
Rocky Enterprise Linux 9.2 Manual Pages on command 'perliol.1'

$ man perliol.1

PERLIOL(1) Perl Programmers Reference Guide PERLIOL(1)

NAME

 perliol - C API for Perl's implementation of IO in Layers.

SYNOPSIS

 /* Defining a layer ... */

 #include <perliol.h>

DESCRIPTION

 This document describes the behavior and implementation of the PerlIO abstraction

 described in perlapio when "USE_PERLIO" is defined.

 History and Background

 The PerlIO abstraction was introduced in perl5.003_02 but languished as just an

 abstraction until perl5.7.0. However during that time a number of perl extensions switched

 to using it, so the API is mostly fixed to maintain (source) compatibility.

 The aim of the implementation is to provide the PerlIO API in a flexible and platform

 neutral manner. It is also a trial of an "Object Oriented C, with vtables" approach which

 may be applied to Raku.

 Basic Structure

 PerlIO is a stack of layers.

 The low levels of the stack work with the low-level operating system calls (file

 descriptors in C) getting bytes in and out, the higher layers of the stack buffer, filter,

 and otherwise manipulate the I/O, and return characters (or bytes) to Perl. Terms above

 and below are used to refer to the relative positioning of the stack layers.

 A layer contains a "vtable", the table of I/O operations (at C level a table of function Page 1/20

 pointers), and status flags. The functions in the vtable implement operations like

 "open", "read", and "write".

 When I/O, for example "read", is requested, the request goes from Perl first down the

 stack using "read" functions of each layer, then at the bottom the input is requested from

 the operating system services, then the result is returned up the stack, finally being

 interpreted as Perl data.

 The requests do not necessarily go always all the way down to the operating system: that's

 where PerlIO buffering comes into play.

 When you do an open() and specify extra PerlIO layers to be deployed, the layers you

 specify are "pushed" on top of the already existing default stack. One way to see it is

 that "operating system is on the left" and "Perl is on the right".

 What exact layers are in this default stack depends on a lot of things: your operating

 system, Perl version, Perl compile time configuration, and Perl runtime configuration.

 See PerlIO, "PERLIO" in perlrun, and open for more information.

 binmode() operates similarly to open(): by default the specified layers are pushed on top

 of the existing stack.

 However, note that even as the specified layers are "pushed on top" for open() and

 binmode(), this doesn't mean that the effects are limited to the "top": PerlIO layers can

 be very 'active' and inspect and affect layers also deeper in the stack. As an example

 there is a layer called "raw" which repeatedly "pops" layers until it reaches the first

 layer that has declared itself capable of handling binary data. The "pushed" layers are

 processed in left-to-right order.

 sysopen() operates (unsurprisingly) at a lower level in the stack than open(). For

 example in Unix or Unix-like systems sysopen() operates directly at the level of file

 descriptors: in the terms of PerlIO layers, it uses only the "unix" layer, which is a

 rather thin wrapper on top of the Unix file descriptors.

 Layers vs Disciplines

 Initial discussion of the ability to modify IO streams behaviour used the term

 "discipline" for the entities which were added. This came (I believe) from the use of the

 term in "sfio", which in turn borrowed it from "line disciplines" on Unix terminals.

 However, this document (and the C code) uses the term "layer".

 This is, I hope, a natural term given the implementation, and should avoid connotations

 that are inherent in earlier uses of "discipline" for things which are rather different. Page 2/20

 Data Structures

 The basic data structure is a PerlIOl:

 typedef struct _PerlIO PerlIOl;

 typedef struct _PerlIO_funcs PerlIO_funcs;

 typedef PerlIOl *PerlIO;

 struct _PerlIO

 {

 PerlIOl * next; /* Lower layer */

 PerlIO_funcs * tab; /* Functions for this layer */

 U32 flags; /* Various flags for state */

 };

 A "PerlIOl *" is a pointer to the struct, and the application level "PerlIO *" is a

 pointer to a "PerlIOl *" - i.e. a pointer to a pointer to the struct. This allows the

 application level "PerlIO *" to remain constant while the actual "PerlIOl *" underneath

 changes. (Compare perl's "SV *" which remains constant while its "sv_any" field changes as

 the scalar's type changes.) An IO stream is then in general represented as a pointer to

 this linked-list of "layers".

 It should be noted that because of the double indirection in a "PerlIO *", a

 "&(perlio->next)" "is" a "PerlIO *", and so to some degree at least one layer can use the

 "standard" API on the next layer down.

 A "layer" is composed of two parts:

 1. The functions and attributes of the "layer class".

 2. The per-instance data for a particular handle.

 Functions and Attributes

 The functions and attributes are accessed via the "tab" (for table) member of "PerlIOl".

 The functions (methods of the layer "class") are fixed, and are defined by the

 "PerlIO_funcs" type. They are broadly the same as the public "PerlIO_xxxxx" functions:

 struct _PerlIO_funcs

 {

 Size_t fsize;

 char * name;

 Size_t size;

 IV kind; Page 3/20

 IV (*Pushed)(pTHX_ PerlIO *f,

 const char *mode,

 SV *arg,

 PerlIO_funcs *tab);

 IV (*Popped)(pTHX_ PerlIO *f);

 PerlIO * (*Open)(pTHX_ PerlIO_funcs *tab,

 PerlIO_list_t *layers, IV n,

 const char *mode,

 int fd, int imode, int perm,

 PerlIO *old,

 int narg, SV **args);

 IV (*Binmode)(pTHX_ PerlIO *f);

 SV * (*Getarg)(pTHX_ PerlIO *f, CLONE_PARAMS *param, int flags)

 IV (*Fileno)(pTHX_ PerlIO *f);

 PerlIO * (*Dup)(pTHX_ PerlIO *f,

 PerlIO *o,

 CLONE_PARAMS *param,

 int flags)

 /* Unix-like functions - cf sfio line disciplines */

 SSize_t (*Read)(pTHX_ PerlIO *f, void *vbuf, Size_t count);

 SSize_t (*Unread)(pTHX_ PerlIO *f, const void *vbuf, Size_t count);

 SSize_t (*Write)(pTHX_ PerlIO *f, const void *vbuf, Size_t count);

 IV (*Seek)(pTHX_ PerlIO *f, Off_t offset, int whence);

 Off_t (*Tell)(pTHX_ PerlIO *f);

 IV (*Close)(pTHX_ PerlIO *f);

 /* Stdio-like buffered IO functions */

 IV (*Flush)(pTHX_ PerlIO *f);

 IV (*Fill)(pTHX_ PerlIO *f);

 IV (*Eof)(pTHX_ PerlIO *f);

 IV (*Error)(pTHX_ PerlIO *f);

 void (*Clearerr)(pTHX_ PerlIO *f);

 void (*Setlinebuf)(pTHX_ PerlIO *f);

 /* Perl's snooping functions */ Page 4/20

 STDCHAR * (*Get_base)(pTHX_ PerlIO *f);

 Size_t (*Get_bufsiz)(pTHX_ PerlIO *f);

 STDCHAR * (*Get_ptr)(pTHX_ PerlIO *f);

 SSize_t (*Get_cnt)(pTHX_ PerlIO *f);

 void (*Set_ptrcnt)(pTHX_ PerlIO *f,STDCHAR *ptr,SSize_t cnt);

 };

 The first few members of the struct give a function table size for compatibility check

 "name" for the layer, the size to "malloc" for the per-instance data, and some flags

 which are attributes of the class as whole (such as whether it is a buffering layer), then

 follow the functions which fall into four basic groups:

 1. Opening and setup functions

 2. Basic IO operations

 3. Stdio class buffering options.

 4. Functions to support Perl's traditional "fast" access to the buffer.

 A layer does not have to implement all the functions, but the whole table has to be

 present. Unimplemented slots can be NULL (which will result in an error when called) or

 can be filled in with stubs to "inherit" behaviour from a "base class". This "inheritance"

 is fixed for all instances of the layer, but as the layer chooses which stubs to populate

 the table, limited "multiple inheritance" is possible.

 Per-instance Data

 The per-instance data are held in memory beyond the basic PerlIOl struct, by making a

 PerlIOl the first member of the layer's struct thus:

 typedef struct

 {

 struct _PerlIO base; /* Base "class" info */

 STDCHAR * buf; /* Start of buffer */

 STDCHAR * end; /* End of valid part of buffer */

 STDCHAR * ptr; /* Current position in buffer */

 Off_t posn; /* Offset of buf into the file */

 Size_t bufsiz; /* Real size of buffer */

 IV oneword; /* Emergency buffer */

 } PerlIOBuf;

 In this way (as for perl's scalars) a pointer to a PerlIOBuf can be treated as a pointer Page 5/20

 to a PerlIOl.

 Layers in action.

 table perlio unix

 | |

 +-----------+ +----------+ +--------+

 PerlIO ->| |--->| next |--->| NULL |

 +-----------+ +----------+ +--------+

 | | | buffer | | fd |

 +-----------+ | | +--------+

 | | +----------+

 The above attempts to show how the layer scheme works in a simple case. The application's

 "PerlIO *" points to an entry in the table(s) representing open (allocated) handles. For

 example the first three slots in the table correspond to "stdin","stdout" and "stderr".

 The table in turn points to the current "top" layer for the handle - in this case an

 instance of the generic buffering layer "perlio". That layer in turn points to the next

 layer down - in this case the low-level "unix" layer.

 The above is roughly equivalent to a "stdio" buffered stream, but with much more

 flexibility:

 ? If Unix level "read"/"write"/"lseek" is not appropriate for (say) sockets then the

 "unix" layer can be replaced (at open time or even dynamically) with a "socket" layer.

 ? Different handles can have different buffering schemes. The "top" layer could be the

 "mmap" layer if reading disk files was quicker using "mmap" than "read". An

 "unbuffered" stream can be implemented simply by not having a buffer layer.

 ? Extra layers can be inserted to process the data as it flows through. This was the

 driving need for including the scheme in perl 5.7.0+ - we needed a mechanism to allow

 data to be translated between perl's internal encoding (conceptually at least Unicode

 as UTF-8), and the "native" format used by the system. This is provided by the

 ":encoding(xxxx)" layer which typically sits above the buffering layer.

 ? A layer can be added that does "\n" to CRLF translation. This layer can be used on any

 platform, not just those that normally do such things.

 Per-instance flag bits

 The generic flag bits are a hybrid of "O_XXXXX" style flags deduced from the mode string

 passed to "PerlIO_open()", and state bits for typical buffer layers. Page 6/20

 PERLIO_F_EOF

 End of file.

 PERLIO_F_CANWRITE

 Writes are permitted, i.e. opened as "w" or "r+" or "a", etc.

 PERLIO_F_CANREAD

 Reads are permitted i.e. opened "r" or "w+" (or even "a+" - ick).

 PERLIO_F_ERROR

 An error has occurred (for "PerlIO_error()").

 PERLIO_F_TRUNCATE

 Truncate file suggested by open mode.

 PERLIO_F_APPEND

 All writes should be appends.

 PERLIO_F_CRLF

 Layer is performing Win32-like "\n" mapped to CR,LF for output and CR,LF mapped to

 "\n" for input. Normally the provided "crlf" layer is the only layer that need bother

 about this. "PerlIO_binmode()" will mess with this flag rather than add/remove layers

 if the "PERLIO_K_CANCRLF" bit is set for the layers class.

 PERLIO_F_UTF8

 Data written to this layer should be UTF-8 encoded; data provided by this layer should

 be considered UTF-8 encoded. Can be set on any layer by ":utf8" dummy layer. Also set

 on ":encoding" layer.

 PERLIO_F_UNBUF

 Layer is unbuffered - i.e. write to next layer down should occur for each write to

 this layer.

 PERLIO_F_WRBUF

 The buffer for this layer currently holds data written to it but not sent to next

 layer.

 PERLIO_F_RDBUF

 The buffer for this layer currently holds unconsumed data read from layer below.

 PERLIO_F_LINEBUF

 Layer is line buffered. Write data should be passed to next layer down whenever a "\n"

 is seen. Any data beyond the "\n" should then be processed.

 PERLIO_F_TEMP Page 7/20

 File has been "unlink()"ed, or should be deleted on "close()".

 PERLIO_F_OPEN

 Handle is open.

 PERLIO_F_FASTGETS

 This instance of this layer supports the "fast "gets"" interface. Normally set based

 on "PERLIO_K_FASTGETS" for the class and by the existence of the function(s) in the

 table. However a class that normally provides that interface may need to avoid it on a

 particular instance. The "pending" layer needs to do this when it is pushed above a

 layer which does not support the interface. (Perl's "sv_gets()" does not expect the

 streams fast "gets" behaviour to change during one "get".)

 Methods in Detail

 fsize

 Size_t fsize;

 Size of the function table. This is compared against the value PerlIO code "knows" as

 a compatibility check. Future versions may be able to tolerate layers compiled against

 an old version of the headers.

 name

 char * name;

 The name of the layer whose open() method Perl should invoke on open(). For example

 if the layer is called APR, you will call:

 open $fh, ">:APR", ...

 and Perl knows that it has to invoke the PerlIOAPR_open() method implemented by the

 APR layer.

 size

 Size_t size;

 The size of the per-instance data structure, e.g.:

 sizeof(PerlIOAPR)

 If this field is zero then "PerlIO_pushed" does not malloc anything and assumes

 layer's Pushed function will do any required layer stack manipulation - used to avoid

 malloc/free overhead for dummy layers. If the field is non-zero it must be at least

 the size of "PerlIOl", "PerlIO_pushed" will allocate memory for the layer's data

 structures and link new layer onto the stream's stack. (If the layer's Pushed method

 returns an error indication the layer is popped again.) Page 8/20

 kind

 IV kind;

 ? PERLIO_K_BUFFERED

 The layer is buffered.

 ? PERLIO_K_RAW

 The layer is acceptable to have in a binmode(FH) stack - i.e. it does not (or will

 configure itself not to) transform bytes passing through it.

 ? PERLIO_K_CANCRLF

 Layer can translate between "\n" and CRLF line ends.

 ? PERLIO_K_FASTGETS

 Layer allows buffer snooping.

 ? PERLIO_K_MULTIARG

 Used when the layer's open() accepts more arguments than usual. The extra

 arguments should come not before the "MODE" argument. When this flag is used it's

 up to the layer to validate the args.

 Pushed

 IV (*Pushed)(pTHX_ PerlIO *f,const char *mode, SV *arg);

 The only absolutely mandatory method. Called when the layer is pushed onto the stack.

 The "mode" argument may be NULL if this occurs post-open. The "arg" will be non-"NULL"

 if an argument string was passed. In most cases this should call "PerlIOBase_pushed()"

 to convert "mode" into the appropriate "PERLIO_F_XXXXX" flags in addition to any

 actions the layer itself takes. If a layer is not expecting an argument it need

 neither save the one passed to it, nor provide "Getarg()" (it could perhaps

 "Perl_warn" that the argument was un-expected).

 Returns 0 on success. On failure returns -1 and should set errno.

 Popped

 IV (*Popped)(pTHX_ PerlIO *f);

 Called when the layer is popped from the stack. A layer will normally be popped after

 "Close()" is called. But a layer can be popped without being closed if the program is

 dynamically managing layers on the stream. In such cases "Popped()" should free any

 resources (buffers, translation tables, ...) not held directly in the layer's struct.

 It should also "Unread()" any unconsumed data that has been read and buffered from the

 layer below back to that layer, so that it can be re-provided to what ever is now Page 9/20

 above.

 Returns 0 on success and failure. If "Popped()" returns true then perlio.c assumes

 that either the layer has popped itself, or the layer is super special and needs to be

 retained for other reasons. In most cases it should return false.

 Open

 PerlIO * (*Open)(...);

 The "Open()" method has lots of arguments because it combines the functions of perl's

 "open", "PerlIO_open", perl's "sysopen", "PerlIO_fdopen" and "PerlIO_reopen". The

 full prototype is as follows:

 PerlIO * (*Open)(pTHX_ PerlIO_funcs *tab,

 PerlIO_list_t *layers, IV n,

 const char *mode,

 int fd, int imode, int perm,

 PerlIO *old,

 int narg, SV **args);

 Open should (perhaps indirectly) call "PerlIO_allocate()" to allocate a slot in the

 table and associate it with the layers information for the opened file, by calling

 "PerlIO_push". The layers is an array of all the layers destined for the "PerlIO *",

 and any arguments passed to them, n is the index into that array of the layer being

 called. The macro "PerlIOArg" will return a (possibly "NULL") SV * for the argument

 passed to the layer.

 Where a layer opens or takes ownership of a file descriptor, that layer is responsible

 for getting the file descriptor's close-on-exec flag into the correct state. The flag

 should be clear for a file descriptor numbered less than or equal to "PL_maxsysfd",

 and set for any file descriptor numbered higher. For thread safety, when a layer

 opens a new file descriptor it should if possible open it with the close-on-exec flag

 initially set.

 The mode string is an ""fopen()"-like" string which would match the regular expression

 "/^[I#]?[rwa]\+?[bt]?$/".

 The 'I' prefix is used during creation of "stdin".."stderr" via special

 "PerlIO_fdopen" calls; the '#' prefix means that this is "sysopen" and that imode and

 perm should be passed to "PerlLIO_open3"; 'r' means read, 'w' means write and 'a'

 means append. The '+' suffix means that both reading and writing/appending are Page 10/20

 permitted. The 'b' suffix means file should be binary, and 't' means it is text.

 (Almost all layers should do the IO in binary mode, and ignore the b/t bits. The

 ":crlf" layer should be pushed to handle the distinction.)

 If old is not "NULL" then this is a "PerlIO_reopen". Perl itself does not use this

 (yet?) and semantics are a little vague.

 If fd not negative then it is the numeric file descriptor fd, which will be open in a

 manner compatible with the supplied mode string, the call is thus equivalent to

 "PerlIO_fdopen". In this case nargs will be zero. The file descriptor may have the

 close-on-exec flag either set or clear; it is the responsibility of the layer that

 takes ownership of it to get the flag into the correct state.

 If nargs is greater than zero then it gives the number of arguments passed to "open",

 otherwise it will be 1 if for example "PerlIO_open" was called. In simple cases

 SvPV_nolen(*args) is the pathname to open.

 If a layer provides "Open()" it should normally call the "Open()" method of next layer

 down (if any) and then push itself on top if that succeeds. "PerlIOBase_open" is

 provided to do exactly that, so in most cases you don't have to write your own

 "Open()" method. If this method is not defined, other layers may have difficulty

 pushing themselves on top of it during open.

 If "PerlIO_push" was performed and open has failed, it must "PerlIO_pop" itself, since

 if it's not, the layer won't be removed and may cause bad problems.

 Returns "NULL" on failure.

 Binmode

 IV (*Binmode)(pTHX_ PerlIO *f);

 Optional. Used when ":raw" layer is pushed (explicitly or as a result of binmode(FH)).

 If not present layer will be popped. If present should configure layer as binary (or

 pop itself) and return 0. If it returns -1 for error "binmode" will fail with layer

 still on the stack.

 Getarg

 SV * (*Getarg)(pTHX_ PerlIO *f,

 CLONE_PARAMS *param, int flags);

 Optional. If present should return an SV * representing the string argument passed to

 the layer when it was pushed. e.g. ":encoding(ascii)" would return an SvPV with value

 "ascii". (param and flags arguments can be ignored in most cases) Page 11/20

 "Dup" uses "Getarg" to retrieve the argument originally passed to "Pushed", so you

 must implement this function if your layer has an extra argument to "Pushed" and will

 ever be "Dup"ed.

 Fileno

 IV (*Fileno)(pTHX_ PerlIO *f);

 Returns the Unix/Posix numeric file descriptor for the handle. Normally

 "PerlIOBase_fileno()" (which just asks next layer down) will suffice for this.

 Returns -1 on error, which is considered to include the case where the layer cannot

 provide such a file descriptor.

 Dup

 PerlIO * (*Dup)(pTHX_ PerlIO *f, PerlIO *o,

 CLONE_PARAMS *param, int flags);

 XXX: Needs more docs.

 Used as part of the "clone" process when a thread is spawned (in which case param will

 be non-NULL) and when a stream is being duplicated via '&' in the "open".

 Similar to "Open", returns PerlIO* on success, "NULL" on failure.

 Read

 SSize_t (*Read)(pTHX_ PerlIO *f, void *vbuf, Size_t count);

 Basic read operation.

 Typically will call "Fill" and manipulate pointers (possibly via the API).

 "PerlIOBuf_read()" may be suitable for derived classes which provide "fast gets"

 methods.

 Returns actual bytes read, or -1 on an error.

 Unread

 SSize_t (*Unread)(pTHX_ PerlIO *f,

 const void *vbuf, Size_t count);

 A superset of stdio's "ungetc()". Should arrange for future reads to see the bytes in

 "vbuf". If there is no obviously better implementation then "PerlIOBase_unread()"

 provides the function by pushing a "fake" "pending" layer above the calling layer.

 Returns the number of unread chars.

 Write

 SSize_t (*Write)(PerlIO *f, const void *vbuf, Size_t count);

 Basic write operation. Page 12/20

 Returns bytes written or -1 on an error.

 Seek

 IV (*Seek)(pTHX_ PerlIO *f, Off_t offset, int whence);

 Position the file pointer. Should normally call its own "Flush" method and then the

 "Seek" method of next layer down.

 Returns 0 on success, -1 on failure.

 Tell

 Off_t (*Tell)(pTHX_ PerlIO *f);

 Return the file pointer. May be based on layers cached concept of position to avoid

 overhead.

 Returns -1 on failure to get the file pointer.

 Close

 IV (*Close)(pTHX_ PerlIO *f);

 Close the stream. Should normally call "PerlIOBase_close()" to flush itself and close

 layers below, and then deallocate any data structures (buffers, translation tables,

 ...) not held directly in the data structure.

 Returns 0 on success, -1 on failure.

 Flush

 IV (*Flush)(pTHX_ PerlIO *f);

 Should make stream's state consistent with layers below. That is, any buffered write

 data should be written, and file position of lower layers adjusted for data read from

 below but not actually consumed. (Should perhaps "Unread()" such data to the lower

 layer.)

 Returns 0 on success, -1 on failure.

 Fill

 IV (*Fill)(pTHX_ PerlIO *f);

 The buffer for this layer should be filled (for read) from layer below. When you

 "subclass" PerlIOBuf layer, you want to use its _read method and to supply your own

 fill method, which fills the PerlIOBuf's buffer.

 Returns 0 on success, -1 on failure.

 Eof

 IV (*Eof)(pTHX_ PerlIO *f);

 Return end-of-file indicator. "PerlIOBase_eof()" is normally sufficient. Page 13/20

 Returns 0 on end-of-file, 1 if not end-of-file, -1 on error.

 Error

 IV (*Error)(pTHX_ PerlIO *f);

 Return error indicator. "PerlIOBase_error()" is normally sufficient.

 Returns 1 if there is an error (usually when "PERLIO_F_ERROR" is set), 0 otherwise.

 Clearerr

 void (*Clearerr)(pTHX_ PerlIO *f);

 Clear end-of-file and error indicators. Should call "PerlIOBase_clearerr()" to set the

 "PERLIO_F_XXXXX" flags, which may suffice.

 Setlinebuf

 void (*Setlinebuf)(pTHX_ PerlIO *f);

 Mark the stream as line buffered. "PerlIOBase_setlinebuf()" sets the PERLIO_F_LINEBUF

 flag and is normally sufficient.

 Get_base

 STDCHAR * (*Get_base)(pTHX_ PerlIO *f);

 Allocate (if not already done so) the read buffer for this layer and return pointer to

 it. Return NULL on failure.

 Get_bufsiz

 Size_t (*Get_bufsiz)(pTHX_ PerlIO *f);

 Return the number of bytes that last "Fill()" put in the buffer.

 Get_ptr

 STDCHAR * (*Get_ptr)(pTHX_ PerlIO *f);

 Return the current read pointer relative to this layer's buffer.

 Get_cnt

 SSize_t (*Get_cnt)(pTHX_ PerlIO *f);

 Return the number of bytes left to be read in the current buffer.

 Set_ptrcnt

 void (*Set_ptrcnt)(pTHX_ PerlIO *f,

 STDCHAR *ptr, SSize_t cnt);

 Adjust the read pointer and count of bytes to match "ptr" and/or "cnt". The

 application (or layer above) must ensure they are consistent. (Checking is allowed by

 the paranoid.)

 Utilities Page 14/20

 To ask for the next layer down use PerlIONext(PerlIO *f).

 To check that a PerlIO* is valid use PerlIOValid(PerlIO *f). (All this does is really

 just to check that the pointer is non-NULL and that the pointer behind that is non-NULL.)

 PerlIOBase(PerlIO *f) returns the "Base" pointer, or in other words, the "PerlIOl*"

 pointer.

 PerlIOSelf(PerlIO* f, type) return the PerlIOBase cast to a type.

 Perl_PerlIO_or_Base(PerlIO* f, callback, base, failure, args) either calls the callback

 from the functions of the layer f (just by the name of the IO function, like "Read") with

 the args, or if there is no such callback, calls the base version of the callback with the

 same args, or if the f is invalid, set errno to EBADF and return failure.

 Perl_PerlIO_or_fail(PerlIO* f, callback, failure, args) either calls the callback of the

 functions of the layer f with the args, or if there is no such callback, set errno to

 EINVAL. Or if the f is invalid, set errno to EBADF and return failure.

 Perl_PerlIO_or_Base_void(PerlIO* f, callback, base, args) either calls the callback of the

 functions of the layer f with the args, or if there is no such callback, calls the base

 version of the callback with the same args, or if the f is invalid, set errno to EBADF.

 Perl_PerlIO_or_fail_void(PerlIO* f, callback, args) either calls the callback of the

 functions of the layer f with the args, or if there is no such callback, set errno to

 EINVAL. Or if the f is invalid, set errno to EBADF.

 Implementing PerlIO Layers

 If you find the implementation document unclear or not sufficient, look at the existing

 PerlIO layer implementations, which include:

 ? C implementations

 The perlio.c and perliol.h in the Perl core implement the "unix", "perlio", "stdio",

 "crlf", "utf8", "byte", "raw", "pending" layers, and also the "mmap" and "win32"

 layers if applicable. (The "win32" is currently unfinished and unused, to see what is

 used instead in Win32, see "Querying the layers of filehandles" in PerlIO .)

 PerlIO::encoding, PerlIO::scalar, PerlIO::via in the Perl core.

 PerlIO::gzip and APR::PerlIO (mod_perl 2.0) on CPAN.

 ? Perl implementations

 PerlIO::via::QuotedPrint in the Perl core and PerlIO::via::* on CPAN.

 If you are creating a PerlIO layer, you may want to be lazy, in other words, implement

 only the methods that interest you. The other methods you can either replace with the Page 15/20

 "blank" methods

 PerlIOBase_noop_ok

 PerlIOBase_noop_fail

 (which do nothing, and return zero and -1, respectively) or for certain methods you may

 assume a default behaviour by using a NULL method. The Open method looks for help in the

 'parent' layer. The following table summarizes the behaviour:

 method behaviour with NULL

 Clearerr PerlIOBase_clearerr

 Close PerlIOBase_close

 Dup PerlIOBase_dup

 Eof PerlIOBase_eof

 Error PerlIOBase_error

 Fileno PerlIOBase_fileno

 Fill FAILURE

 Flush SUCCESS

 Getarg SUCCESS

 Get_base FAILURE

 Get_bufsiz FAILURE

 Get_cnt FAILURE

 Get_ptr FAILURE

 Open INHERITED

 Popped SUCCESS

 Pushed SUCCESS

 Read PerlIOBase_read

 Seek FAILURE

 Set_cnt FAILURE

 Set_ptrcnt FAILURE

 Setlinebuf PerlIOBase_setlinebuf

 Tell FAILURE

 Unread PerlIOBase_unread

 Write FAILURE

 FAILURE Set errno (to EINVAL in Unixish, to LIB$_INVARG in VMS)

 and return -1 (for numeric return values) or NULL (for Page 16/20

 pointers)

 INHERITED Inherited from the layer below

 SUCCESS Return 0 (for numeric return values) or a pointer

 Core Layers

 The file "perlio.c" provides the following layers:

 "unix"

 A basic non-buffered layer which calls Unix/POSIX "read()", "write()", "lseek()",

 "close()". No buffering. Even on platforms that distinguish between O_TEXT and

 O_BINARY this layer is always O_BINARY.

 "perlio"

 A very complete generic buffering layer which provides the whole of PerlIO API. It is

 also intended to be used as a "base class" for other layers. (For example its "Read()"

 method is implemented in terms of the "Get_cnt()"/"Get_ptr()"/"Set_ptrcnt()" methods).

 "perlio" over "unix" provides a complete replacement for stdio as seen via PerlIO API.

 This is the default for USE_PERLIO when system's stdio does not permit perl's "fast

 gets" access, and which do not distinguish between "O_TEXT" and "O_BINARY".

 "stdio"

 A layer which provides the PerlIO API via the layer scheme, but implements it by

 calling system's stdio. This is (currently) the default if system's stdio provides

 sufficient access to allow perl's "fast gets" access and which do not distinguish

 between "O_TEXT" and "O_BINARY".

 "crlf"

 A layer derived using "perlio" as a base class. It provides Win32-like "\n" to CR,LF

 translation. Can either be applied above "perlio" or serve as the buffer layer itself.

 "crlf" over "unix" is the default if system distinguishes between "O_TEXT" and

 "O_BINARY" opens. (At some point "unix" will be replaced by a "native" Win32 IO layer

 on that platform, as Win32's read/write layer has various drawbacks.) The "crlf" layer

 is a reasonable model for a layer which transforms data in some way.

 "mmap"

 If Configure detects "mmap()" functions this layer is provided (with "perlio" as a

 "base") which does "read" operations by mmap()ing the file. Performance improvement is

 marginal on modern systems, so it is mainly there as a proof of concept. It is likely

 to be unbundled from the core at some point. The "mmap" layer is a reasonable model Page 17/20

 for a minimalist "derived" layer.

 "pending"

 An "internal" derivative of "perlio" which can be used to provide Unread() function

 for layers which have no buffer or cannot be bothered. (Basically this layer's

 "Fill()" pops itself off the stack and so resumes reading from layer below.)

 "raw"

 A dummy layer which never exists on the layer stack. Instead when "pushed" it actually

 pops the stack removing itself, it then calls Binmode function table entry on all the

 layers in the stack - normally this (via PerlIOBase_binmode) removes any layers which

 do not have "PERLIO_K_RAW" bit set. Layers can modify that behaviour by defining their

 own Binmode entry.

 "utf8"

 Another dummy layer. When pushed it pops itself and sets the "PERLIO_F_UTF8" flag on

 the layer which was (and now is once more) the top of the stack.

 In addition perlio.c also provides a number of "PerlIOBase_xxxx()" functions which are

 intended to be used in the table slots of classes which do not need to do anything special

 for a particular method.

 Extension Layers

 Layers can be made available by extension modules. When an unknown layer is encountered

 the PerlIO code will perform the equivalent of :

 use PerlIO 'layer';

 Where layer is the unknown layer. PerlIO.pm will then attempt to:

 require PerlIO::layer;

 If after that process the layer is still not defined then the "open" will fail.

 The following extension layers are bundled with perl:

 ":encoding"

 use Encoding;

 makes this layer available, although PerlIO.pm "knows" where to find it. It is an

 example of a layer which takes an argument as it is called thus:

 open($fh, "<:encoding(iso-8859-7)", $pathname);

 ":scalar"

 Provides support for reading data from and writing data to a scalar.

 open($fh, "+<:scalar", \$scalar); Page 18/20

 When a handle is so opened, then reads get bytes from the string value of $scalar, and

 writes change the value. In both cases the position in $scalar starts as zero but can

 be altered via "seek", and determined via "tell".

 Please note that this layer is implied when calling open() thus:

 open($fh, "+<", \$scalar);

 ":via"

 Provided to allow layers to be implemented as Perl code. For instance:

 use PerlIO::via::StripHTML;

 open(my $fh, "<:via(StripHTML)", "index.html");

 See PerlIO::via for details.

TODO

 Things that need to be done to improve this document.

 ? Explain how to make a valid fh without going through open()(i.e. apply a layer). For

 example if the file is not opened through perl, but we want to get back a fh, like it

 was opened by Perl.

 How PerlIO_apply_layera fits in, where its docs, was it made public?

 Currently the example could be something like this:

 PerlIO *foo_to_PerlIO(pTHX_ char *mode, ...)

 {

 char *mode; /* "w", "r", etc */

 const char *layers = ":APR"; /* the layer name */

 PerlIO *f = PerlIO_allocate(aTHX);

 if (!f) {

 return NULL;

 }

 PerlIO_apply_layers(aTHX_ f, mode, layers);

 if (f) {

 PerlIOAPR *st = PerlIOSelf(f, PerlIOAPR);

 /* fill in the st struct, as in _open() */

 st->file = file;

 PerlIOBase(f)->flags |= PERLIO_F_OPEN;

 return f;

 } Page 19/20

 return NULL;

 }

 ? fix/add the documentation in places marked as XXX.

 ? The handling of errors by the layer is not specified. e.g. when $! should be set

 explicitly, when the error handling should be just delegated to the top layer.

 Probably give some hints on using SETERRNO() or pointers to where they can be found.

 ? I think it would help to give some concrete examples to make it easier to understand

 the API. Of course I agree that the API has to be concise, but since there is no

 second document that is more of a guide, I think that it'd make it easier to start

 with the doc which is an API, but has examples in it in places where things are

 unclear, to a person who is not a PerlIO guru (yet).

perl v5.34.0 2023-11-23 PERLIOL(1)

Page 20/20

