
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlintern.1'

$ man perlintern.1

PERLINTERN(1) Perl Programmers Reference Guide PERLINTERN(1)

NAME

 perlintern - autogenerated documentation of purely internal Perl functions

DESCRIPTION

 This file is the autogenerated documentation of functions in the Perl interpreter that are

 documented using Perl's internal documentation format but are not marked as part of the

 Perl API. In other words, they are not for use in extensions!

 It has the same sections as perlapi, though some may be empty.

AV Handling

 "AvFILLp"

 If the array "av" is empty, this returns -1; otherwise it returns the maximum value of

 the indices of all the array elements which are currently defined in "av". It does

 not handle magic, hence the "p" private indication in its name.

 SSize_t AvFILLp(AV* av)

Callback Functions

 There are only public API items currently in Callback Functions

Casting

 There are only public API items currently in Casting

Character case changing

 There are only public API items currently in Character case changing

Character classification

 There are only public API items currently in Character classification

Compiler and Preprocessor information Page 1/46

 There are only public API items currently in Compiler and Preprocessor information

Compiler directives

 There are only public API items currently in Compiler directives

Compile-time scope hooks

 "BhkENTRY"

 NOTE: "BhkENTRY" is experimental and may change or be removed without notice.

 Return an entry from the BHK structure. "which" is a preprocessor token indicating

 which entry to return. If the appropriate flag is not set this will return "NULL".

 The type of the return value depends on which entry you ask for.

 void * BhkENTRY(BHK *hk, which)

 "BhkFLAGS"

 NOTE: "BhkFLAGS" is experimental and may change or be removed without notice.

 Return the BHK's flags.

 U32 BhkFLAGS(BHK *hk)

 "CALL_BLOCK_HOOKS"

 NOTE: "CALL_BLOCK_HOOKS" is experimental and may change or be removed without notice.

 Call all the registered block hooks for type "which". "which" is a preprocessing

 token; the type of "arg" depends on "which".

 void CALL_BLOCK_HOOKS(which, arg)

Concurrency

 There are only public API items currently in Concurrency

COP Hint Hashes

 There are only public API items currently in COP Hint Hashes

Custom Operators

 "core_prototype"

 This function assigns the prototype of the named core function to "sv", or to a new

 mortal SV if "sv" is "NULL". It returns the modified "sv", or "NULL" if the core

 function has no prototype. "code" is a code as returned by "keyword()". It must not

 be equal to 0.

 SV * core_prototype(SV *sv, const char *name, const int code,

 int * const opnum)

CV Handling

 "CvWEAKOUTSIDE" Page 2/46

 Each CV has a pointer, "CvOUTSIDE()", to its lexically enclosing CV (if any). Because

 pointers to anonymous sub prototypes are stored in "&" pad slots, it is a possible to

 get a circular reference, with the parent pointing to the child and vice-versa. To

 avoid the ensuing memory leak, we do not increment the reference count of the CV

 pointed to by "CvOUTSIDE" in the one specific instance that the parent has a "&" pad

 slot pointing back to us. In this case, we set the "CvWEAKOUTSIDE" flag in the child.

 This allows us to determine under what circumstances we should decrement the refcount

 of the parent when freeing the child.

 There is a further complication with non-closure anonymous subs (i.e. those that do

 not refer to any lexicals outside that sub). In this case, the anonymous prototype is

 shared rather than being cloned. This has the consequence that the parent may be

 freed while there are still active children, e.g.,

 BEGIN { $a = sub { eval '$x' } }

 In this case, the BEGIN is freed immediately after execution since there are no active

 references to it: the anon sub prototype has "CvWEAKOUTSIDE" set since it's not a

 closure, and $a points to the same CV, so it doesn't contribute to BEGIN's refcount

 either. When $a is executed, the "eval '$x'" causes the chain of "CvOUTSIDE"s to be

 followed, and the freed BEGIN is accessed.

 To avoid this, whenever a CV and its associated pad is freed, any "&" entries in the

 pad are explicitly removed from the pad, and if the refcount of the pointed-to anon

 sub is still positive, then that child's "CvOUTSIDE" is set to point to its

 grandparent. This will only occur in the single specific case of a non-closure anon

 prototype having one or more active references (such as $a above).

 One other thing to consider is that a CV may be merely undefined rather than freed, eg

 "undef &foo". In this case, its refcount may not have reached zero, but we still

 delete its pad and its "CvROOT" etc. Since various children may still have their

 "CvOUTSIDE" pointing at this undefined CV, we keep its own "CvOUTSIDE" for the time

 being, so that the chain of lexical scopes is unbroken. For example, the following

 should print 123:

 my $x = 123;

 sub tmp { sub { eval '$x' } }

 my $a = tmp();

 undef &tmp; Page 3/46

 print $a->();

 bool CvWEAKOUTSIDE(CV *cv)

 "docatch"

 Check for the cases 0 or 3 of cur_env.je_ret, only used inside an eval context.

 0 is used as continue inside eval,

 3 is used for a die caught by an inner eval - continue inner loop

 See cop.h: je_mustcatch, when set at any runlevel to TRUE, means eval ops must

 establish a local jmpenv to handle exception traps.

 OP* docatch(Perl_ppaddr_t firstpp)

Debugging

 "free_c_backtrace"

 Deallocates a backtrace received from get_c_backtrace.

 void free_c_backtrace(Perl_c_backtrace* bt)

 "get_c_backtrace"

 Collects the backtrace (aka "stacktrace") into a single linear malloced buffer, which

 the caller must "Perl_free_c_backtrace()".

 Scans the frames back by "depth?+?skip", then drops the "skip" innermost, returning at

 most "depth" frames.

 Perl_c_backtrace* get_c_backtrace(int max_depth, int skip)

 "PL_DBsingle"

 When Perl is run in debugging mode, with the -d switch, this SV is a boolean which

 indicates whether subs are being single-stepped. Single-stepping is automatically

 turned on after every step. This is the C variable which corresponds to Perl's

 $DB::single variable. See "PL_DBsub".

 On threaded perls, each thread has an independent copy of this variable; each

 initialized at creation time with the current value of the creating thread's copy.

 SV * PL_DBsingle

 "PL_DBsub"

 When Perl is run in debugging mode, with the -d switch, this GV contains the SV which

 holds the name of the sub being debugged. This is the C variable which corresponds to

 Perl's $DB::sub variable. See "PL_DBsingle".

 On threaded perls, each thread has an independent copy of this variable; each

 initialized at creation time with the current value of the creating thread's copy. Page 4/46

 GV * PL_DBsub

 "PL_DBtrace"

 Trace variable used when Perl is run in debugging mode, with the -d switch. This is

 the C variable which corresponds to Perl's $DB::trace variable. See "PL_DBsingle".

 On threaded perls, each thread has an independent copy of this variable; each

 initialized at creation time with the current value of the creating thread's copy.

 SV * PL_DBtrace

Display functions

 There are only public API items currently in Display functions

Embedding and Interpreter Cloning

 "cv_dump"

 dump the contents of a CV

 void cv_dump(const CV *cv, const char *title)

 "cv_forget_slab"

 When a CV has a reference count on its slab ("CvSLABBED"), it is responsible for

 making sure it is freed. (Hence, no two CVs should ever have a reference count on the

 same slab.) The CV only needs to reference the slab during compilation. Once it is

 compiled and "CvROOT" attached, it has finished its job, so it can forget the slab.

 void cv_forget_slab(CV *cv)

 "do_dump_pad"

 Dump the contents of a padlist

 void do_dump_pad(I32 level, PerlIO *file, PADLIST *padlist,

 int full)

 "pad_alloc_name"

 Allocates a place in the currently-compiling pad (via "pad_alloc" in perlapi) and then

 stores a name for that entry. "name" is adopted and becomes the name entry; it must

 already contain the name string. "typestash" and "ourstash" and the "padadd_STATE"

 flag get added to "name". None of the other processing of "pad_add_name_pvn" in

 perlapi is done. Returns the offset of the allocated pad slot.

 PADOFFSET pad_alloc_name(PADNAME *name, U32 flags, HV *typestash,

 HV *ourstash)

 "pad_block_start"

 Update the pad compilation state variables on entry to a new block. Page 5/46

 void pad_block_start(int full)

 "pad_check_dup"

 Check for duplicate declarations: report any of:

 * a 'my' in the current scope with the same name;

 * an 'our' (anywhere in the pad) with the same name and the

 same stash as 'ourstash'

 "is_our" indicates that the name to check is an "our" declaration.

 void pad_check_dup(PADNAME *name, U32 flags, const HV *ourstash)

 "pad_findlex"

 Find a named lexical anywhere in a chain of nested pads. Add fake entries in the

 inner pads if it's found in an outer one.

 Returns the offset in the bottom pad of the lex or the fake lex. "cv" is the CV in

 which to start the search, and seq is the current "cop_seq" to match against. If

 "warn" is true, print appropriate warnings. The "out_"* vars return values, and so

 are pointers to where the returned values should be stored. "out_capture", if non-

 null, requests that the innermost instance of the lexical is captured; "out_name" is

 set to the innermost matched pad name or fake pad name; "out_flags" returns the flags

 normally associated with the "PARENT_FAKELEX_FLAGS" field of a fake pad name.

 Note that "pad_findlex()" is recursive; it recurses up the chain of CVs, then comes

 back down, adding fake entries as it goes. It has to be this way because fake names

 in anon prototypes have to store in "xpadn_low" the index into the parent pad.

 PADOFFSET pad_findlex(const char *namepv, STRLEN namelen,

 U32 flags, const CV* cv, U32 seq, int warn,

 SV** out_capture, PADNAME** out_name,

 int *out_flags)

 "pad_fixup_inner_anons"

 For any anon CVs in the pad, change "CvOUTSIDE" of that CV from "old_cv" to "new_cv"

 if necessary. Needed when a newly-compiled CV has to be moved to a pre-existing CV

 struct.

 void pad_fixup_inner_anons(PADLIST *padlist, CV *old_cv,

 CV *new_cv)

 "pad_free"

 Free the SV at offset po in the current pad. Page 6/46

 void pad_free(PADOFFSET po)

 "pad_leavemy"

 Cleanup at end of scope during compilation: set the max seq number for lexicals in

 this scope and warn of any lexicals that never got introduced.

 OP * pad_leavemy()

 "padlist_dup"

 Duplicates a pad.

 PADLIST * padlist_dup(PADLIST *srcpad, CLONE_PARAMS *param)

 "padname_dup"

 Duplicates a pad name.

 PADNAME * padname_dup(PADNAME *src, CLONE_PARAMS *param)

 "padnamelist_dup"

 Duplicates a pad name list.

 PADNAMELIST * padnamelist_dup(PADNAMELIST *srcpad,

 CLONE_PARAMS *param)

 "pad_push"

 Push a new pad frame onto the padlist, unless there's already a pad at this depth, in

 which case don't bother creating a new one. Then give the new pad an @_ in slot zero.

 void pad_push(PADLIST *padlist, int depth)

 "pad_reset"

 Mark all the current temporaries for reuse

 void pad_reset()

 "pad_setsv"

 Set the value at offset "po" in the current (compiling or executing) pad. Use the

 macro "PAD_SETSV()" rather than calling this function directly.

 void pad_setsv(PADOFFSET po, SV* sv)

 "pad_sv"

 Get the value at offset "po" in the current (compiling or executing) pad. Use macro

 "PAD_SV" instead of calling this function directly.

 SV* pad_sv(PADOFFSET po)

 "pad_swipe"

 Abandon the tmp in the current pad at offset "po" and replace with a new one.

 void pad_swipe(PADOFFSET po, bool refadjust) Page 7/46

Errno

 "dSAVEDERRNO"

 Declare variables needed to save "errno" and any operating system specific error

 number.

 void dSAVEDERRNO

 "dSAVE_ERRNO"

 Declare variables needed to save "errno" and any operating system specific error

 number, and save them for optional later restoration by "RESTORE_ERRNO".

 void dSAVE_ERRNO

 "RESTORE_ERRNO"

 Restore "errno" and any operating system specific error number that was saved by

 "dSAVE_ERRNO" or "RESTORE_ERRNO".

 void RESTORE_ERRNO

 "SAVE_ERRNO"

 Save "errno" and any operating system specific error number for optional later

 restoration by "RESTORE_ERRNO". Requires "dSAVEDERRNO" or "dSAVE_ERRNO" in scope.

 void SAVE_ERRNO

 "SETERRNO"

 Set "errno", and on VMS set "vaxc$errno".

 void SETERRNO(int errcode, int vmserrcode)

Exception Handling (simple) Macros

 There are only public API items currently in Exception Handling (simple) Macros

Filesystem configuration values

 There are only public API items currently in Filesystem configuration values

Floating point configuration values

 There are only public API items currently in Floating point configuration values

Formats

 There are only public API items currently in Formats

General Configuration

 There are only public API items currently in General Configuration

Global Variables

 There are only public API items currently in Global Variables

GV Handling Page 8/46

 "gv_stashsvpvn_cached"

 Returns a pointer to the stash for a specified package, possibly cached. Implements

 both ""gv_stashpvn"" in perlapi and ""gv_stashsv"" in perlapi.

 Requires one of either "namesv" or "namepv" to be non-null.

 If the flag "GV_CACHE_ONLY" is set, return the stash only if found in the cache; see

 ""gv_stashpvn"" in perlapi for details on the other "flags".

 Note it is strongly preferred for "namesv" to be non-null, for performance reasons.

 HV* gv_stashsvpvn_cached(SV *namesv, const char* name,

 U32 namelen, I32 flags)

 "gv_try_downgrade"

 NOTE: "gv_try_downgrade" is experimental and may change or be removed without notice.

 If the typeglob "gv" can be expressed more succinctly, by having something other than

 a real GV in its place in the stash, replace it with the optimised form. Basic

 requirements for this are that "gv" is a real typeglob, is sufficiently ordinary, and

 is only referenced from its package. This function is meant to be used when a GV has

 been looked up in part to see what was there, causing upgrading, but based on what was

 found it turns out that the real GV isn't required after all.

 If "gv" is a completely empty typeglob, it is deleted from the stash.

 If "gv" is a typeglob containing only a sufficiently-ordinary constant sub, the

 typeglob is replaced with a scalar-reference placeholder that more compactly

 represents the same thing.

 void gv_try_downgrade(GV* gv)

Hook manipulation

 There are only public API items currently in Hook manipulation

HV Handling

 "hv_ename_add"

 Adds a name to a stash's internal list of effective names. See "hv_ename_delete".

 This is called when a stash is assigned to a new location in the symbol table.

 void hv_ename_add(HV *hv, const char *name, U32 len, U32 flags)

 "hv_ename_delete"

 Removes a name from a stash's internal list of effective names. If this is the name

 returned by "HvENAME", then another name in the list will take its place ("HvENAME"

 will use it). Page 9/46

 This is called when a stash is deleted from the symbol table.

 void hv_ename_delete(HV *hv, const char *name, U32 len,

 U32 flags)

 "refcounted_he_chain_2hv"

 Generates and returns a "HV *" representing the content of a "refcounted_he" chain.

 "flags" is currently unused and must be zero.

 HV * refcounted_he_chain_2hv(const struct refcounted_he *c,

 U32 flags)

 "refcounted_he_fetch_pv"

 Like "refcounted_he_fetch_pvn", but takes a nul-terminated string instead of a

 string/length pair.

 SV * refcounted_he_fetch_pv(const struct refcounted_he *chain,

 const char *key, U32 hash, U32 flags)

 "refcounted_he_fetch_pvn"

 Search along a "refcounted_he" chain for an entry with the key specified by "keypv"

 and "keylen". If "flags" has the "REFCOUNTED_HE_KEY_UTF8" bit set, the key octets are

 interpreted as UTF-8, otherwise they are interpreted as Latin-1. "hash" is a

 precomputed hash of the key string, or zero if it has not been precomputed. Returns a

 mortal scalar representing the value associated with the key, or &PL_sv_placeholder if

 there is no value associated with the key.

 SV * refcounted_he_fetch_pvn(const struct refcounted_he *chain,

 const char *keypv, STRLEN keylen,

 U32 hash, U32 flags)

 "refcounted_he_fetch_pvs"

 Like "refcounted_he_fetch_pvn", but takes a literal string instead of a string/length

 pair, and no precomputed hash.

 SV * refcounted_he_fetch_pvs(const struct refcounted_he *chain,

 "key", U32 flags)

 "refcounted_he_fetch_sv"

 Like "refcounted_he_fetch_pvn", but takes a Perl scalar instead of a string/length

 pair.

 SV * refcounted_he_fetch_sv(const struct refcounted_he *chain,

 SV *key, U32 hash, U32 flags) Page 10/46

 "refcounted_he_free"

 Decrements the reference count of a "refcounted_he" by one. If the reference count

 reaches zero the structure's memory is freed, which (recursively) causes a reduction

 of its parent "refcounted_he"'s reference count. It is safe to pass a null pointer to

 this function: no action occurs in this case.

 void refcounted_he_free(struct refcounted_he *he)

 "refcounted_he_inc"

 Increment the reference count of a "refcounted_he". The pointer to the

 "refcounted_he" is also returned. It is safe to pass a null pointer to this function:

 no action occurs and a null pointer is returned.

 struct refcounted_he * refcounted_he_inc(

 struct refcounted_he *he)

 "refcounted_he_new_pv"

 Like "refcounted_he_new_pvn", but takes a nul-terminated string instead of a

 string/length pair.

 struct refcounted_he * refcounted_he_new_pv(

 struct refcounted_he *parent,

 const char *key, U32 hash,

 SV *value, U32 flags)

 "refcounted_he_new_pvn"

 Creates a new "refcounted_he". This consists of a single key/value pair and a

 reference to an existing "refcounted_he" chain (which may be empty), and thus forms a

 longer chain. When using the longer chain, the new key/value pair takes precedence

 over any entry for the same key further along the chain.

 The new key is specified by "keypv" and "keylen". If "flags" has the

 "REFCOUNTED_HE_KEY_UTF8" bit set, the key octets are interpreted as UTF-8, otherwise

 they are interpreted as Latin-1. "hash" is a precomputed hash of the key string, or

 zero if it has not been precomputed.

 "value" is the scalar value to store for this key. "value" is copied by this

 function, which thus does not take ownership of any reference to it, and later changes

 to the scalar will not be reflected in the value visible in the "refcounted_he".

 Complex types of scalar will not be stored with referential integrity, but will be

 coerced to strings. "value" may be either null or &PL_sv_placeholder to indicate that Page 11/46

 no value is to be associated with the key; this, as with any non-null value, takes

 precedence over the existence of a value for the key further along the chain.

 "parent" points to the rest of the "refcounted_he" chain to be attached to the new

 "refcounted_he". This function takes ownership of one reference to "parent", and

 returns one reference to the new "refcounted_he".

 struct refcounted_he * refcounted_he_new_pvn(

 struct refcounted_he *parent,

 const char *keypv,

 STRLEN keylen, U32 hash,

 SV *value, U32 flags)

 "refcounted_he_new_pvs"

 Like "refcounted_he_new_pvn", but takes a literal string instead of a string/length

 pair, and no precomputed hash.

 struct refcounted_he * refcounted_he_new_pvs(

 struct refcounted_he *parent,

 "key", SV *value, U32 flags)

 "refcounted_he_new_sv"

 Like "refcounted_he_new_pvn", but takes a Perl scalar instead of a string/length pair.

 struct refcounted_he * refcounted_he_new_sv(

 struct refcounted_he *parent,

 SV *key, U32 hash, SV *value,

 U32 flags)

Input/Output

 "PL_last_in_gv"

 The GV which was last used for a filehandle input operation. ("<FH>")

 On threaded perls, each thread has an independent copy of this variable; each

 initialized at creation time with the current value of the creating thread's copy.

 GV* PL_last_in_gv

 "PL_ofsgv"

 The glob containing the output field separator - "*," in Perl space.

 On threaded perls, each thread has an independent copy of this variable; each

 initialized at creation time with the current value of the creating thread's copy.

 GV* PL_ofsgv Page 12/46

 "PL_rs"

 The input record separator - $/ in Perl space.

 On threaded perls, each thread has an independent copy of this variable; each

 initialized at creation time with the current value of the creating thread's copy.

 SV* PL_rs

 "start_glob"

 NOTE: "start_glob" is experimental and may change or be removed without notice.

 Function called by "do_readline" to spawn a glob (or do the glob inside perl on VMS).

 This code used to be inline, but now perl uses "File::Glob" this glob starter is only

 used by miniperl during the build process, or when PERL_EXTERNAL_GLOB is defined.

 Moving it away shrinks pp_hot.c; shrinking pp_hot.c helps speed perl up.

 NOTE: "start_glob" must be explicitly called as "Perl_start_glob" with an "aTHX_"

 parameter.

 PerlIO* Perl_start_glob(pTHX_ SV *tmpglob, IO *io)

Integer configuration values

 There are only public API items currently in Integer configuration values

Lexer interface

 "validate_proto"

 NOTE: "validate_proto" is experimental and may change or be removed without notice.

 This function performs syntax checking on a prototype, "proto". If "warn" is true,

 any illegal characters or mismatched brackets will trigger illegalproto warnings,

 declaring that they were detected in the prototype for "name".

 The return value is "true" if this is a valid prototype, and "false" if it is not,

 regardless of whether "warn" was "true" or "false".

 Note that "NULL" is a valid "proto" and will always return "true".

 bool validate_proto(SV *name, SV *proto, bool warn,

 bool curstash)

Locales

 There are only public API items currently in Locales

Magic

 "magic_clearhint"

 Triggered by a delete from "%^H", records the key to "PL_compiling.cop_hints_hash".

 int magic_clearhint(SV* sv, MAGIC* mg) Page 13/46

 "magic_clearhints"

 Triggered by clearing "%^H", resets "PL_compiling.cop_hints_hash".

 int magic_clearhints(SV* sv, MAGIC* mg)

 "magic_methcall"

 Invoke a magic method (like FETCH).

 "sv" and "mg" are the tied thingy and the tie magic.

 "meth" is the name of the method to call.

 "argc" is the number of args (in addition to $self) to pass to the method.

 The "flags" can be:

 G_DISCARD invoke method with G_DISCARD flag and don't

 return a value

 G_UNDEF_FILL fill the stack with argc pointers to

 PL_sv_undef

 The arguments themselves are any values following the "flags" argument.

 Returns the SV (if any) returned by the method, or "NULL" on failure.

 NOTE: "magic_methcall" must be explicitly called as "Perl_magic_methcall" with an

 "aTHX_" parameter.

 SV* Perl_magic_methcall(pTHX_ SV *sv, const MAGIC *mg, SV *meth,

 U32 flags, U32 argc, ...)

 "magic_sethint"

 Triggered by a store to "%^H", records the key/value pair to

 "PL_compiling.cop_hints_hash". It is assumed that hints aren't storing anything that

 would need a deep copy. Maybe we should warn if we find a reference.

 int magic_sethint(SV* sv, MAGIC* mg)

 "mg_localize"

 Copy some of the magic from an existing SV to new localized version of that SV.

 Container magic (e.g., %ENV, $1, "tie") gets copied, value magic doesn't (e.g.,

 "taint", "pos").

 If "setmagic" is false then no set magic will be called on the new (empty) SV. This

 typically means that assignment will soon follow (e.g. 'local?$x?=?$y'), and that will

 handle the magic.

 void mg_localize(SV* sv, SV* nsv, bool setmagic)

Memory Management Page 14/46

 There are only public API items currently in Memory Management

MRO

 "mro_get_linear_isa_dfs"

 Returns the Depth-First Search linearization of @ISA the given stash. The return

 value is a read-only AV*. "level" should be 0 (it is used internally in this

 function's recursion).

 You are responsible for "SvREFCNT_inc()" on the return value if you plan to store it

 anywhere semi-permanently (otherwise it might be deleted out from under you the next

 time the cache is invalidated).

 AV* mro_get_linear_isa_dfs(HV* stash, U32 level)

 "mro_isa_changed_in"

 Takes the necessary steps (cache invalidations, mostly) when the @ISA of the given

 package has changed. Invoked by the "setisa" magic, should not need to invoke

 directly.

 void mro_isa_changed_in(HV* stash)

 "mro_package_moved"

 Call this function to signal to a stash that it has been assigned to another spot in

 the stash hierarchy. "stash" is the stash that has been assigned. "oldstash" is the

 stash it replaces, if any. "gv" is the glob that is actually being assigned to.

 This can also be called with a null first argument to indicate that "oldstash" has

 been deleted.

 This function invalidates isa caches on the old stash, on all subpackages nested

 inside it, and on the subclasses of all those, including non-existent packages that

 have corresponding entries in "stash".

 It also sets the effective names ("HvENAME") on all the stashes as appropriate.

 If the "gv" is present and is not in the symbol table, then this function simply

 returns. This checked will be skipped if "flags & 1".

 void mro_package_moved(HV * const stash, HV * const oldstash,

 const GV * const gv, U32 flags)

Multicall Functions

 There are only public API items currently in Multicall Functions

Numeric Functions

 "grok_atoUV" Page 15/46

 parse a string, looking for a decimal unsigned integer.

 On entry, "pv" points to the beginning of the string; "valptr" points to a UV that

 will receive the converted value, if found; "endptr" is either NULL or points to a

 variable that points to one byte beyond the point in "pv" that this routine should

 examine. If "endptr" is NULL, "pv" is assumed to be NUL-terminated.

 Returns FALSE if "pv" doesn't represent a valid unsigned integer value (with no

 leading zeros). Otherwise it returns TRUE, and sets *valptr to that value.

 If you constrain the portion of "pv" that is looked at by this function (by passing a

 non-NULL "endptr"), and if the intial bytes of that portion form a valid value, it

 will return TRUE, setting *endptr to the byte following the final digit of the value.

 But if there is no constraint at what's looked at, all of "pv" must be valid in order

 for TRUE to be returned. *endptr is unchanged from its value on input if FALSE is

 returned;

 The only characters this accepts are the decimal digits '0'..'9'.

 As opposed to atoi(3) or strtol(3), "grok_atoUV" does NOT allow optional leading

 whitespace, nor negative inputs. If such features are required, the calling code

 needs to explicitly implement those.

 Note that this function returns FALSE for inputs that would overflow a UV, or have

 leading zeros. Thus a single 0 is accepted, but not 00 nor 01, 002, etc.

 Background: "atoi" has severe problems with illegal inputs, it cannot be used for

 incremental parsing, and therefore should be avoided "atoi" and "strtol" are also

 affected by locale settings, which can also be seen as a bug (global state controlled

 by user environment).

 bool grok_atoUV(const char* pv, UV* valptr, const char** endptr)

 "isinfnansv"

 Checks whether the argument would be either an infinity or "NaN" when used as a

 number, but is careful not to trigger non-numeric or uninitialized warnings. it

 assumes the caller has done "SvGETMAGIC(sv)" already.

 bool isinfnansv(SV *sv)

Optree construction

 There are only public API items currently in Optree construction

Optree Manipulation Functions

 "finalize_optree" Page 16/46

 This function finalizes the optree. Should be called directly after the complete

 optree is built. It does some additional checking which can't be done in the normal

 "ck_"xxx functions and makes the tree thread-safe.

 void finalize_optree(OP* o)

 "newATTRSUB_x"

 Construct a Perl subroutine, also performing some surrounding jobs.

 This function is expected to be called in a Perl compilation context, and some aspects

 of the subroutine are taken from global variables associated with compilation. In

 particular, "PL_compcv" represents the subroutine that is currently being compiled.

 It must be non-null when this function is called, and some aspects of the subroutine

 being constructed are taken from it. The constructed subroutine may actually be a

 reuse of the "PL_compcv" object, but will not necessarily be so.

 If "block" is null then the subroutine will have no body, and for the time being it

 will be an error to call it. This represents a forward subroutine declaration such as

 "sub?foo?($$);". If "block" is non-null then it provides the Perl code of the

 subroutine body, which will be executed when the subroutine is called. This body

 includes any argument unwrapping code resulting from a subroutine signature or

 similar. The pad use of the code must correspond to the pad attached to "PL_compcv".

 The code is not expected to include a "leavesub" or "leavesublv" op; this function

 will add such an op. "block" is consumed by this function and will become part of the

 constructed subroutine.

 "proto" specifies the subroutine's prototype, unless one is supplied as an attribute

 (see below). If "proto" is null, then the subroutine will not have a prototype. If

 "proto" is non-null, it must point to a "const" op whose value is a string, and the

 subroutine will have that string as its prototype. If a prototype is supplied as an

 attribute, the attribute takes precedence over "proto", but in that case "proto"

 should preferably be null. In any case, "proto" is consumed by this function.

 "attrs" supplies attributes to be applied the subroutine. A handful of attributes

 take effect by built-in means, being applied to "PL_compcv" immediately when seen.

 Other attributes are collected up and attached to the subroutine by this route.

 "attrs" may be null to supply no attributes, or point to a "const" op for a single

 attribute, or point to a "list" op whose children apart from the "pushmark" are

 "const" ops for one or more attributes. Each "const" op must be a string, giving the Page 17/46

 attribute name optionally followed by parenthesised arguments, in the manner in which

 attributes appear in Perl source. The attributes will be applied to the sub by this

 function. "attrs" is consumed by this function.

 If "o_is_gv" is false and "o" is null, then the subroutine will be anonymous. If

 "o_is_gv" is false and "o" is non-null, then "o" must point to a "const" OP, which

 will be consumed by this function, and its string value supplies a name for the

 subroutine. The name may be qualified or unqualified, and if it is unqualified then a

 default stash will be selected in some manner. If "o_is_gv" is true, then "o" doesn't

 point to an "OP" at all, but is instead a cast pointer to a "GV" by which the

 subroutine will be named.

 If there is already a subroutine of the specified name, then the new sub will either

 replace the existing one in the glob or be merged with the existing one. A warning

 may be generated about redefinition.

 If the subroutine has one of a few special names, such as "BEGIN" or "END", then it

 will be claimed by the appropriate queue for automatic running of phase-related

 subroutines. In this case the relevant glob will be left not containing any

 subroutine, even if it did contain one before. In the case of "BEGIN", the subroutine

 will be executed and the reference to it disposed of before this function returns.

 The function returns a pointer to the constructed subroutine. If the sub is anonymous

 then ownership of one counted reference to the subroutine is transferred to the

 caller. If the sub is named then the caller does not get ownership of a reference.

 In most such cases, where the sub has a non-phase name, the sub will be alive at the

 point it is returned by virtue of being contained in the glob that names it. A phase-

 named subroutine will usually be alive by virtue of the reference owned by the phase's

 automatic run queue. But a "BEGIN" subroutine, having already been executed, will

 quite likely have been destroyed already by the time this function returns, making it

 erroneous for the caller to make any use of the returned pointer. It is the caller's

 responsibility to ensure that it knows which of these situations applies.

 CV* newATTRSUB_x(I32 floor, OP *o, OP *proto, OP *attrs,

 OP *block, bool o_is_gv)

 "newXS_len_flags"

 Construct an XS subroutine, also performing some surrounding jobs.

 The subroutine will have the entry point "subaddr". It will have the prototype Page 18/46

 specified by the nul-terminated string "proto", or no prototype if "proto" is null.

 The prototype string is copied; the caller can mutate the supplied string afterwards.

 If "filename" is non-null, it must be a nul-terminated filename, and the subroutine

 will have its "CvFILE" set accordingly. By default "CvFILE" is set to point directly

 to the supplied string, which must be static. If "flags" has the

 "XS_DYNAMIC_FILENAME" bit set, then a copy of the string will be taken instead.

 Other aspects of the subroutine will be left in their default state. If anything else

 needs to be done to the subroutine for it to function correctly, it is the caller's

 responsibility to do that after this function has constructed it. However, beware of

 the subroutine potentially being destroyed before this function returns, as described

 below.

 If "name" is null then the subroutine will be anonymous, with its "CvGV" referring to

 an "__ANON__" glob. If "name" is non-null then the subroutine will be named

 accordingly, referenced by the appropriate glob. "name" is a string of length "len"

 bytes giving a sigilless symbol name, in UTF-8 if "flags" has the "SVf_UTF8" bit set

 and in Latin-1 otherwise. The name may be either qualified or unqualified, with the

 stash defaulting in the same manner as for "gv_fetchpvn_flags". "flags" may contain

 flag bits understood by "gv_fetchpvn_flags" with the same meaning as they have there,

 such as "GV_ADDWARN". The symbol is always added to the stash if necessary, with

 "GV_ADDMULTI" semantics.

 If there is already a subroutine of the specified name, then the new sub will replace

 the existing one in the glob. A warning may be generated about the redefinition. If

 the old subroutine was "CvCONST" then the decision about whether to warn is influenced

 by an expectation about whether the new subroutine will become a constant of similar

 value. That expectation is determined by "const_svp". (Note that the call to this

 function doesn't make the new subroutine "CvCONST" in any case; that is left to the

 caller.) If "const_svp" is null then it indicates that the new subroutine will not

 become a constant. If "const_svp" is non-null then it indicates that the new

 subroutine will become a constant, and it points to an "SV*" that provides the

 constant value that the subroutine will have.

 If the subroutine has one of a few special names, such as "BEGIN" or "END", then it

 will be claimed by the appropriate queue for automatic running of phase-related

 subroutines. In this case the relevant glob will be left not containing any Page 19/46

 subroutine, even if it did contain one before. In the case of "BEGIN", the subroutine

 will be executed and the reference to it disposed of before this function returns, and

 also before its prototype is set. If a "BEGIN" subroutine would not be sufficiently

 constructed by this function to be ready for execution then the caller must prevent

 this happening by giving the subroutine a different name.

 The function returns a pointer to the constructed subroutine. If the sub is anonymous

 then ownership of one counted reference to the subroutine is transferred to the

 caller. If the sub is named then the caller does not get ownership of a reference.

 In most such cases, where the sub has a non-phase name, the sub will be alive at the

 point it is returned by virtue of being contained in the glob that names it. A phase-

 named subroutine will usually be alive by virtue of the reference owned by the phase's

 automatic run queue. But a "BEGIN" subroutine, having already been executed, will

 quite likely have been destroyed already by the time this function returns, making it

 erroneous for the caller to make any use of the returned pointer. It is the caller's

 responsibility to ensure that it knows which of these situations applies.

 CV * newXS_len_flags(const char *name, STRLEN len,

 XSUBADDR_t subaddr,

 const char *const filename,

 const char *const proto, SV **const_svp,

 U32 flags)

 "optimize_optree"

 This function applies some optimisations to the optree in top-down order. It is

 called before the peephole optimizer, which processes ops in execution order. Note

 that finalize_optree() also does a top-down scan, but is called *after* the peephole

 optimizer.

 void optimize_optree(OP* o)

 "traverse_op_tree"

 Return the next op in a depth-first traversal of the op tree, returning NULL when the

 traversal is complete.

 The initial call must supply the root of the tree as both top and o.

 For now it's static, but it may be exposed to the API in the future.

 OP* traverse_op_tree(OP* top, OP* o)

Pack and Unpack Page 20/46

 There are only public API items currently in Pack and Unpack

Pad Data Structures

 "CX_CURPAD_SAVE"

 Save the current pad in the given context block structure.

 void CX_CURPAD_SAVE(struct context)

 "CX_CURPAD_SV"

 Access the SV at offset "po" in the saved current pad in the given context block

 structure (can be used as an lvalue).

 SV * CX_CURPAD_SV(struct context, PADOFFSET po)

 "PAD_BASE_SV"

 Get the value from slot "po" in the base (DEPTH=1) pad of a padlist

 SV * PAD_BASE_SV(PADLIST padlist, PADOFFSET po)

 "PAD_CLONE_VARS"

 Clone the state variables associated with running and compiling pads.

 void PAD_CLONE_VARS(PerlInterpreter *proto_perl,

 CLONE_PARAMS* param)

 "PAD_COMPNAME_FLAGS"

 Return the flags for the current compiling pad name at offset "po". Assumes a valid

 slot entry.

 U32 PAD_COMPNAME_FLAGS(PADOFFSET po)

 "PAD_COMPNAME_GEN"

 The generation number of the name at offset "po" in the current compiling pad

 (lvalue).

 STRLEN PAD_COMPNAME_GEN(PADOFFSET po)

 "PAD_COMPNAME_GEN_set"

 Sets the generation number of the name at offset "po" in the current ling pad (lvalue)

 to "gen".

 STRLEN PAD_COMPNAME_GEN_set(PADOFFSET po, int gen)

 "PAD_COMPNAME_OURSTASH"

 Return the stash associated with an "our" variable. Assumes the slot entry is a valid

 "our" lexical.

 HV * PAD_COMPNAME_OURSTASH(PADOFFSET po)

 "PAD_COMPNAME_PV" Page 21/46

 Return the name of the current compiling pad name at offset "po". Assumes a valid

 slot entry.

 char * PAD_COMPNAME_PV(PADOFFSET po)

 "PAD_COMPNAME_TYPE"

 Return the type (stash) of the current compiling pad name at offset "po". Must be a

 valid name. Returns null if not typed.

 HV * PAD_COMPNAME_TYPE(PADOFFSET po)

 "PadnameIsOUR"

 Whether this is an "our" variable.

 bool PadnameIsOUR(PADNAME * pn)

 "PadnameIsSTATE"

 Whether this is a "state" variable.

 bool PadnameIsSTATE(PADNAME * pn)

 "PadnameOURSTASH"

 The stash in which this "our" variable was declared.

 HV * PadnameOURSTASH(PADNAME * pn)

 "PadnameOUTER"

 Whether this entry belongs to an outer pad. Entries for which this is true are often

 referred to as 'fake'.

 bool PadnameOUTER(PADNAME * pn)

 "PadnameTYPE"

 The stash associated with a typed lexical. This returns the %Foo:: hash for "my Foo

 $bar".

 HV * PadnameTYPE(PADNAME * pn)

 "PAD_RESTORE_LOCAL"

 Restore the old pad saved into the local variable "opad" by "PAD_SAVE_LOCAL()"

 void PAD_RESTORE_LOCAL(PAD *opad)

 "PAD_SAVE_LOCAL"

 Save the current pad to the local variable "opad", then make the current pad equal to

 "npad"

 void PAD_SAVE_LOCAL(PAD *opad, PAD *npad)

 "PAD_SAVE_SETNULLPAD"

 Save the current pad then set it to null. Page 22/46

 void PAD_SAVE_SETNULLPAD()

 "PAD_SETSV"

 Set the slot at offset "po" in the current pad to "sv"

 SV * PAD_SETSV(PADOFFSET po, SV* sv)

 "PAD_SET_CUR"

 Set the current pad to be pad "n" in the padlist, saving the previous current pad. NB

 currently this macro expands to a string too long for some compilers, so it's best to

 replace it with

 SAVECOMPPAD();

 PAD_SET_CUR_NOSAVE(padlist,n);

 void PAD_SET_CUR(PADLIST padlist, I32 n)

 "PAD_SET_CUR_NOSAVE"

 like PAD_SET_CUR, but without the save

 void PAD_SET_CUR_NOSAVE(PADLIST padlist, I32 n)

 "PAD_SV"

 Get the value at offset "po" in the current pad

 SV * PAD_SV(PADOFFSET po)

 "PAD_SVl"

 Lightweight and lvalue version of "PAD_SV". Get or set the value at offset "po" in

 the current pad. Unlike "PAD_SV", does not print diagnostics with -DX. For internal

 use only.

 SV * PAD_SVl(PADOFFSET po)

 "SAVECLEARSV"

 Clear the pointed to pad value on scope exit. (i.e. the runtime action of "my")

 void SAVECLEARSV(SV **svp)

 "SAVECOMPPAD"

 save "PL_comppad" and "PL_curpad"

 void SAVECOMPPAD()

 "SAVEPADSV"

 Save a pad slot (used to restore after an iteration)

 void SAVEPADSV(PADOFFSET po)

Password and Group access

 There are only public API items currently in Password and Group access Page 23/46

Paths to system commands

 There are only public API items currently in Paths to system commands

Prototype information

 There are only public API items currently in Prototype information

REGEXP Functions

 There are only public API items currently in REGEXP Functions

Signals

 There are only public API items currently in Signals

Site configuration

 There are only public API items currently in Site configuration

Sockets configuration values

 There are only public API items currently in Sockets configuration values

Source Filters

 There are only public API items currently in Source Filters

Stack Manipulation Macros

 "djSP"

 Declare Just "SP". This is actually identical to "dSP", and declares a local copy of

 perl's stack pointer, available via the "SP" macro. See ""SP" in perlapi".

 (Available for backward source code compatibility with the old (Perl 5.005) thread

 model.)

 djSP();

 "LVRET"

 True if this op will be the return value of an lvalue subroutine

String Handling

 "delimcpy_no_escape"

 Copy a source buffer to a destination buffer, stopping at (but not including) the

 first occurrence in the source of the delimiter byte, "delim". The source is the

 bytes between "from"?and?"from_end"?-?1. Similarly, the dest is "to" up to "to_end".

 The number of bytes copied is written to *retlen.

 Returns the position of "delim" in the "from" buffer, but if there is no such

 occurrence before "from_end", then "from_end" is returned, and the entire buffer

 "from"?..?"from_end"?-?1 is copied.

 If there is room in the destination available after the copy, an extra terminating Page 24/46

 safety "NUL" byte is appended (not included in the returned length).

 The error case is if the destination buffer is not large enough to accommodate

 everything that should be copied. In this situation, a value larger than

 "to_end"?-?"to" is written to *retlen, and as much of the source as fits will be

 written to the destination. Not having room for the safety "NUL" is not considered an

 error.

 char* delimcpy_no_escape(char* to, const char* to_end,

 const char* from, const char* from_end,

 const int delim, I32* retlen)

 "quadmath_format_needed"

 "quadmath_format_needed()" returns true if the "format" string seems to contain at

 least one non-Q-prefixed "%[efgaEFGA]" format specifier, or returns false otherwise.

 The format specifier detection is not complete printf-syntax detection, but it should

 catch most common cases.

 If true is returned, those arguments should in theory be processed with

 "quadmath_snprintf()", but in case there is more than one such format specifier (see

 "quadmath_format_valid"), and if there is anything else beyond that one (even just a

 single byte), they cannot be processed because "quadmath_snprintf()" is very strict,

 accepting only one format spec, and nothing else. In this case, the code should

 probably fail.

 bool quadmath_format_needed(const char* format)

 "quadmath_format_valid"

 "quadmath_snprintf()" is very strict about its "format" string and will fail,

 returning -1, if the format is invalid. It accepts exactly one format spec.

 "quadmath_format_valid()" checks that the intended single spec looks sane: begins with

 "%", has only one "%", ends with "[efgaEFGA]", and has "Q" before it. This is not a

 full "printf syntax check", just the basics.

 Returns true if it is valid, false if not.

 See also "quadmath_format_needed".

 bool quadmath_format_valid(const char* format)

SV Flags

 "SVt_INVLIST"

 Type flag for scalars. See "svtype" in perlapi. Page 25/46

SV Handling

 "PL_Sv"

 A scratch pad SV for whatever temporary use you need. Chiefly used as a fallback by

 macros on platforms where "PERL_USE_GCC_BRACE_GROUPS" in perlapi> is unavailable, and

 which would otherwise evaluate their SV parameter more than once.

 PL_Sv

 "sv_2bool"

 This macro is only used by "sv_true()" or its macro equivalent, and only if the

 latter's argument is neither "SvPOK", "SvIOK" nor "SvNOK". It calls "sv_2bool_flags"

 with the "SV_GMAGIC" flag.

 bool sv_2bool(SV *const sv)

 "sv_2bool_flags"

 This function is only used by "sv_true()" and friends, and only if the latter's

 argument is neither "SvPOK", "SvIOK" nor "SvNOK". If the flags contain "SV_GMAGIC",

 then it does an "mg_get()" first.

 bool sv_2bool_flags(SV *sv, I32 flags)

 "sv_2num"

 NOTE: "sv_2num" is experimental and may change or be removed without notice.

 Return an SV with the numeric value of the source SV, doing any necessary reference or

 overload conversion. The caller is expected to have handled get-magic already.

 SV* sv_2num(SV *const sv)

 "sv_2pvbyte_nolen"

 Return a pointer to the byte-encoded representation of the SV. May cause the SV to be

 downgraded from UTF-8 as a side-effect.

 Usually accessed via the "SvPVbyte_nolen" macro.

 char* sv_2pvbyte_nolen(SV* sv)

 "sv_2pvutf8_nolen"

 Return a pointer to the UTF-8-encoded representation of the SV. May cause the SV to

 be upgraded to UTF-8 as a side-effect.

 Usually accessed via the "SvPVutf8_nolen" macro.

 char* sv_2pvutf8_nolen(SV* sv)

 "sv_2pv_flags"

 Returns a pointer to the string value of an SV, and sets *lp to its length. If flags Page 26/46

 has the "SV_GMAGIC" bit set, does an "mg_get()" first. Coerces "sv" to a string if

 necessary. Normally invoked via the "SvPV_flags" macro. "sv_2pv()" and "sv_2pv_nomg"

 usually end up here too.

 char* sv_2pv_flags(SV *const sv, STRLEN *const lp,

 const U32 flags)

 "sv_2pv_nolen"

 Like "sv_2pv()", but doesn't return the length too. You should usually use the macro

 wrapper "SvPV_nolen(sv)" instead.

 char* sv_2pv_nolen(SV* sv)

 "sv_add_arena"

 Given a chunk of memory, link it to the head of the list of arenas, and split it into

 a list of free SVs.

 void sv_add_arena(char *const ptr, const U32 size,

 const U32 flags)

 "sv_clean_all"

 Decrement the refcnt of each remaining SV, possibly triggering a cleanup. This

 function may have to be called multiple times to free SVs which are in complex self-

 referential hierarchies.

 I32 sv_clean_all()

 "sv_clean_objs"

 Attempt to destroy all objects not yet freed.

 void sv_clean_objs()

 "sv_free_arenas"

 Deallocate the memory used by all arenas. Note that all the individual SV heads and

 bodies within the arenas must already have been freed.

 void sv_free_arenas()

 "sv_grow"

 Expands the character buffer in the SV. If necessary, uses "sv_unref" and upgrades

 the SV to "SVt_PV". Returns a pointer to the character buffer. Use the "SvGROW"

 wrapper instead.

 char* sv_grow(SV *const sv, STRLEN newlen)

 "sv_iv"

 "DEPRECATED!" It is planned to remove "sv_iv" from a future release of Perl. Do not Page 27/46

 use it for new code; remove it from existing code.

 A private implementation of the "SvIVx" macro for compilers which can't cope with

 complex macro expressions. Always use the macro instead.

 IV sv_iv(SV* sv)

 "sv_newref"

 Increment an SV's reference count. Use the "SvREFCNT_inc()" wrapper instead.

 SV* sv_newref(SV *const sv)

 "sv_nv"

 "DEPRECATED!" It is planned to remove "sv_nv" from a future release of Perl. Do not

 use it for new code; remove it from existing code.

 A private implementation of the "SvNVx" macro for compilers which can't cope with

 complex macro expressions. Always use the macro instead.

 NV sv_nv(SV* sv)

 "sv_pv"

 Use the "SvPV_nolen" macro instead

 char* sv_pv(SV *sv)

 "sv_pvbyte"

 Use "SvPVbyte_nolen" instead.

 char* sv_pvbyte(SV *sv)

 "sv_pvbyten"

 "DEPRECATED!" It is planned to remove "sv_pvbyten" from a future release of Perl. Do

 not use it for new code; remove it from existing code.

 A private implementation of the "SvPVbyte" macro for compilers which can't cope with

 complex macro expressions. Always use the macro instead.

 char* sv_pvbyten(SV *sv, STRLEN *lp)

 "sv_pvbyten_force"

 The backend for the "SvPVbytex_force" macro. Always use the macro instead. If the SV

 cannot be downgraded from UTF-8, this croaks.

 char* sv_pvbyten_force(SV *const sv, STRLEN *const lp)

 "sv_pvn"

 "DEPRECATED!" It is planned to remove "sv_pvn" from a future release of Perl. Do not

 use it for new code; remove it from existing code.

 A private implementation of the "SvPV" macro for compilers which can't cope with Page 28/46

 complex macro expressions. Always use the macro instead.

 char* sv_pvn(SV *sv, STRLEN *lp)

 "sv_pvn_force"

 Get a sensible string out of the SV somehow. A private implementation of the

 "SvPV_force" macro for compilers which can't cope with complex macro expressions.

 Always use the macro instead.

 char* sv_pvn_force(SV* sv, STRLEN* lp)

 "sv_pvutf8"

 Use the "SvPVutf8_nolen" macro instead

 char* sv_pvutf8(SV *sv)

 "sv_pvutf8n"

 "DEPRECATED!" It is planned to remove "sv_pvutf8n" from a future release of Perl. Do

 not use it for new code; remove it from existing code.

 A private implementation of the "SvPVutf8" macro for compilers which can't cope with

 complex macro expressions. Always use the macro instead.

 char* sv_pvutf8n(SV *sv, STRLEN *lp)

 "sv_pvutf8n_force"

 The backend for the "SvPVutf8x_force" macro. Always use the macro instead.

 char* sv_pvutf8n_force(SV *const sv, STRLEN *const lp)

 "sv_taint"

 Taint an SV. Use "SvTAINTED_on" instead.

 void sv_taint(SV* sv)

 "sv_tainted"

 Test an SV for taintedness. Use "SvTAINTED" instead.

 bool sv_tainted(SV *const sv)

 "SvTHINKFIRST"

 A quick flag check to see whether an "sv" should be passed to "sv_force_normal" to be

 "downgraded" before "SvIVX" or "SvPVX" can be modified directly.

 For example, if your scalar is a reference and you want to modify the "SvIVX" slot,

 you can't just do "SvROK_off", as that will leak the referent.

 This is used internally by various sv-modifying functions, such as "sv_setsv",

 "sv_setiv" and "sv_pvn_force".

 One case that this does not handle is a gv without SvFAKE set. After Page 29/46

 if (SvTHINKFIRST(gv)) sv_force_normal(gv);

 it will still be a gv.

 "SvTHINKFIRST" sometimes produces false positives. In those cases "sv_force_normal"

 does nothing.

 U32 SvTHINKFIRST(SV *sv)

 "sv_true"

 Returns true if the SV has a true value by Perl's rules. Use the "SvTRUE" macro

 instead, which may call "sv_true()" or may instead use an in-line version.

 I32 sv_true(SV *const sv)

 "sv_untaint"

 Untaint an SV. Use "SvTAINTED_off" instead.

 void sv_untaint(SV *const sv)

 "sv_uv"

 "DEPRECATED!" It is planned to remove "sv_uv" from a future release of Perl. Do not

 use it for new code; remove it from existing code.

 A private implementation of the "SvUVx" macro for compilers which can't cope with

 complex macro expressions. Always use the macro instead.

 UV sv_uv(SV* sv)

Time

 There are only public API items currently in Time

Typedef names

 There are only public API items currently in Typedef names

Unicode Support

 "bytes_from_utf8_loc"

 NOTE: "bytes_from_utf8_loc" is experimental and may change or be removed without

 notice.

 Like ""bytes_from_utf8" in perlapi()", but takes an extra parameter, a pointer to

 where to store the location of the first character in "s" that cannot be converted to

 non-UTF8.

 If that parameter is "NULL", this function behaves identically to "bytes_from_utf8".

 Otherwise if *is_utf8p is 0 on input, the function behaves identically to

 "bytes_from_utf8", except it also sets *first_non_downgradable to "NULL".

 Otherwise, the function returns a newly created "NUL"-terminated string containing the Page 30/46

 non-UTF8 equivalent of the convertible first portion of "s". *lenp is set to its

 length, not including the terminating "NUL". If the entire input string was

 converted, *is_utf8p is set to a FALSE value, and *first_non_downgradable is set to

 "NULL".

 Otherwise, *first_non_downgradable is set to point to the first byte of the first

 character in the original string that wasn't converted. *is_utf8p is unchanged. Note

 that the new string may have length 0.

 Another way to look at it is, if *first_non_downgradable is non-"NULL" and *is_utf8p

 is TRUE, this function starts at the beginning of "s" and converts as many characters

 in it as possible stopping at the first one it finds that can't be converted to

 non-UTF-8. *first_non_downgradable is set to point to that. The function returns the

 portion that could be converted in a newly created "NUL"-terminated string, and *lenp

 is set to its length, not including the terminating "NUL". If the very first

 character in the original could not be converted, *lenp will be 0, and the new string

 will contain just a single "NUL". If the entire input string was converted, *is_utf8p

 is set to FALSE and *first_non_downgradable is set to "NULL".

 Upon successful return, the number of variants in the converted portion of the string

 can be computed by having saved the value of *lenp before the call, and subtracting

 the after-call value of *lenp from it.

 U8* bytes_from_utf8_loc(const U8 *s, STRLEN *lenp,

 bool *is_utf8p,

 const U8 ** first_unconverted)

 "find_uninit_var"

 NOTE: "find_uninit_var" is experimental and may change or be removed without notice.

 Find the name of the undefined variable (if any) that caused the operator to issue a

 "Use of uninitialized value" warning. If match is true, only return a name if its

 value matches "uninit_sv". So roughly speaking, if a unary operator (such as

 "OP_COS") generates a warning, then following the direct child of the op may yield an

 "OP_PADSV" or "OP_GV" that gives the name of the undefined variable. On the other

 hand, with "OP_ADD" there are two branches to follow, so we only print the variable

 name if we get an exact match. "desc_p" points to a string pointer holding the

 description of the op. This may be updated if needed.

 The name is returned as a mortal SV. Page 31/46

 Assumes that "PL_op" is the OP that originally triggered the error, and that

 "PL_comppad"/"PL_curpad" points to the currently executing pad.

 SV* find_uninit_var(const OP *const obase,

 const SV *const uninit_sv, bool match,

 const char **desc_p)

 "isSCRIPT_RUN"

 Returns a bool as to whether or not the sequence of bytes from "s" up to but not

 including "send" form a "script run". "utf8_target" is TRUE iff the sequence starting

 at "s" is to be treated as UTF-8. To be precise, except for two degenerate cases

 given below, this function returns TRUE iff all code points in it come from any

 combination of three "scripts" given by the Unicode "Script Extensions" property:

 Common, Inherited, and possibly one other. Additionally all decimal digits must come

 from the same consecutive sequence of 10.

 For example, if all the characters in the sequence are Greek, or Common, or Inherited,

 this function will return TRUE, provided any decimal digits in it are from the same

 block of digits in Common. (These are the ASCII digits "0".."9" and additionally a

 block for full width forms of these, and several others used in mathematical

 notation.) For scripts (unlike Greek) that have their own digits defined this will

 accept either digits from that set or from one of the Common digit sets, but not a

 combination of the two. Some scripts, such as Arabic, have more than one set of

 digits. All digits must come from the same set for this function to return TRUE.

 *ret_script, if "ret_script" is not NULL, will on return of TRUE contain the script

 found, using the "SCX_enum" typedef. Its value will be "SCX_INVALID" if the function

 returns FALSE.

 If the sequence is empty, TRUE is returned, but *ret_script (if asked for) will be

 "SCX_INVALID".

 If the sequence contains a single code point which is unassigned to a character in the

 version of Unicode being used, the function will return TRUE, and the script will be

 "SCX_Unknown". Any other combination of unassigned code points in the input sequence

 will result in the function treating the input as not being a script run.

 The returned script will be "SCX_Inherited" iff all the code points in it are from the

 Inherited script.

 Otherwise, the returned script will be "SCX_Common" iff all the code points in it are Page 32/46

 from the Inherited or Common scripts.

 bool isSCRIPT_RUN(const U8 *s, const U8 *send,

 const bool utf8_target)

 "is_utf8_non_invariant_string"

 Returns TRUE if "is_utf8_invariant_string" in perlapi returns FALSE for the first

 "len" bytes of the string "s", but they are, nonetheless, legal Perl-extended UTF-8;

 otherwise returns FALSE.

 A TRUE return means that at least one code point represented by the sequence either is

 a wide character not representable as a single byte, or the representation differs

 depending on whether the sequence is encoded in UTF-8 or not.

 See also ""is_utf8_invariant_string" in perlapi", ""is_utf8_string" in perlapi"

 bool is_utf8_non_invariant_string(const U8* const s, STRLEN len)

 "report_uninit"

 Print appropriate "Use of uninitialized variable" warning.

 void report_uninit(const SV *uninit_sv)

 "utf8n_to_uvuni"

 "DEPRECATED!" It is planned to remove "utf8n_to_uvuni" from a future release of Perl.

 Do not use it for new code; remove it from existing code.

 Instead use "utf8_to_uvchr_buf" in perlapi, or rarely, "utf8n_to_uvchr" in perlapi.

 This function was useful for code that wanted to handle both EBCDIC and ASCII

 platforms with Unicode properties, but starting in Perl v5.20, the distinctions

 between the platforms have mostly been made invisible to most code, so this function

 is quite unlikely to be what you want. If you do need this precise functionality, use

 instead "NATIVE_TO_UNI(utf8_to_uvchr_buf(...))" or

 "NATIVE_TO_UNI(utf8n_to_uvchr(...))".

 UV utf8n_to_uvuni(const U8 *s, STRLEN curlen, STRLEN *retlen,

 U32 flags)

 "utf8_to_uvuni"

 "DEPRECATED!" It is planned to remove "utf8_to_uvuni" from a future release of Perl.

 Do not use it for new code; remove it from existing code.

 Returns the Unicode code point of the first character in the string "s" which is

 assumed to be in UTF-8 encoding; "retlen" will be set to the length, in bytes, of that

 character. Page 33/46

 Some, but not all, UTF-8 malformations are detected, and in fact, some malformed input

 could cause reading beyond the end of the input buffer, which is one reason why this

 function is deprecated. The other is that only in extremely limited circumstances

 should the Unicode versus native code point be of any interest to you. See

 "utf8_to_uvuni_buf" for alternatives.

 If "s" points to one of the detected malformations, and UTF8 warnings are enabled,

 zero is returned and *retlen is set (if "retlen" doesn't point to NULL) to -1. If

 those warnings are off, the computed value if well-defined (or the Unicode REPLACEMENT

 CHARACTER, if not) is silently returned, and *retlen is set (if "retlen" isn't NULL)

 so that ("s"?+?*retlen) is the next possible position in "s" that could begin a non-

 malformed character. See "utf8n_to_uvchr" in perlapi for details on when the

 REPLACEMENT CHARACTER is returned.

 UV utf8_to_uvuni(const U8 *s, STRLEN *retlen)

 "utf8_to_uvuni_buf"

 "DEPRECATED!" It is planned to remove "utf8_to_uvuni_buf" from a future release of

 Perl. Do not use it for new code; remove it from existing code.

 Only in very rare circumstances should code need to be dealing in Unicode (as opposed

 to native) code points. In those few cases, use

 "NATIVE_TO_UNI(utf8_to_uvchr_buf(...))" instead. If you are not absolutely sure this

 is one of those cases, then assume it isn't and use plain "utf8_to_uvchr_buf" instead.

 Returns the Unicode (not-native) code point of the first character in the string "s"

 which is assumed to be in UTF-8 encoding; "send" points to 1 beyond the end of "s".

 "retlen" will be set to the length, in bytes, of that character.

 If "s" does not point to a well-formed UTF-8 character and UTF8 warnings are enabled,

 zero is returned and *retlen is set (if "retlen" isn't NULL) to -1. If those warnings

 are off, the computed value if well-defined (or the Unicode REPLACEMENT CHARACTER, if

 not) is silently returned, and *retlen is set (if "retlen" isn't NULL) so that

 ("s"?+?*retlen) is the next possible position in "s" that could begin a non-malformed

 character. See "utf8n_to_uvchr" in perlapi for details on when the REPLACEMENT

 CHARACTER is returned.

 UV utf8_to_uvuni_buf(const U8 *s, const U8 *send, STRLEN *retlen)

 "uvoffuni_to_utf8_flags"

 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES. Instead, AlmostPage 34/46

 all code should use "uvchr_to_utf8" in perlapi or "uvchr_to_utf8_flags" in perlapi.

 This function is like them, but the input is a strict Unicode (as opposed to native)

 code point. Only in very rare circumstances should code not be using the native code

 point.

 For details, see the description for "uvchr_to_utf8_flags" in perlapi.

 U8* uvoffuni_to_utf8_flags(U8 *d, UV uv, const UV flags)

 "uvuni_to_utf8_flags"

 "DEPRECATED!" It is planned to remove "uvuni_to_utf8_flags" from a future release of

 Perl. Do not use it for new code; remove it from existing code.

 Instead you almost certainly want to use "uvchr_to_utf8" in perlapi or

 "uvchr_to_utf8_flags" in perlapi.

 This function is a deprecated synonym for "uvoffuni_to_utf8_flags", which itself,

 while not deprecated, should be used only in isolated circumstances. These functions

 were useful for code that wanted to handle both EBCDIC and ASCII platforms with

 Unicode properties, but starting in Perl v5.20, the distinctions between the platforms

 have mostly been made invisible to most code, so this function is quite unlikely to be

 what you want.

 U8* uvuni_to_utf8_flags(U8 *d, UV uv, UV flags)

 "valid_utf8_to_uvchr"

 Like ""utf8_to_uvchr_buf" in perlapi", but should only be called when it is known that

 the next character in the input UTF-8 string "s" is well-formed (e.g., it passes

 ""isUTF8_CHAR" in perlapi". Surrogates, non-character code points, and non-Unicode

 code points are allowed.

 UV valid_utf8_to_uvchr(const U8 *s, STRLEN *retlen)

 "variant_under_utf8_count"

 This function looks at the sequence of bytes between "s" and "e", which are assumed to

 be encoded in ASCII/Latin1, and returns how many of them would change should the

 string be translated into UTF-8. Due to the nature of UTF-8, each of these would

 occupy two bytes instead of the single one in the input string. Thus, this function

 returns the precise number of bytes the string would expand by when translated to

 UTF-8.

 Unlike most of the other functions that have "utf8" in their name, the input to this

 function is NOT a UTF-8-encoded string. The function name is slightly odd to Page 35/46

 emphasize this.

 This function is internal to Perl because khw thinks that any XS code that would want

 this is probably operating too close to the internals. Presenting a valid use case

 could change that.

 See also ""is_utf8_invariant_string" in perlapi" and ""is_utf8_invariant_string_loc"

 in perlapi",

 Size_t variant_under_utf8_count(const U8* const s,

 const U8* const e)

Utility Functions

 There are only public API items currently in Utility Functions

Versioning

 There are only public API items currently in Versioning

Warning and Dieing

 "PL_dowarn"

 The C variable that roughly corresponds to Perl's $^W warning variable. However, $^W

 is treated as a boolean, whereas "PL_dowarn" is a collection of flag bits.

 On threaded perls, each thread has an independent copy of this variable; each

 initialized at creation time with the current value of the creating thread's copy.

 U8 PL_dowarn

XS

 There are only public API items currently in XS

Undocumented elements

 The following functions are currently undocumented. If you use one of them, you may wish

 to consider creating and submitting documentation for it.

 abort_execution

 add_cp_to_invlist

 _add_range_to_invlist

 alloc_LOGOP

 allocmy

 amagic_cmp

 amagic_cmp_desc

 amagic_cmp_locale

 amagic_cmp_locale_desc Page 36/46

 amagic_is_enabled

 amagic_i_ncmp

 amagic_i_ncmp_desc

 amagic_ncmp

 amagic_ncmp_desc

 append_utf8_from_native_byte

 apply

 ASCII_TO_NEED

 av_arylen_p

 av_extend_guts

 av_iter_p

 av_nonelem

 av_reify

 bind_match

 boot_core_mro

 boot_core_PerlIO

 boot_core_UNIVERSAL

 _byte_dump_string

 cando

 cast_i32

 cast_iv

 cast_ulong

 cast_uv

 check_utf8_print

 ck_anoncode

 ck_backtick

 ck_bitop

 ck_cmp

 ck_concat

 ck_defined

 ck_delete

 ck_each

 ck_entersub_args_core Page 37/46

 ck_eof

 ck_eval

 ck_exec

 ck_exists

 ck_ftst

 ck_fun

 ck_glob

 ck_grep

 ck_index

 ck_isa

 ck_join

 ck_length

 ck_lfun

 ck_listiob

 ck_match

 ck_method

 ck_null

 ck_open

 ck_prototype

 ck_readline

 ck_refassign

 ck_repeat

 ck_require

 ck_return

 ck_rfun

 ck_rvconst

 ck_sassign

 ck_select

 ck_shift

 ck_smartmatch

 ck_sort

 ck_spair

 ck_split Page 38/46

 ck_stringify

 ck_subr

 ck_substr

 ck_svconst

 ck_tell

 ck_trunc

 ck_trycatch

 ckwarn

 ckwarn_d

 closest_cop

 cmpchain_extend

 cmpchain_finish

 cmpchain_start

 cmp_desc

 cmp_locale_desc

 cntrl_to_mnemonic

 coresub_op

 create_eval_scope

 croak_caller

 croak_memory_wrap

 croak_no_mem

 croak_popstack

 csighandler

 csighandler1

 csighandler3

 current_re_engine

 custom_op_get_field

 cv_ckproto_len_flags

 cv_clone_into

 cv_const_sv_or_av

 cvgv_from_hek

 cvgv_set

 cvstash_set Page 39/46

 cv_undef_flags

 cx_dump

 cx_dup

 cxinc

 cx_popblock

 cx_popeval

 cx_popformat

 cx_popgiven

 cx_poploop

 cx_popsub

 cx_popsub_args

 cx_popsub_common

 cx_popwhen

 cx_pushblock

 cx_pusheval

 cx_pushformat

 cx_pushgiven

 cx_pushloop_for

 cx_pushloop_plain

 cx_pushsub

 cx_pushtry

 cx_pushwhen

 cx_topblock

 deb_stack_all

 defelem_target

 delete_eval_scope

 despatch_signals

 die_unwind

 do_aexec

 do_aexec5

 do_eof

 does_utf8_overflow

 do_exec Page 40/46

 do_exec3

 dofile

 do_gvgv_dump

 do_gv_dump

 do_hv_dump

 doing_taint

 do_ipcctl

 do_ipcget

 do_magic_dump

 do_msgrcv

 do_msgsnd

 do_ncmp

 do_open6

 do_open_raw

 do_op_dump

 do_pmop_dump

 do_print

 do_readline

 do_seek

 do_semop

 do_shmio

 do_sv_dump

 do_sysseek

 do_tell

 do_trans

 do_uniprop_match

 do_vecget

 do_vecset

 do_vop

 drand48_init_r

 drand48_r

 dtrace_probe_call

 dtrace_probe_load Page 41/46

 dtrace_probe_op

 dtrace_probe_phase

 dump_all_perl

 dump_indent

 dump_packsubs_perl

 dump_sub_perl

 dump_sv_child

 dump_vindent

 dup_warnings

 emulate_cop_io

 find_first_differing_byte_pos

 find_lexical_cv

 find_runcv_where

 find_script

 foldEQ_latin1

 foldEQ_latin1_s2_folded

 foldEQ_utf8_flags

 _force_out_malformed_utf8_message

 form_alien_digit_msg

 form_cp_too_large_msg

 free_tied_hv_pool

 free_tmps

 get_and_check_backslash_N_name

 get_db_sub

 get_debug_opts

 get_deprecated_property_msg

 getenv_len

 get_hash_seed

 get_invlist_iter_addr

 get_invlist_offset_addr

 get_invlist_previous_index_addr

 get_no_modify

 get_opargs Page 42/46

 get_prop_definition

 get_prop_values

 get_regclass_nonbitmap_data

 get_regex_charset_name

 get_re_arg

 get_re_gclass_nonbitmap_data

 gimme_V

 grok_bin_oct_hex

 grok_bslash_c

 grok_bslash_o

 grok_bslash_x

 gv_check

 gv_fetchmeth_internal

 gv_override

 gv_setref

 gv_stashpvn_internal

 hfree_next_entry

 hv_backreferences_p

 hv_common

 hv_common_key_len

 hv_kill_backrefs

 hv_placeholders_p

 hv_pushkv

 hv_undef_flags

 init_argv_symbols

 init_constants

 init_dbargs

 init_debugger

 init_i18nl10n

 init_i18nl14n

 init_named_cv

 init_uniprops

 _inverse_folds Page 43/46

 invert

 invlist_array

 invlist_clear

 invlist_clone

 invlist_contents

 _invlistEQ

 invlist_extend

 invlist_highest

 invlist_is_iterating

 invlist_iterfinish

 invlist_iterinit

 invlist_iternext

 invlist_lowest

 invlist_max

 invlist_previous_index

 invlist_set_len

 invlist_set_previous_index

 invlist_trim

 _invlist_array_init

 _invlist_contains_cp

 _invlist_dump

 _invlist_intersection

 _invlist_intersection_maybe_complement_2nd

 _invlist_invert

 _invlist_len

 _invlist_search

 _invlist_subtract

 _invlist_union

 _invlist_union_maybe_complement_2nd

 invmap_dump

 io_close

 isFF_OVERLONG

 is_grapheme Page 44/46

 is_invlist

 is_utf8_char_helper

 is_utf8_common

 is_utf8_overlong_given_start_byte_ok

 _is_cur_LC_category_utf8

 _is_in_locale_category

 _is_uni_FOO

 _is_uni_perl_idcont

 _is_uni_perl_idstart

 _is_utf8_FOO

 _is_utf8_perl_idcont

 _is_utf8_perl_idstart

 jmaybe

 keyword

 keyword_plugin_standard

 list

 load_charnames

 localize

 lossless_NV_to_IV

 magic_cleararylen_p

 magic_clearenv

 magic_clearisa

 magic_clearpack

 magic_clearsig

 magic_clear_all_env

 magic_copycallchecker

 magic_existspack

AUTHORS

 The autodocumentation system was originally added to the Perl core by Benjamin Stuhl.

 Documentation is by whoever was kind enough to document their functions.

SEE ALSO

 config.h, perlapi, perlapio, perlcall, perlclib, perlfilter, perlguts, perlinterp,

 perliol, perlmroapi, perlreguts, perlxs Page 45/46

perl v5.34.0 2023-11-23 PERLINTERN(1)

Page 46/46

