$ just read this: '$line'\n";

 close $child;

 waitpid($pid, 0);

 } else { Page 20/42

 die "cannot fork: $!" unless defined $pid;

 close $child;

 chomp(my $line = <$parent>);

 print "Child Pid $$ just read this: '$line'\n";

 print $parent "Child Pid $$ is sending this\n";

 close $parent;

 exit(0);

 }

Sockets: Client/Server Communication

 While not entirely limited to Unix-derived operating systems (e.g., WinSock on PCs

 provides socket support, as do some VMS libraries), you might not have sockets on your

 system, in which case this section probably isn't going to do you much good. With

 sockets, you can do both virtual circuits like TCP streams and datagrams like UDP packets.

 You may be able to do even more depending on your system.

 The Perl functions for dealing with sockets have the same names as the corresponding

 system calls in C, but their arguments tend to differ for two reasons. First, Perl

 filehandles work differently than C file descriptors. Second, Perl already knows the

 length of its strings, so you don't need to pass that information.

 One of the major problems with ancient, antemillennial socket code in Perl was that it

 used hard-coded values for some of the constants, which severely hurt portability. If you

 ever see code that does anything like explicitly setting "$AF_INET = 2", you know you're

 in for big trouble. An immeasurably superior approach is to use the Socket module, which

 more reliably grants access to the various constants and functions you'll need.

 If you're not writing a server/client for an existing protocol like NNTP or SMTP, you

 should give some thought to how your server will know when the client has finished

 talking, and vice-versa. Most protocols are based on one-line messages and responses (so

 one party knows the other has finished when a "\n" is received) or multi-line messages and

 responses that end with a period on an empty line ("\n.\n" terminates a message/response).

 Internet Line Terminators

 The Internet line terminator is "\015\012". Under ASCII variants of Unix, that could

 usually be written as "\r\n", but under other systems, "\r\n" might at times be

 "\015\015\012", "\012\012\015", or something completely different. The standards specify

 writing "\015\012" to be conformant (be strict in what you provide), but they also Page 21/42

 recommend accepting a lone "\012" on input (be lenient in what you require). We haven't

 always been very good about that in the code in this manpage, but unless you're on a Mac

 from way back in its pre-Unix dark ages, you'll probably be ok.

 Internet TCP Clients and Servers

 Use Internet-domain sockets when you want to do client-server communication that might

 extend to machines outside of your own system.

 Here's a sample TCP client using Internet-domain sockets:

 #!/usr/bin/perl

 use strict;

 use warnings;

 use Socket;

 my $remote = shift || "localhost";

 my $port = shift || 2345; # random port

 if ($port =~ /\D/) { $port = getservbyname($port, "tcp") }

 die "No port" unless $port;

 my $iaddr = inet_aton($remote) || die "no host: $remote";

 my $paddr = sockaddr_in($port, $iaddr);

 my $proto = getprotobyname("tcp");

 socket(my $sock, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";

 connect($sock, $paddr) || die "connect: $!";

 while (my $line = <$sock>) {

 print $line;

 }

 close ($sock) || die "close: $!";

 exit(0);

 And here's a corresponding server to go along with it. We'll leave the address as

 "INADDR_ANY" so that the kernel can choose the appropriate interface on multihomed hosts.

 If you want sit on a particular interface (like the external side of a gateway or firewall

 machine), fill this in with your real address instead.

 #!/usr/bin/perl -T

 use strict;

 use warnings;

 BEGIN { $ENV{PATH} = "/usr/bin:/bin" } Page 22/42

 use Socket;

 use Carp;

 my $EOL = "\015\012";

 sub logmsg { print "$0 $$: @_ at ", scalar localtime(), "\n" }

 my $port = shift || 2345;

 die "invalid port" unless $port =~ /^ \d+ $/x;

 my $proto = getprotobyname("tcp");

 socket(my $server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";

 setsockopt($server, SOL_SOCKET, SO_REUSEADDR, pack("l", 1))

 || die "setsockopt: $!";

 bind($server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!";

 listen($server, SOMAXCONN) || die "listen: $!";

 logmsg "server started on port $port";

 for (my $paddr; $paddr = accept(my $client, $server); close $client) {

 my($port, $iaddr) = sockaddr_in($paddr);

 my $name = gethostbyaddr($iaddr, AF_INET);

 logmsg "connection from $name [",

 inet_ntoa($iaddr), "]

 at port $port";

 print $client "Hello there, $name, it's now ",

 scalar localtime(), $EOL;

 }

 And here's a multitasking version. It's multitasked in that like most typical servers, it

 spawns (fork()s) a slave server to handle the client request so that the master server can

 quickly go back to service a new client.

 #!/usr/bin/perl -T

 use strict;

 use warnings;

 BEGIN { $ENV{PATH} = "/usr/bin:/bin" }

 use Socket;

 use Carp;

 my $EOL = "\015\012";

 sub spawn; # forward declaration Page 23/42

 sub logmsg { print "$0 $$: @_ at ", scalar localtime(), "\n" }

 my $port = shift || 2345;

 die "invalid port" unless $port =~ /^ \d+ $/x;

 my $proto = getprotobyname("tcp");

 socket(my $server, PF_INET, SOCK_STREAM, $proto) || die "socket: $!";

 setsockopt($server, SOL_SOCKET, SO_REUSEADDR, pack("l", 1))

 || die "setsockopt: $!";

 bind($server, sockaddr_in($port, INADDR_ANY)) || die "bind: $!";

 listen($server, SOMAXCONN) || die "listen: $!";

 logmsg "server started on port $port";

 my $waitedpid = 0;

 use POSIX ":sys_wait_h";

 use Errno;

 sub REAPER {

 local $!; # don't let waitpid() overwrite current error

 while ((my $pid = waitpid(-1, WNOHANG)) > 0 && WIFEXITED($?)) {

 logmsg "reaped $waitedpid" . ($? ? " with exit $?" : "");

 }

 $SIG{CHLD} = \&REAPER; # loathe SysV

 }

 $SIG{CHLD} = \&REAPER;

 while (1) {

 my $paddr = accept(my $client, $server) || do {

 # try again if accept() returned because got a signal

 next if $!{EINTR};

 die "accept: $!";

 };

 my ($port, $iaddr) = sockaddr_in($paddr);

 my $name = gethostbyaddr($iaddr, AF_INET);

 logmsg "connection from $name [",

 inet_ntoa($iaddr),

 "] at port $port";

 spawn $client, sub { Page 24/42

 $| = 1;

 print "Hello there, $name, it's now ",

 scalar localtime(),

 $EOL;

 exec "/usr/games/fortune" # XXX: "wrong" line terminators

 or confess "can't exec fortune: $!";

 };

 close $client;

 }

 sub spawn {

 my $client = shift;

 my $coderef = shift;

 unless (@_ == 0 && $coderef && ref($coderef) eq "CODE") {

 confess "usage: spawn CLIENT CODEREF";

 }

 my $pid;

 unless (defined($pid = fork())) {

 logmsg "cannot fork: $!";

 return;

 }

 elsif ($pid) {

 logmsg "begat $pid";

 return; # I'm the parent

 }

 # else I'm the child -- go spawn

 open(STDIN, "<&", $client) || die "can't dup client to stdin";

 open(STDOUT, ">&", $client) || die "can't dup client to stdout";

 ## open(STDERR, ">&", STDOUT) || die "can't dup stdout to stderr";

 exit($coderef->());

 }

 This server takes the trouble to clone off a child version via fork() for each incoming

 request. That way it can handle many requests at once, which you might not always want.

 Even if you don't fork(), the listen() will allow that many pending connections. Forking Page 25/42

 servers have to be particularly careful about cleaning up their dead children (called

 "zombies" in Unix parlance), because otherwise you'll quickly fill up your process table.

 The REAPER subroutine is used here to call waitpid() for any child processes that have

 finished, thereby ensuring that they terminate cleanly and don't join the ranks of the

 living dead.

 Within the while loop we call accept() and check to see if it returns a false value. This

 would normally indicate a system error needs to be reported. However, the introduction of

 safe signals (see "Deferred Signals (Safe Signals)" above) in Perl 5.8.0 means that

 accept() might also be interrupted when the process receives a signal. This typically

 happens when one of the forked subprocesses exits and notifies the parent process with a

 CHLD signal.

 If accept() is interrupted by a signal, $! will be set to EINTR. If this happens, we can

 safely continue to the next iteration of the loop and another call to accept(). It is

 important that your signal handling code not modify the value of $!, or else this test

 will likely fail. In the REAPER subroutine we create a local version of $! before calling

 waitpid(). When waitpid() sets $! to ECHILD as it inevitably does when it has no more

 children waiting, it updates the local copy and leaves the original unchanged.

 You should use the -T flag to enable taint checking (see perlsec) even if we aren't

 running setuid or setgid. This is always a good idea for servers or any program run on

 behalf of someone else (like CGI scripts), because it lessens the chances that people from

 the outside will be able to compromise your system.

 Let's look at another TCP client. This one connects to the TCP "time" service on a number

 of different machines and shows how far their clocks differ from the system on which it's

 being run:

 #!/usr/bin/perl

 use strict;

 use warnings;

 use Socket;

 my $SECS_OF_70_YEARS = 2208988800;

 sub ctime { scalar localtime(shift() || time()) }

 my $iaddr = gethostbyname("localhost");

 my $proto = getprotobyname("tcp");

 my $port = getservbyname("time", "tcp"); Page 26/42

 my $paddr = sockaddr_in(0, $iaddr);

 $| = 1;

 printf "%-24s %8s %s\n", "localhost", 0, ctime();

 foreach my $host (@ARGV) {

 printf "%-24s ", $host;

 my $hisiaddr = inet_aton($host) || die "unknown host";

 my $hispaddr = sockaddr_in($port, $hisiaddr);

 socket(my $socket, PF_INET, SOCK_STREAM, $proto)

 || die "socket: $!";

 connect($socket, $hispaddr) || die "connect: $!";

 my $rtime = pack("C4", ());

 read($socket, $rtime, 4);

 close($socket);

 my $histime = unpack("N", $rtime) - $SECS_OF_70_YEARS;

 printf "%8d %s\n", $histime - time(), ctime($histime);

 }

 Unix-Domain TCP Clients and Servers

 That's fine for Internet-domain clients and servers, but what about local communications?

 While you can use the same setup, sometimes you don't want to. Unix-domain sockets are

 local to the current host, and are often used internally to implement pipes. Unlike

 Internet domain sockets, Unix domain sockets can show up in the file system with an ls(1)

 listing.

 % ls -l /dev/log

 srw-rw-rw- 1 root 0 Oct 31 07:23 /dev/log

 You can test for these with Perl's -S file test:

 unless (-S "/dev/log") {

 die "something's wicked with the log system";

 }

 Here's a sample Unix-domain client:

 #!/usr/bin/perl

 use Socket;

 use strict;

 use warnings; Page 27/42

 my $rendezvous = shift || "catsock";

 socket(my $sock, PF_UNIX, SOCK_STREAM, 0) || die "socket: $!";

 connect($sock, sockaddr_un($rendezvous)) || die "connect: $!";

 while (defined(my $line = <$sock>)) {

 print $line;

 }

 exit(0);

 And here's a corresponding server. You don't have to worry about silly network

 terminators here because Unix domain sockets are guaranteed to be on the localhost, and

 thus everything works right.

 #!/usr/bin/perl -T

 use strict;

 use warnings;

 use Socket;

 use Carp;

 BEGIN { $ENV{PATH} = "/usr/bin:/bin" }

 sub spawn; # forward declaration

 sub logmsg { print "$0 $$: @_ at ", scalar localtime(), "\n" }

 my $NAME = "catsock";

 my $uaddr = sockaddr_un($NAME);

 my $proto = getprotobyname("tcp");

 socket(my $server, PF_UNIX, SOCK_STREAM, 0) || die "socket: $!";

 unlink($NAME);

 bind ($server, $uaddr) || die "bind: $!";

 listen($server, SOMAXCONN) || die "listen: $!";

 logmsg "server started on $NAME";

 my $waitedpid;

 use POSIX ":sys_wait_h";

 sub REAPER {

 my $child;

 while (($waitedpid = waitpid(-1, WNOHANG)) > 0) {

 logmsg "reaped $waitedpid" . ($? ? " with exit $?" : "");

 } Page 28/42

 $SIG{CHLD} = \&REAPER; # loathe SysV

 }

 $SIG{CHLD} = \&REAPER;

 for ($waitedpid = 0;

 accept(my $client, $server) || $waitedpid;

 $waitedpid = 0, close $client)

 {

 next if $waitedpid;

 logmsg "connection on $NAME";

 spawn $client, sub {

 print "Hello there, it's now ", scalar localtime(), "\n";

 exec("/usr/games/fortune") || die "can't exec fortune: $!";

 };

 }

 sub spawn {

 my $client = shift();

 my $coderef = shift();

 unless (@_ == 0 && $coderef && ref($coderef) eq "CODE") {

 confess "usage: spawn CLIENT CODEREF";

 }

 my $pid;

 unless (defined($pid = fork())) {

 logmsg "cannot fork: $!";

 return;

 }

 elsif ($pid) {

 logmsg "begat $pid";

 return; # I'm the parent

 }

 else {

 # I'm the child -- go spawn

 }

 open(STDIN, "<&", $client) Page 29/42

 || die "can't dup client to stdin";

 open(STDOUT, ">&", $client)

 || die "can't dup client to stdout";

 ## open(STDERR, ">&", STDOUT)

 ## || die "can't dup stdout to stderr";

 exit($coderef->());

 }

 As you see, it's remarkably similar to the Internet domain TCP server, so much so, in

 fact, that we've omitted several duplicate functions--spawn(), logmsg(), ctime(), and

 REAPER()--which are the same as in the other server.

 So why would you ever want to use a Unix domain socket instead of a simpler named pipe?

 Because a named pipe doesn't give you sessions. You can't tell one process's data from

 another's. With socket programming, you get a separate session for each client; that's

 why accept() takes two arguments.

 For example, let's say that you have a long-running database server daemon that you want

 folks to be able to access from the Web, but only if they go through a CGI interface.

 You'd have a small, simple CGI program that does whatever checks and logging you feel

 like, and then acts as a Unix-domain client and connects to your private server.

TCP Clients with IO::Socket

 For those preferring a higher-level interface to socket programming, the IO::Socket module

 provides an object-oriented approach. If for some reason you lack this module, you can

 just fetch IO::Socket from CPAN, where you'll also find modules providing easy interfaces

 to the following systems: DNS, FTP, Ident (RFC 931), NIS and NISPlus, NNTP, Ping, POP3,

 SMTP, SNMP, SSLeay, Telnet, and Time--to name just a few.

 A Simple Client

 Here's a client that creates a TCP connection to the "daytime" service at port 13 of the

 host name "localhost" and prints out everything that the server there cares to provide.

 #!/usr/bin/perl

 use strict;

 use warnings;

 use IO::Socket;

 my $remote = IO::Socket::INET->new(

 Proto => "tcp", Page 30/42

 PeerAddr => "localhost",

 PeerPort => "daytime(13)",

)

 || die "can't connect to daytime service on localhost";

 while (<$remote>) { print }

 When you run this program, you should get something back that looks like this:

 Wed May 14 08:40:46 MDT 1997

 Here are what those parameters to the new() constructor mean:

 "Proto"

 This is which protocol to use. In this case, the socket handle returned will be

 connected to a TCP socket, because we want a stream-oriented connection, that is, one

 that acts pretty much like a plain old file. Not all sockets are this of this type.

 For example, the UDP protocol can be used to make a datagram socket, used for message-

 passing.

 "PeerAddr"

 This is the name or Internet address of the remote host the server is running on. We

 could have specified a longer name like "www.perl.com", or an address like

 "207.171.7.72". For demonstration purposes, we've used the special hostname

 "localhost", which should always mean the current machine you're running on. The

 corresponding Internet address for localhost is "127.0.0.1", if you'd rather use that.

 "PeerPort"

 This is the service name or port number we'd like to connect to. We could have gotten

 away with using just "daytime" on systems with a well-configured system services

 file,[FOOTNOTE: The system services file is found in /etc/services under Unixy

 systems.] but here we've specified the port number (13) in parentheses. Using just

 the number would have also worked, but numeric literals make careful programmers

 nervous.

 A Webget Client

 Here's a simple client that takes a remote host to fetch a document from, and then a list

 of files to get from that host. This is a more interesting client than the previous one

 because it first sends something to the server before fetching the server's response.

 #!/usr/bin/perl

 use strict; Page 31/42

 use warnings;

 use IO::Socket;

 unless (@ARGV > 1) { die "usage: $0 host url ..." }

 my $host = shift(@ARGV);

 my $EOL = "\015\012";

 my $BLANK = $EOL x 2;

 for my $document (@ARGV) {

 my $remote = IO::Socket::INET->new(Proto => "tcp",

 PeerAddr => $host,

 PeerPort => "http(80)",

) || die "cannot connect to httpd on $host";

 $remote->autoflush(1);

 print $remote "GET $document HTTP/1.0" . $BLANK;

 while (<$remote>) { print }

 close $remote;

 }

 The web server handling the HTTP service is assumed to be at its standard port, number 80.

 If the server you're trying to connect to is at a different port, like 1080 or 8080, you

 should specify it as the named-parameter pair, "PeerPort => 8080". The "autoflush" method

 is used on the socket because otherwise the system would buffer up the output we sent it.

 (If you're on a prehistoric Mac, you'll also need to change every "\n" in your code that

 sends data over the network to be a "\015\012" instead.)

 Connecting to the server is only the first part of the process: once you have the

 connection, you have to use the server's language. Each server on the network has its own

 little command language that it expects as input. The string that we send to the server

 starting with "GET" is in HTTP syntax. In this case, we simply request each specified

 document. Yes, we really are making a new connection for each document, even though it's

 the same host. That's the way you always used to have to speak HTTP. Recent versions of

 web browsers may request that the remote server leave the connection open a little while,

 but the server doesn't have to honor such a request.

 Here's an example of running that program, which we'll call webget:

 % webget www.perl.com /guanaco.html

 HTTP/1.1 404 File Not Found Page 32/42

 Date: Thu, 08 May 1997 18:02:32 GMT

 Server: Apache/1.2b6

 Connection: close

 Content-type: text/html

 <HEAD><TITLE>404 File Not Found</TITLE></HEAD>

 <BODY><H1>File Not Found</H1>

 The requested URL /guanaco.html was not found on this server.<P>

 </BODY>

 Ok, so that's not very interesting, because it didn't find that particular document. But

 a long response wouldn't have fit on this page.

 For a more featureful version of this program, you should look to the lwp-request program

 included with the LWP modules from CPAN.

 Interactive Client with IO::Socket

 Well, that's all fine if you want to send one command and get one answer, but what about

 setting up something fully interactive, somewhat like the way telnet works? That way you

 can type a line, get the answer, type a line, get the answer, etc.

 This client is more complicated than the two we've done so far, but if you're on a system

 that supports the powerful "fork" call, the solution isn't that rough. Once you've made

 the connection to whatever service you'd like to chat with, call "fork" to clone your

 process. Each of these two identical process has a very simple job to do: the parent

 copies everything from the socket to standard output, while the child simultaneously

 copies everything from standard input to the socket. To accomplish the same thing using

 just one process would be much harder, because it's easier to code two processes to do one

 thing than it is to code one process to do two things. (This keep-it-simple principle a

 cornerstones of the Unix philosophy, and good software engineering as well, which is

 probably why it's spread to other systems.)

 Here's the code:

 #!/usr/bin/perl

 use strict;

 use warnings;

 use IO::Socket;

 unless (@ARGV == 2) { die "usage: $0 host port" }

 my ($host, $port) = @ARGV; Page 33/42

 # create a tcp connection to the specified host and port

 my $handle = IO::Socket::INET->new(Proto => "tcp",

 PeerAddr => $host,

 PeerPort => $port)

 || die "can't connect to port $port on $host: $!";

 $handle->autoflush(1); # so output gets there right away

 print STDERR "[Connected to $host:$port]\n";

 # split the program into two processes, identical twins

 die "can't fork: $!" unless defined(my $kidpid = fork());

 # the if{} block runs only in the parent process

 if ($kidpid) {

 # copy the socket to standard output

 while (defined (my $line = <$handle>)) {

 print STDOUT $line;

 }

 kill("TERM", $kidpid); # send SIGTERM to child

 }

 # the else{} block runs only in the child process

 else {

 # copy standard input to the socket

 while (defined (my $line = <STDIN>)) {

 print $handle $line;

 }

 exit(0); # just in case

 }

 The "kill" function in the parent's "if" block is there to send a signal to our child

 process, currently running in the "else" block, as soon as the remote server has closed

 its end of the connection.

 If the remote server sends data a byte at time, and you need that data immediately without

 waiting for a newline (which might not happen), you may wish to replace the "while" loop

 in the parent with the following:

 my $byte;

 while (sysread($handle, $byte, 1) == 1) { Page 34/42

 print STDOUT $byte;

 }

 Making a system call for each byte you want to read is not very efficient (to put it

 mildly) but is the simplest to explain and works reasonably well.

TCP Servers with IO::Socket

 As always, setting up a server is little bit more involved than running a client. The

 model is that the server creates a special kind of socket that does nothing but listen on

 a particular port for incoming connections. It does this by calling the

 "IO::Socket::INET->new()" method with slightly different arguments than the client did.

 Proto

 This is which protocol to use. Like our clients, we'll still specify "tcp" here.

 LocalPort

 We specify a local port in the "LocalPort" argument, which we didn't do for the

 client. This is service name or port number for which you want to be the server.

 (Under Unix, ports under 1024 are restricted to the superuser.) In our sample, we'll

 use port 9000, but you can use any port that's not currently in use on your system.

 If you try to use one already in used, you'll get an "Address already in use" message.

 Under Unix, the "netstat -a" command will show which services current have servers.

 Listen

 The "Listen" parameter is set to the maximum number of pending connections we can

 accept until we turn away incoming clients. Think of it as a call-waiting queue for

 your telephone. The low-level Socket module has a special symbol for the system

 maximum, which is SOMAXCONN.

 Reuse

 The "Reuse" parameter is needed so that we restart our server manually without waiting

 a few minutes to allow system buffers to clear out.

 Once the generic server socket has been created using the parameters listed above, the

 server then waits for a new client to connect to it. The server blocks in the "accept"

 method, which eventually accepts a bidirectional connection from the remote client. (Make

 sure to autoflush this handle to circumvent buffering.)

 To add to user-friendliness, our server prompts the user for commands. Most servers don't

 do this. Because of the prompt without a newline, you'll have to use the "sysread"

 variant of the interactive client above. Page 35/42

 This server accepts one of five different commands, sending output back to the client.

 Unlike most network servers, this one handles only one incoming client at a time.

 Multitasking servers are covered in Chapter 16 of the Camel.

 Here's the code.

 #!/usr/bin/perl

 use strict;

 use warnings;

 use IO::Socket;

 use Net::hostent; # for OOish version of gethostbyaddr

 my $PORT = 9000; # pick something not in use

 my $server = IO::Socket::INET->new(Proto => "tcp",

 LocalPort => $PORT,

 Listen => SOMAXCONN,

 Reuse => 1);

 die "can't setup server" unless $server;

 print "[Server $0 accepting clients]\n";

 while (my $client = $server->accept()) {

 $client->autoflush(1);

 print $client "Welcome to $0; type help for command list.\n";

 my $hostinfo = gethostbyaddr($client->peeraddr);

 printf "[Connect from %s]\n",

 $hostinfo ? $hostinfo->name : $client->peerhost;

 print $client "Command? ";

 while (<$client>) {

 next unless /\S/; # blank line

 if (/quit|exit/i) { last }

 elsif (/date|time/i) { printf $client "%s\n", scalar localtime() }

 elsif (/who/i) { print $client `who 2>&1` }

 elsif (/cookie/i) { print $client `/usr/games/fortune 2>&1` }

 elsif (/motd/i) { print $client `cat /etc/motd 2>&1` }

 else {

 print $client "Commands: quit date who cookie motd\n";

 } Page 36/42

 } continue {

 print $client "Command? ";

 }

 close $client;

 }

UDP: Message Passing

 Another kind of client-server setup is one that uses not connections, but messages. UDP

 communications involve much lower overhead but also provide less reliability, as there are

 no promises that messages will arrive at all, let alone in order and unmangled. Still,

 UDP offers some advantages over TCP, including being able to "broadcast" or "multicast" to

 a whole bunch of destination hosts at once (usually on your local subnet). If you find

 yourself overly concerned about reliability and start building checks into your message

 system, then you probably should use just TCP to start with.

 UDP datagrams are not a bytestream and should not be treated as such. This makes using

 I/O mechanisms with internal buffering like stdio (i.e. print() and friends) especially

 cumbersome. Use syswrite(), or better send(), like in the example below.

 Here's a UDP program similar to the sample Internet TCP client given earlier. However,

 instead of checking one host at a time, the UDP version will check many of them

 asynchronously by simulating a multicast and then using select() to do a timed-out wait

 for I/O. To do something similar with TCP, you'd have to use a different socket handle

 for each host.

 #!/usr/bin/perl

 use strict;

 use warnings;

 use Socket;

 use Sys::Hostname;

 my $SECS_OF_70_YEARS = 2_208_988_800;

 my $iaddr = gethostbyname(hostname());

 my $proto = getprotobyname("udp");

 my $port = getservbyname("time", "udp");

 my $paddr = sockaddr_in(0, $iaddr); # 0 means let kernel pick

 socket(my $socket, PF_INET, SOCK_DGRAM, $proto) || die "socket: $!";

 bind($socket, $paddr) || die "bind: $!"; Page 37/42

 $| = 1;

 printf "%-12s %8s %s\n", "localhost", 0, scalar localtime();

 my $count = 0;

 for my $host (@ARGV) {

 $count++;

 my $hisiaddr = inet_aton($host) || die "unknown host";

 my $hispaddr = sockaddr_in($port, $hisiaddr);

 defined(send($socket, 0, 0, $hispaddr)) || die "send $host: $!";

 }

 my $rout = my $rin = "";

 vec($rin, fileno($socket), 1) = 1;

 # timeout after 10.0 seconds

 while ($count && select($rout = $rin, undef, undef, 10.0)) {

 my $rtime = "";

 my $hispaddr = recv($socket, $rtime, 4, 0) || die "recv: $!";

 my ($port, $hisiaddr) = sockaddr_in($hispaddr);

 my $host = gethostbyaddr($hisiaddr, AF_INET);

 my $histime = unpack("N", $rtime) - $SECS_OF_70_YEARS;

 printf "%-12s ", $host;

 printf "%8d %s\n", $histime - time(), scalar localtime($histime);

 $count--;

 }

 This example does not include any retries and may consequently fail to contact a reachable

 host. The most prominent reason for this is congestion of the queues on the sending host

 if the number of hosts to contact is sufficiently large.

SysV IPC

 While System V IPC isn't so widely used as sockets, it still has some interesting uses.

 However, you cannot use SysV IPC or Berkeley mmap() to have a variable shared amongst

 several processes. That's because Perl would reallocate your string when you weren't

 wanting it to. You might look into the "IPC::Shareable" or "threads::shared" modules for

 that.

 Here's a small example showing shared memory usage.

 use IPC::SysV qw(IPC_PRIVATE IPC_RMID S_IRUSR S_IWUSR); Page 38/42

 my $size = 2000;

 my $id = shmget(IPC_PRIVATE, $size, S_IRUSR | S_IWUSR);

 defined($id) || die "shmget: $!";

 print "shm key $id\n";

 my $message = "Message #1";

 shmwrite($id, $message, 0, 60) || die "shmwrite: $!";

 print "wrote: '$message'\n";

 shmread($id, my $buff, 0, 60) || die "shmread: $!";

 print "read : '$buff'\n";

 # the buffer of shmread is zero-character end-padded.

 substr($buff, index($buff, "\0")) = "";

 print "un" unless $buff eq $message;

 print "swell\n";

 print "deleting shm $id\n";

 shmctl($id, IPC_RMID, 0) || die "shmctl: $!";

 Here's an example of a semaphore:

 use IPC::SysV qw(IPC_CREAT);

 my $IPC_KEY = 1234;

 my $id = semget($IPC_KEY, 10, 0666 | IPC_CREAT);

 defined($id) || die "semget: $!";

 print "sem id $id\n";

 Put this code in a separate file to be run in more than one process. Call the file take:

 # create a semaphore

 my $IPC_KEY = 1234;

 my $id = semget($IPC_KEY, 0, 0);

 defined($id) || die "semget: $!";

 my $semnum = 0;

 my $semflag = 0;

 # "take" semaphore

 # wait for semaphore to be zero

 my $semop = 0;

 my $opstring1 = pack("s!s!s!", $semnum, $semop, $semflag);

 # Increment the semaphore count Page 39/42

 $semop = 1;

 my $opstring2 = pack("s!s!s!", $semnum, $semop, $semflag);

 my $opstring = $opstring1 . $opstring2;

 semop($id, $opstring) || die "semop: $!";

 Put this code in a separate file to be run in more than one process. Call this file give:

 # "give" the semaphore

 # run this in the original process and you will see

 # that the second process continues

 my $IPC_KEY = 1234;

 my $id = semget($IPC_KEY, 0, 0);

 die unless defined($id);

 my $semnum = 0;

 my $semflag = 0;

 # Decrement the semaphore count

 my $semop = -1;

 my $opstring = pack("s!s!s!", $semnum, $semop, $semflag);

 semop($id, $opstring) || die "semop: $!";

 The SysV IPC code above was written long ago, and it's definitely clunky looking. For a

 more modern look, see the IPC::SysV module.

 A small example demonstrating SysV message queues:

 use IPC::SysV qw(IPC_PRIVATE IPC_RMID IPC_CREAT S_IRUSR S_IWUSR);

 my $id = msgget(IPC_PRIVATE, IPC_CREAT | S_IRUSR | S_IWUSR);

 defined($id) || die "msgget failed: $!";

 my $sent = "message";

 my $type_sent = 1234;

 msgsnd($id, pack("l! a*", $type_sent, $sent), 0)

 || die "msgsnd failed: $!";

 msgrcv($id, my $rcvd_buf, 60, 0, 0)

 || die "msgrcv failed: $!";

 my($type_rcvd, $rcvd) = unpack("l! a*", $rcvd_buf);

 if ($rcvd eq $sent) {

 print "okay\n";

 } else { Page 40/42

 print "not okay\n";

 }

 msgctl($id, IPC_RMID, 0) || die "msgctl failed: $!\n";

NOTES

 Most of these routines quietly but politely return "undef" when they fail instead of

 causing your program to die right then and there due to an uncaught exception. (Actually,

 some of the new Socket conversion functions do croak() on bad arguments.) It is therefore

 essential to check return values from these functions. Always begin your socket programs

 this way for optimal success, and don't forget to add the -T taint-checking flag to the

 "#!" line for servers:

 #!/usr/bin/perl -T

 use strict;

 use warnings;

 use sigtrap;

 use Socket;

BUGS

 These routines all create system-specific portability problems. As noted elsewhere, Perl

 is at the mercy of your C libraries for much of its system behavior. It's probably safest

 to assume broken SysV semantics for signals and to stick with simple TCP and UDP socket

 operations; e.g., don't try to pass open file descriptors over a local UDP datagram socket

 if you want your code to stand a chance of being portable.

AUTHOR

 Tom Christiansen, with occasional vestiges of Larry Wall's original version and

 suggestions from the Perl Porters.

SEE ALSO

 There's a lot more to networking than this, but this should get you started.

 For intrepid programmers, the indispensable textbook is Unix Network Programming, 2nd

 Edition, Volume 1 by W. Richard Stevens (published by Prentice-Hall). Most books on

 networking address the subject from the perspective of a C programmer; translation to Perl

 is left as an exercise for the reader.

 The IO::Socket(3) manpage describes the object library, and the Socket(3) manpage

 describes the low-level interface to sockets. Besides the obvious functions in perlfunc,

 you should also check out the modules file at your nearest CPAN site, especially Page 41/42

 <http://www.cpan.org/modules/00modlist.long.html#ID5_Networking_>. See perlmodlib or best

 yet, the Perl FAQ for a description of what CPAN is and where to get it if the previous

 link doesn't work for you.

 Section 5 of CPAN's modules file is devoted to "Networking, Device Control (modems), and

 Interprocess Communication", and contains numerous unbundled modules numerous networking

 modules, Chat and Expect operations, CGI programming, DCE, FTP, IPC, NNTP, Proxy, Ptty,

 RPC, SNMP, SMTP, Telnet, Threads, and ToolTalk--to name just a few.

perl v5.34.0 2023-11-23 PERLIPC(1)

Page 42/42

