
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlfaq3.1'

$ man perlfaq3.1

PERLFAQ3(1)                      Perl Programmers Reference Guide                     PERLFAQ3(1)

NAME

       perlfaq3 - Programming Tools

VERSION

       version 5.20210411

DESCRIPTION

       This section of the FAQ answers questions related to programmer tools and programming

       support.

   How do I do (anything)?

       Have you looked at CPAN (see perlfaq2)? The chances are that someone has already written a

       module that can solve your problem.  Have you read the appropriate manpages? Here's a

       brief index:

       Basics

           perldata - Perl data types

           perlvar - Perl pre-defined variables

           perlsyn - Perl syntax

           perlop - Perl operators and precedence

           perlsub - Perl subroutines

       Execution

           perlrun - how to execute the Perl interpreter

           perldebug - Perl debugging

       Functions

           perlfunc - Perl builtin functions Page 1/20



       Objects

           perlref - Perl references and nested data structures

           perlmod - Perl modules (packages and symbol tables)

           perlobj - Perl objects

           perltie - how to hide an object class in a simple variable

       Data Structures

           perlref - Perl references and nested data structures

           perllol - Manipulating arrays of arrays in Perl

           perldsc - Perl Data Structures Cookbook

       Modules

           perlmod - Perl modules (packages and symbol tables)

           perlmodlib - constructing new Perl modules and finding existing ones

       Regexes

           perlre - Perl regular expressions

           perlfunc - Perl builtin functions>

           perlop - Perl operators and precedence

           perllocale - Perl locale handling (internationalization and localization)

       Moving to perl5

           perltrap - Perl traps for the unwary

           perl

       Linking with C

           perlxstut - Tutorial for writing XSUBs

           perlxs - XS language reference manual

           perlcall - Perl calling conventions from C

           perlguts - Introduction to the Perl API

           perlembed - how to embed perl in your C program

       Various

           <http://www.cpan.org/misc/olddoc/FMTEYEWTK.tgz> (not a man-page but still useful, a

           collection of various essays on Perl techniques)

       A crude table of contents for the Perl manpage set is found in perltoc.

   How can I use Perl interactively?

       The typical approach uses the Perl debugger, described in the perldebug(1) manpage, on an

       "empty" program, like this: Page 2/20



           perl -de 42

       Now just type in any legal Perl code, and it will be immediately evaluated. You can also

       examine the symbol table, get stack backtraces, check variable values, set breakpoints,

       and other operations typically found in symbolic debuggers.

       You can also use Devel::REPL which is an interactive shell for Perl, commonly known as a

       REPL - Read, Evaluate, Print, Loop. It provides various handy features.

   How do I find which modules are installed on my system?

       From the command line, you can use the "cpan" command's "-l" switch:

           $ cpan -l

       You can also use "cpan"'s "-a" switch to create an autobundle file that "CPAN.pm"

       understands and can use to re-install every module:

           $ cpan -a

       Inside a Perl program, you can use the ExtUtils::Installed module to show all installed

       distributions, although it can take awhile to do its magic. The standard library which

       comes with Perl just shows up as "Perl" (although you can get those with

       Module::CoreList).

           use ExtUtils::Installed;

           my $inst    = ExtUtils::Installed->new();

           my @modules = $inst->modules();

       If you want a list of all of the Perl module filenames, you can use File::Find::Rule:

           use File::Find::Rule;

           my @files = File::Find::Rule->

               extras({follow => 1})->

               file()->

               name( '*.pm' )->

               in( @INC )

               ;

       If you do not have that module, you can do the same thing with File::Find which is part of

       the standard library:

           use File::Find;

           my @files;

           find(

               { Page 3/20



               wanted => sub {

                   push @files, $File::Find::fullname

                   if -f $File::Find::fullname && /\.pm$/

               },

               follow => 1,

               follow_skip => 2,

               },

               @INC

           );

           print join "\n", @files;

       If you simply need to check quickly to see if a module is available, you can check for its

       documentation. If you can read the documentation the module is most likely installed.  If

       you cannot read the documentation, the module might not have any (in rare cases):

           $ perldoc Module::Name

       You can also try to include the module in a one-liner to see if perl finds it:

           $ perl -MModule::Name -e1

       (If you don't receive a "Can't locate ... in @INC" error message, then Perl found the

       module name you asked for.)

   How do I debug my Perl programs?

       (contributed by brian d foy)

       Before you do anything else, you can help yourself by ensuring that you let Perl tell you

       about problem areas in your code. By turning on warnings and strictures, you can head off

       many problems before they get too big. You can find out more about these in strict and

       warnings.

           #!/usr/bin/perl

           use strict;

           use warnings;

       Beyond that, the simplest debugger is the "print" function. Use it to look at values as

       you run your program:

           print STDERR "The value is [$value]\n";

       The Data::Dumper module can pretty-print Perl data structures:

           use Data::Dumper qw( Dumper );

           print STDERR "The hash is " . Dumper( \%hash ) . "\n"; Page 4/20



       Perl comes with an interactive debugger, which you can start with the "-d" switch. It's

       fully explained in perldebug.

       If you'd like a graphical user interface and you have Tk, you can use "ptkdb". It's on

       CPAN and available for free.

       If you need something much more sophisticated and controllable, Leon Brocard's Devel::ebug

       (which you can call with the "-D" switch as "-Debug") gives you the programmatic hooks

       into everything you need to write your own (without too much pain and suffering).

       You can also use a commercial debugger such as Affrus (Mac OS X), Komodo from Activestate

       (Windows and Mac OS X), or EPIC (most platforms).

   How do I profile my Perl programs?

       (contributed by brian d foy, updated Fri Jul 25 12:22:26 PDT 2008)

       The "Devel" namespace has several modules which you can use to profile your Perl programs.

       The Devel::NYTProf (New York Times Profiler) does both statement and subroutine profiling.

       It's available from CPAN and you also invoke it with the "-d" switch:

           perl -d:NYTProf some_perl.pl

       It creates a database of the profile information that you can turn into reports. The

       "nytprofhtml" command turns the data into an HTML report similar to the Devel::Cover

       report:

           nytprofhtml

       You might also be interested in using the Benchmark to measure and compare code snippets.

       You can read more about profiling in Programming Perl, chapter 20, or Mastering Perl,

       chapter 5.

       perldebguts documents creating a custom debugger if you need to create a special sort of

       profiler. brian d foy describes the process in The Perl Journal, "Creating a Perl

       Debugger", <http://www.ddj.com/184404522> , and "Profiling in Perl"

       <http://www.ddj.com/184404580> .

       Perl.com has two interesting articles on profiling: "Profiling Perl", by Simon Cozens,

       <https://www.perl.com/pub/2004/06/25/profiling.html/> and "Debugging and Profiling

       mod_perl Applications", by Frank Wiles,

       <http://www.perl.com/pub/a/2006/02/09/debug_mod_perl.html> .

       Randal L. Schwartz writes about profiling in "Speeding up Your Perl Programs" for Unix

       Review, <http://www.stonehenge.com/merlyn/UnixReview/col49.html> , and "Profiling in

       Template Toolkit via Overriding" for Linux Magazine, Page 5/20



       <http://www.stonehenge.com/merlyn/LinuxMag/col75.html> .

   How do I cross-reference my Perl programs?

       The B::Xref module can be used to generate cross-reference reports for Perl programs.

           perl -MO=Xref[,OPTIONS] scriptname.plx

   Is there a pretty-printer (formatter) for Perl?

       Perl::Tidy comes with a perl script perltidy which indents and reformats Perl scripts to

       make them easier to read by trying to follow the rules of the perlstyle. If you write

       Perl, or spend much time reading Perl, you will probably find it useful.

       Of course, if you simply follow the guidelines in perlstyle, you shouldn't need to

       reformat. The habit of formatting your code as you write it will help prevent bugs. Your

       editor can and should help you with this. The perl-mode or newer cperl-mode for emacs can

       provide remarkable amounts of help with most (but not all) code, and even less

       programmable editors can provide significant assistance. Tom Christiansen and many other

       VI users swear by the following settings in vi and its clones:

           set ai sw=4

           map! ^O {^M}^[O^T

       Put that in your .exrc file (replacing the caret characters with control characters) and

       away you go. In insert mode, ^T is for indenting, ^D is for undenting, and ^O is for

       blockdenting--as it were. A more complete example, with comments, can be found at

       <http://www.cpan.org/authors/id/T/TO/TOMC/scripts/toms.exrc.gz>

   Is there an IDE or Windows Perl Editor?

       Perl programs are just plain text, so any editor will do.

       If you're on Unix, you already have an IDE--Unix itself. The Unix philosophy is the

       philosophy of several small tools that each do one thing and do it well. It's like a

       carpenter's toolbox.

       If you want an IDE, check the following (in alphabetical order, not order of preference):

       Eclipse

           <http://e-p-i-c.sf.net/>

           The Eclipse Perl Integration Project integrates Perl editing/debugging with Eclipse.

       Enginsite

           <http://www.enginsite.com/>

           Perl Editor by EngInSite is a complete integrated development environment (IDE) for

           creating, testing, and  debugging  Perl scripts; the tool runs on Windows Page 6/20



           9x/NT/2000/XP or later.

       IntelliJ IDEA

           <https://plugins.jetbrains.com/plugin/7796>

           Camelcade plugin provides Perl5 support in IntelliJ IDEA and other JetBrains IDEs.

       Kephra

           <http://kephra.sf.net>

           GUI editor written in Perl using wxWidgets and Scintilla with lots of smaller

           features.  Aims for a UI based on Perl principles like TIMTOWTDI and "easy things

           should be easy, hard things should be possible".

       Komodo

           <http://www.ActiveState.com/Products/Komodo/>

           ActiveState's cross-platform (as of October 2004, that's Windows, Linux, and Solaris),

           multi-language IDE has Perl support, including a regular expression debugger and

           remote debugging.

       Notepad++

           <http://notepad-plus.sourceforge.net/>

       Open Perl IDE

           <http://open-perl-ide.sourceforge.net/>

           Open Perl IDE is an integrated development environment for writing and debugging Perl

           scripts with ActiveState's ActivePerl distribution under Windows 95/98/NT/2000.

       OptiPerl

           <http://www.optiperl.com/>

           OptiPerl is a Windows IDE with simulated CGI environment, including debugger and

           syntax-highlighting editor.

       Padre

           <http://padre.perlide.org/>

           Padre is cross-platform IDE for Perl written in Perl using wxWidgets to provide a

           native look and feel. It's open source under the Artistic License. It is one of the

           newer Perl IDEs.

       PerlBuilder

           <http://www.solutionsoft.com/perl.htm>

           PerlBuilder is an integrated development environment for Windows that supports Perl

           development. Page 7/20



       visiPerl+

           <http://helpconsulting.net/visiperl/index.html>

           From Help Consulting, for Windows.

       Visual Perl

           <http://www.activestate.com/Products/Visual_Perl/>

           Visual Perl is a Visual Studio.NET plug-in from ActiveState.

       Zeus

           <http://www.zeusedit.com/lookmain.html>

           Zeus for Windows is another Win32 multi-language editor/IDE that comes with support

           for Perl.

       For editors: if you're on Unix you probably have vi or a vi clone already, and possibly an

       emacs too, so you may not need to download anything. In any emacs the cperl-mode (M-x

       cperl-mode) gives you perhaps the best available Perl editing mode in any editor.

       If you are using Windows, you can use any editor that lets you work with plain text, such

       as NotePad or WordPad. Word processors, such as Microsoft Word or WordPerfect, typically

       do not work since they insert all sorts of behind-the-scenes information, although some

       allow you to save files as "Text Only". You can also download text editors designed

       specifically for programming, such as Textpad ( <http://www.textpad.com/> ) and UltraEdit

       ( <http://www.ultraedit.com/> ), among others.

       If you are using MacOS, the same concerns apply. MacPerl (for Classic environments) comes

       with a simple editor. Popular external editors are BBEdit (

       <http://www.barebones.com/products/bbedit/> ) or Alpha (

       <http://www.his.com/~jguyer/Alpha/Alpha8.html> ). MacOS X users can use Unix editors as

       well.

       GNU Emacs

           <http://www.gnu.org/software/emacs/windows/ntemacs.html>

       MicroEMACS

           <http://www.microemacs.de/>

       XEmacs

           <http://www.xemacs.org/Download/index.html>

       Jed <http://space.mit.edu/~davis/jed/>

       or a vi clone such as

       Vim <http://www.vim.org/> Page 8/20



       Vile

           <http://invisible-island.net/vile/vile.html>

       The following are Win32 multilanguage editor/IDEs that support Perl:

       MultiEdit

           <http://www.MultiEdit.com/>

       SlickEdit

           <http://www.slickedit.com/>

       ConTEXT

           <http://www.contexteditor.org/>

       There is also a toyedit Text widget based editor written in Perl that is distributed with

       the Tk module on CPAN. The ptkdb ( <http://ptkdb.sourceforge.net/> ) is a Perl/Tk-based

       debugger that acts as a development environment of sorts. Perl Composer (

       <http://perlcomposer.sourceforge.net/> ) is an IDE for Perl/Tk GUI creation.

       In addition to an editor/IDE you might be interested in a more powerful shell environment

       for Win32. Your options include

       bash

           from the Cygwin package ( <http://cygwin.com/> )

       zsh <http://www.zsh.org/>

       Cygwin is covered by the GNU General Public License (but that shouldn't matter for Perl

       use). Cygwin contains (in addition to the shell) a comprehensive set of standard Unix

       toolkit utilities.

       BBEdit and TextWrangler

           are text editors for OS X that have a Perl sensitivity mode (

           <http://www.barebones.com/> ).

   Where can I get Perl macros for vi?

       For a complete version of Tom Christiansen's vi configuration file, see

       <http://www.cpan.org/authors/id/T/TO/TOMC/scripts/toms.exrc.gz> , the standard benchmark

       file for vi emulators. The file runs best with nvi, the current version of vi out of

       Berkeley, which incidentally can be built with an embedded Perl interpreter--see

       <http://www.cpan.org/src/misc/> .

   Where can I get perl-mode or cperl-mode for emacs?

       Since Emacs version 19 patchlevel 22 or so, there have been both a perl-mode.el and

       support for the Perl debugger built in. These should come with the standard Emacs 19 Page 9/20



       distribution.

       Note that the perl-mode of emacs will have fits with "main'foo" (single quote), and mess

       up the indentation and highlighting. You are probably using "main::foo" in new Perl code

       anyway, so this shouldn't be an issue.

       For CPerlMode, see <http://www.emacswiki.org/cgi-bin/wiki/CPerlMode>

   How can I use curses with Perl?

       The Curses module from CPAN provides a dynamically loadable object module interface to a

       curses library. A small demo can be found at the directory

       <http://www.cpan.org/authors/id/T/TO/TOMC/scripts/rep.gz> ; this program repeats a command

       and updates the screen as needed, rendering rep ps axu similar to top.

   How can I write a GUI (X, Tk, Gtk, etc.) in Perl?

       (contributed by Ben Morrow)

       There are a number of modules which let you write GUIs in Perl. Most GUI toolkits have a

       perl interface: an incomplete list follows.

       Tk  This works under Unix and Windows, and the current version doesn't look half as bad

           under Windows as it used to. Some of the gui elements still don't 'feel' quite right,

           though. The interface is very natural and 'perlish', making it easy to use in small

           scripts that just need a simple gui. It hasn't been updated in a while.

       Wx  This is a Perl binding for the cross-platform wxWidgets toolkit (

           <http://www.wxwidgets.org> ). It works under Unix, Win32 and Mac OS X, using native

           widgets (Gtk under Unix). The interface follows the C++ interface closely, but the

           documentation is a little sparse for someone who doesn't know the library, mostly just

           referring you to the C++ documentation.

       Gtk and Gtk2

           These are Perl bindings for the Gtk toolkit ( <http://www.gtk.org> ). The interface

           changed significantly between versions 1 and 2 so they have separate Perl modules. It

           runs under Unix, Win32 and Mac OS X (currently it requires an X server on Mac OS, but

           a 'native' port is underway), and the widgets look the same on every platform: i.e.,

           they don't match the native widgets. As with Wx, the Perl bindings follow the C API

           closely, and the documentation requires you to read the C documentation to understand

           it.

       Win32::GUI

           This provides access to most of the Win32 GUI widgets from Perl.  Obviously, it only Page 10/20



           runs under Win32, and uses native widgets. The Perl interface doesn't really follow

           the C interface: it's been made more Perlish, and the documentation is pretty good.

           More advanced stuff may require familiarity with the C Win32 APIs, or reference to

           MSDN.

       CamelBones

           CamelBones ( <http://camelbones.sourceforge.net> ) is a Perl interface to Mac OS X's

           Cocoa GUI toolkit, and as such can be used to produce native GUIs on Mac OS X. It's

           not on CPAN, as it requires frameworks that CPAN.pm doesn't know how to install, but

           installation is via the standard OSX package installer. The Perl API is, again, very

           close to the ObjC API it's wrapping, and the documentation just tells you how to

           translate from one to the other.

       Qt  There is a Perl interface to TrollTech's Qt toolkit, but it does not appear to be

           maintained.

       Athena

           Sx is an interface to the Athena widget set which comes with X, but again it appears

           not to be much used nowadays.

   How can I make my Perl program run faster?

       The best way to do this is to come up with a better algorithm. This can often make a

       dramatic difference. Jon Bentley's book Programming Pearls (that's not a misspelling!)

       has some good tips on optimization, too. Advice on benchmarking boils down to: benchmark

       and profile to make sure you're optimizing the right part, look for better algorithms

       instead of microtuning your code, and when all else fails consider just buying faster

       hardware. You will probably want to read the answer to the earlier question "How do I

       profile my Perl programs?" if you haven't done so already.

       A different approach is to autoload seldom-used Perl code. See the AutoSplit and

       AutoLoader modules in the standard distribution for that. Or you could locate the

       bottleneck and think about writing just that part in C, the way we used to take

       bottlenecks in C code and write them in assembler. Similar to rewriting in C, modules that

       have critical sections can be written in C (for instance, the PDL module from CPAN).

       If you're currently linking your perl executable to a shared libc.so, you can often gain a

       10-25% performance benefit by rebuilding it to link with a static libc.a instead. This

       will make a bigger perl executable, but your Perl programs (and programmers) may thank you

       for it. See the INSTALL file in the source distribution for more information. Page 11/20



       The undump program was an ancient attempt to speed up Perl program by storing the already-

       compiled form to disk. This is no longer a viable option, as it only worked on a few

       architectures, and wasn't a good solution anyway.

   How can I make my Perl program take less memory?

       When it comes to time-space tradeoffs, Perl nearly always prefers to throw memory at a

       problem. Scalars in Perl use more memory than strings in C, arrays take more than that,

       and hashes use even more. While there's still a lot to be done, recent releases have been

       addressing these issues. For example, as of 5.004, duplicate hash keys are shared amongst

       all hashes using them, so require no reallocation.

       In some cases, using substr() or vec() to simulate arrays can be highly beneficial. For

       example, an array of a thousand booleans will take at least 20,000 bytes of space, but it

       can be turned into one 125-byte bit vector--a considerable memory savings. The standard

       Tie::SubstrHash module can also help for certain types of data structure. If you're

       working with specialist data structures (matrices, for instance) modules that implement

       these in C may use less memory than equivalent Perl modules.

       Another thing to try is learning whether your Perl was compiled with the system malloc or

       with Perl's builtin malloc. Whichever one it is, try using the other one and see whether

       this makes a difference.  Information about malloc is in the INSTALL file in the source

       distribution. You can find out whether you are using perl's malloc by typing "perl

       -V:usemymalloc".

       Of course, the best way to save memory is to not do anything to waste it in the first

       place. Good programming practices can go a long way toward this:

       Don't slurp!

           Don't read an entire file into memory if you can process it line by line. Or more

           concretely, use a loop like this:

               #

               # Good Idea

               #

               while (my $line = <$file_handle>) {

                  # ...

               }

           instead of this:

               # Page 12/20



               # Bad Idea

               #

               my @data = <$file_handle>;

               foreach (@data) {

                   # ...

               }

           When the files you're processing are small, it doesn't much matter which way you do

           it, but it makes a huge difference when they start getting larger.

       Use map and grep selectively

           Remember that both map and grep expect a LIST argument, so doing this:

                   @wanted = grep {/pattern/} <$file_handle>;

           will cause the entire file to be slurped. For large files, it's better to loop:

                   while (<$file_handle>) {

                           push(@wanted, $_) if /pattern/;

                   }

       Avoid unnecessary quotes and stringification

           Don't quote large strings unless absolutely necessary:

                   my $copy = "$large_string";

           makes 2 copies of $large_string (one for $copy and another for the quotes), whereas

                   my $copy = $large_string;

           only makes one copy.

           Ditto for stringifying large arrays:

               {

               local $, = "\n";

               print @big_array;

               }

           is much more memory-efficient than either

               print join "\n", @big_array;

           or

               {

               local $" = "\n";

               print "@big_array";

               } Page 13/20



       Pass by reference

           Pass arrays and hashes by reference, not by value. For one thing, it's the only way to

           pass multiple lists or hashes (or both) in a single call/return. It also avoids

           creating a copy of all the contents. This requires some judgement, however, because

           any changes will be propagated back to the original data. If you really want to mangle

           (er, modify) a copy, you'll have to sacrifice the memory needed to make one.

       Tie large variables to disk

           For "big" data stores (i.e. ones that exceed available memory) consider using one of

           the DB modules to store it on disk instead of in RAM. This will incur a penalty in

           access time, but that's probably better than causing your hard disk to thrash due to

           massive swapping.

   Is it safe to return a reference to local or lexical data?

       Yes. Perl's garbage collection system takes care of this so everything works out right.

           sub makeone {

               my @a = ( 1 .. 10 );

               return \@a;

           }

           for ( 1 .. 10 ) {

               push @many, makeone();

           }

           print $many[4][5], "\n";

           print "@many\n";

   How can I free an array or hash so my program shrinks?

       (contributed by Michael Carman)

       You usually can't. Memory allocated to lexicals (i.e. my() variables) cannot be reclaimed

       or reused even if they go out of scope. It is reserved in case the variables come back

       into scope. Memory allocated to global variables can be reused (within your program) by

       using undef() and/or delete().

       On most operating systems, memory allocated to a program can never be returned to the

       system. That's why long-running programs sometimes re- exec themselves. Some operating

       systems (notably, systems that use mmap(2) for allocating large chunks of memory) can

       reclaim memory that is no longer used, but on such systems, perl must be configured and

       compiled to use the OS's malloc, not perl's. Page 14/20



       In general, memory allocation and de-allocation isn't something you can or should be

       worrying about much in Perl.

       See also "How can I make my Perl program take less memory?"

   How can I make my CGI script more efficient?

       Beyond the normal measures described to make general Perl programs faster or smaller, a

       CGI program has additional issues. It may be run several times per second. Given that each

       time it runs it will need to be re-compiled and will often allocate a megabyte or more of

       system memory, this can be a killer. Compiling into C isn't going to help you because the

       process start-up overhead is where the bottleneck is.

       There are three popular ways to avoid this overhead. One solution involves running the

       Apache HTTP server (available from <http://www.apache.org/> ) with either of the mod_perl

       or mod_fastcgi plugin modules.

       With mod_perl and the Apache::Registry module (distributed with mod_perl), httpd will run

       with an embedded Perl interpreter which pre-compiles your script and then executes it

       within the same address space without forking. The Apache extension also gives Perl access

       to the internal server API, so modules written in Perl can do just about anything a module

       written in C can. For more on mod_perl, see <http://perl.apache.org/>

       With the FCGI module (from CPAN) and the mod_fastcgi module (available from

       <http://www.fastcgi.com/> ) each of your Perl programs becomes a permanent CGI daemon

       process.

       Finally, Plack is a Perl module and toolkit that contains PSGI middleware, helpers and

       adapters to web servers, allowing you to easily deploy scripts which can continue running,

       and provides flexibility with regards to which web server you use. It can allow existing

       CGI scripts to enjoy this flexibility and performance with minimal changes, or can be used

       along with modern Perl web frameworks to make writing and deploying web services with Perl

       a breeze.

       These solutions can have far-reaching effects on your system and on the way you write your

       CGI programs, so investigate them with care.

       See also <http://www.cpan.org/modules/by-category/15_World_Wide_Web_HTML_HTTP_CGI/> .

   How can I hide the source for my Perl program?

       Delete it. :-) Seriously, there are a number of (mostly unsatisfactory) solutions with

       varying levels of "security".

       First of all, however, you can't take away read permission, because the source code has to Page 15/20



       be readable in order to be compiled and interpreted. (That doesn't mean that a CGI

       script's source is readable by people on the web, though--only by people with access to

       the filesystem.)  So you have to leave the permissions at the socially friendly 0755

       level.

       Some people regard this as a security problem. If your program does insecure things and

       relies on people not knowing how to exploit those insecurities, it is not secure. It is

       often possible for someone to determine the insecure things and exploit them without

       viewing the source. Security through obscurity, the name for hiding your bugs instead of

       fixing them, is little security indeed.

       You can try using encryption via source filters (Starting from Perl 5.8 the Filter::Simple

       and Filter::Util::Call modules are included in the standard distribution), but any decent

       programmer will be able to decrypt it. You can try using the byte code compiler and

       interpreter described later in perlfaq3, but the curious might still be able to de-compile

       it. You can try using the native-code compiler described later, but crackers might be able

       to disassemble it. These pose varying degrees of difficulty to people wanting to get at

       your code, but none can definitively conceal it (true of every language, not just Perl).

       It is very easy to recover the source of Perl programs. You simply feed the program to the

       perl interpreter and use the modules in the B:: hierarchy. The B::Deparse module should be

       able to defeat most attempts to hide source. Again, this is not unique to Perl.

       If you're concerned about people profiting from your code, then the bottom line is that

       nothing but a restrictive license will give you legal security. License your software and

       pepper it with threatening statements like "This is unpublished proprietary software of

       XYZ Corp.  Your access to it does not give you permission to use it blah blah blah."  We

       are not lawyers, of course, so you should see a lawyer if you want to be sure your

       license's wording will stand up in court.

   How can I compile my Perl program into byte code or C?

       (contributed by brian d foy)

       In general, you can't do this. There are some things that may work for your situation

       though. People usually ask this question because they want to distribute their works

       without giving away the source code, and most solutions trade disk space for convenience.

       You probably won't see much of a speed increase either, since most solutions simply bundle

       a Perl interpreter in the final product (but see "How can I make my Perl program run

       faster?"). Page 16/20



       The Perl Archive Toolkit is Perl's analog to Java's JAR. It's freely available and on CPAN

       ( <https://metacpan.org/pod/PAR> ).

       There are also some commercial products that may work for you, although you have to buy a

       license for them.

       The Perl Dev Kit ( <http://www.activestate.com/Products/Perl_Dev_Kit/> ) from ActiveState

       can "Turn your Perl programs into ready-to-run executables for HP-UX, Linux, Solaris and

       Windows."

       Perl2Exe ( <http://www.indigostar.com/perl2exe.htm> ) is a command line program for

       converting perl scripts to executable files. It targets both Windows and Unix platforms.

   How can I get "#!perl" to work on [MS-DOS,NT,...]?

       For OS/2 just use

           extproc perl -S -your_switches

       as the first line in "*.cmd" file ("-S" due to a bug in cmd.exe's "extproc" handling). For

       DOS one should first invent a corresponding batch file and codify it in

       "ALTERNATE_SHEBANG" (see the dosish.h file in the source distribution for more

       information).

       The Win95/NT installation, when using the ActiveState port of Perl, will modify the

       Registry to associate the ".pl" extension with the perl interpreter. If you install

       another port, perhaps even building your own Win95/NT Perl from the standard sources by

       using a Windows port of gcc (e.g., with cygwin or mingw32), then you'll have to modify the

       Registry yourself. In addition to associating ".pl" with the interpreter, NT people can

       use: "SET PATHEXT=%PATHEXT%;.PL" to let them run the program "install-linux.pl" merely by

       typing "install-linux".

       Under "Classic" MacOS, a perl program will have the appropriate Creator and Type, so that

       double-clicking them will invoke the MacPerl application.  Under Mac OS X, clickable apps

       can be made from any "#!" script using Wil Sanchez' DropScript utility:

       <http://www.wsanchez.net/software/> .

       IMPORTANT!: Whatever you do, PLEASE don't get frustrated, and just throw the perl

       interpreter into your cgi-bin directory, in order to get your programs working for a web

       server. This is an EXTREMELY big security risk. Take the time to figure out how to do it

       correctly.

   Can I write useful Perl programs on the command line?

       Yes. Read perlrun for more information. Some examples follow.  (These assume standard Unix Page 17/20



       shell quoting rules.)

           # sum first and last fields

           perl -lane 'print $F[0] + $F[-1]' *

           # identify text files

           perl -le 'for(@ARGV) {print if -f && -T _}' *

           # remove (most) comments from C program

           perl -0777 -pe 's{/\*.*?\*/}{}gs' foo.c

           # make file a month younger than today, defeating reaper daemons

           perl -e '$X=24*60*60; utime(time(),time() + 30 * $X,@ARGV)' *

           # find first unused uid

           perl -le '$i++ while getpwuid($i); print $i'

           # display reasonable manpath

           echo $PATH | perl -nl -072 -e '

           s![^/+]*$!man!&&-d&&!$s{$_}++&&push@m,$_;END{print"@m"}'

       OK, the last one was actually an Obfuscated Perl Contest entry. :-)

   Why don't Perl one-liners work on my DOS/Mac/VMS system?

       The problem is usually that the command interpreters on those systems have rather

       different ideas about quoting than the Unix shells under which the one-liners were

       created. On some systems, you may have to change single-quotes to double ones, which you

       must NOT do on Unix or Plan9 systems. You might also have to change a single % to a %%.

       For example:

           # Unix (including Mac OS X)

           perl -e 'print "Hello world\n"'

           # DOS, etc.

           perl -e "print \"Hello world\n\""

           # Mac Classic

           print "Hello world\n"

            (then Run "Myscript" or Shift-Command-R)

           # MPW

           perl -e 'print "Hello world\n"'

           # VMS

           perl -e "print ""Hello world\n"""

       The problem is that none of these examples are reliable: they depend on the command Page 18/20



       interpreter. Under Unix, the first two often work. Under DOS, it's entirely possible that

       neither works. If 4DOS was the command shell, you'd probably have better luck like this:

         perl -e "print <Ctrl-x>"Hello world\n<Ctrl-x>""

       Under the Mac, it depends which environment you are using. The MacPerl shell, or MPW, is

       much like Unix shells in its support for several quoting variants, except that it makes

       free use of the Mac's non-ASCII characters as control characters.

       Using qq(), q(), and qx(), instead of "double quotes", 'single quotes', and `backticks`,

       may make one-liners easier to write.

       There is no general solution to all of this. It is a mess.

       [Some of this answer was contributed by Kenneth Albanowski.]

   Where can I learn about CGI or Web programming in Perl?

       For modules, get the CGI or LWP modules from CPAN. For textbooks, see the two especially

       dedicated to web stuff in the question on books. For problems and questions related to the

       web, like "Why do I get 500 Errors" or "Why doesn't it run from the browser right when it

       runs fine on the command line", see the troubleshooting guides and references in perlfaq9

       or in the CGI MetaFAQ:

           L<http://www.perl.org/CGI_MetaFAQ.html>

       Looking into <https://plackperl.org> and modern Perl web frameworks is highly recommended,

       though; web programming in Perl has evolved a long way from the old days of simple CGI

       scripts.

   Where can I learn about object-oriented Perl programming?

       A good place to start is perlootut, and you can use perlobj for reference.

       A good book on OO on Perl is the "Object-Oriented Perl" by Damian Conway from Manning

       Publications, or "Intermediate Perl" by Randal Schwartz, brian d foy, and Tom Phoenix from

       O'Reilly Media.

   Where can I learn about linking C with Perl?

       If you want to call C from Perl, start with perlxstut, moving on to perlxs, xsubpp, and

       perlguts. If you want to call Perl from C, then read perlembed, perlcall, and perlguts.

       Don't forget that you can learn a lot from looking at how the authors of existing

       extension modules wrote their code and solved their problems.

       You might not need all the power of XS. The Inline::C module lets you put C code directly

       in your Perl source. It handles all the magic to make it work. You still have to learn at

       least some of the perl API but you won't have to deal with the complexity of the XS Page 19/20



       support files.

   I've read perlembed, perlguts, etc., but I can't embed perl in my C program; what am I doing

       wrong?

       Download the ExtUtils::Embed kit from CPAN and run `make test'. If the tests pass, read

       the pods again and again and again. If they fail, submit a bug report to

       <https://github.com/Perl/perl5/issues> with the output of "make test TEST_VERBOSE=1" along

       with "perl -V".

   When I tried to run my script, I got this message. What does it mean?

       A complete list of Perl's error messages and warnings with explanatory text can be found

       in perldiag. You can also use the splain program (distributed with Perl) to explain the

       error messages:

           perl program 2>diag.out

           splain [-v] [-p] diag.out

       or change your program to explain the messages for you:

           use diagnostics;

       or

           use diagnostics -verbose;

   What's MakeMaker?

       (contributed by brian d foy)

       The ExtUtils::MakeMaker module, better known simply as "MakeMaker", turns a Perl script,

       typically called "Makefile.PL", into a Makefile.  The Unix tool "make" uses this file to

       manage dependencies and actions to process and install a Perl distribution.

AUTHOR AND COPYRIGHT

       Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and other authors as noted.

       All rights reserved.

       This documentation is free; you can redistribute it and/or modify it under the same terms

       as Perl itself.

       Irrespective of its distribution, all code examples here are in the public domain. You are

       permitted and encouraged to use this code and any derivatives thereof in your own programs

       for fun or for profit as you see fit. A simple comment in the code giving credit to the

       FAQ would be courteous but is not required.

perl v5.34.0                                2023-11-23                                PERLFAQ3(1)

Page 20/20


