
Rocky Enterprise Linux 9.2 Manual Pages on command 'perldtrace.1'

$ man perldtrace.1

PERLDTRACE(1) Perl Programmers Reference Guide PERLDTRACE(1)

NAME

 perldtrace - Perl's support for DTrace

SYNOPSIS

 # dtrace -Zn 'perl::sub-entry, perl::sub-return { trace(copyinstr(arg0)) }'

 dtrace: description 'perl::sub-entry, perl::sub-return ' matched 10 probes

 # perl -E 'sub outer { inner(@_) } sub inner { say shift } outer("hello")'

 hello

 (dtrace output)

 CPU ID FUNCTION:NAME

 0 75915 Perl_pp_entersub:sub-entry BEGIN

 0 75915 Perl_pp_entersub:sub-entry import

 0 75922 Perl_pp_leavesub:sub-return import

 0 75922 Perl_pp_leavesub:sub-return BEGIN

 0 75915 Perl_pp_entersub:sub-entry outer

 0 75915 Perl_pp_entersub:sub-entry inner

 0 75922 Perl_pp_leavesub:sub-return inner

 0 75922 Perl_pp_leavesub:sub-return outer

Page 1/6

DESCRIPTION

 DTrace is a framework for comprehensive system- and application-level tracing. Perl is a

 DTrace provider, meaning it exposes several probes for instrumentation. You can use these

 in conjunction with kernel-level probes, as well as probes from other providers such as

 MySQL, in order to diagnose software defects, or even just your application's bottlenecks.

 Perl must be compiled with the "-Dusedtrace" option in order to make use of the provided

 probes. While DTrace aims to have no overhead when its instrumentation is not active,

 Perl's support itself cannot uphold that guarantee, so it is built without DTrace probes

 under most systems. One notable exception is that Mac OS X ships a /usr/bin/perl with

 DTrace support enabled.

HISTORY

 5.10.1

 Perl's initial DTrace support was added, providing "sub-entry" and "sub-return"

 probes.

 5.14.0

 The "sub-entry" and "sub-return" probes gain a fourth argument: the package name of

 the function.

 5.16.0

 The "phase-change" probe was added.

 5.18.0

 The "op-entry", "loading-file", and "loaded-file" probes were added.

PROBES

 sub-entry(SUBNAME, FILE, LINE, PACKAGE)

 Traces the entry of any subroutine. Note that all of the variables refer to the

 subroutine that is being invoked; there is currently no way to get ahold of any

 information about the subroutine's caller from a DTrace action.

Page 2/6

 :*perl*::sub-entry {

 printf("%s::%s entered at %s line %d\n",

 copyinstr(arg3), copyinstr(arg0), copyinstr(arg1), arg2);

 }

 sub-return(SUBNAME, FILE, LINE, PACKAGE)

 Traces the exit of any subroutine. Note that all of the variables refer to the

 subroutine that is returning; there is currently no way to get ahold of any

 information about the subroutine's caller from a DTrace action.

 :*perl*::sub-return {

 printf("%s::%s returned at %s line %d\n",

 copyinstr(arg3), copyinstr(arg0), copyinstr(arg1), arg2);

 }

 phase-change(NEWPHASE, OLDPHASE)

 Traces changes to Perl's interpreter state. You can internalize this as tracing

 changes to Perl's "${^GLOBAL_PHASE}" variable, especially since the values for

 "NEWPHASE" and "OLDPHASE" are the strings that "${^GLOBAL_PHASE}" reports.

 :*perl*::phase-change {

 printf("Phase changed from %s to %s\n",

 copyinstr(arg1), copyinstr(arg0));

 }

 op-entry(OPNAME)

 Traces the execution of each opcode in the Perl runloop. This probe is fired before

 the opcode is executed. When the Perl debugger is enabled, the DTrace probe is fired

 after the debugger hooks (but still before the opcode itself is executed).

 :*perl*::op-entry {

 printf("About to execute opcode %s\n", copyinstr(arg0));

 } Page 3/6

 loading-file(FILENAME)

 Fires when Perl is about to load an individual file, whether from "use", "require", or

 "do". This probe fires before the file is read from disk. The filename argument is

 converted to local filesystem paths instead of providing "Module::Name"-style names.

 :*perl*:loading-file {

 printf("About to load %s\n", copyinstr(arg0));

 }

 loaded-file(FILENAME)

 Fires when Perl has successfully loaded an individual file, whether from "use",

 "require", or "do". This probe fires after the file is read from disk and its contents

 evaluated. The filename argument is converted to local filesystem paths instead of

 providing "Module::Name"-style names.

 :*perl*:loaded-file {

 printf("Successfully loaded %s\n", copyinstr(arg0));

 }

EXAMPLES

 Most frequently called functions

 # dtrace -qZn 'sub-entry { @[strjoin(strjoin(copyinstr(arg3),"::"),copyinstr(arg0))] = count() } END {trunc(@, 10)}'

 Class::MOP::Attribute::slots 400

 Try::Tiny::catch 411

 Try::Tiny::try 411

 Class::MOP::Instance::inline_slot_access 451

 Class::MOP::Class::Immutable::Trait:::around 472

 Class::MOP::Mixin::AttributeCore::has_initializer 496

 Class::MOP::Method::Wrapped::__ANON__ 544

 Class::MOP::Package::_package_stash 737

 Class::MOP::Class::initialize 1128 Page 4/6

 Class::MOP::get_metaclass_by_name 1204

 Trace function calls

 # dtrace -qFZn 'sub-entry, sub-return { trace(copyinstr(arg0)) }'

 0 -> Perl_pp_entersub BEGIN

 0 <- Perl_pp_leavesub BEGIN

 0 -> Perl_pp_entersub BEGIN

 0 -> Perl_pp_entersub import

 0 <- Perl_pp_leavesub import

 0 <- Perl_pp_leavesub BEGIN

 0 -> Perl_pp_entersub BEGIN

 0 -> Perl_pp_entersub dress

 0 <- Perl_pp_leavesub dress

 0 -> Perl_pp_entersub dirty

 0 <- Perl_pp_leavesub dirty

 0 -> Perl_pp_entersub whiten

 0 <- Perl_pp_leavesub whiten

 0 <- Perl_dounwind BEGIN

 Function calls during interpreter cleanup

 # dtrace -Zn 'phase-change /copyinstr(arg0) == "END"/ { self->ending = 1 } sub-entry /self->ending/ {

trace(copyinstr(arg0)) }'

 CPU ID FUNCTION:NAME

 1 77214 Perl_pp_entersub:sub-entry END

 1 77214 Perl_pp_entersub:sub-entry END

 1 77214 Perl_pp_entersub:sub-entry cleanup

 1 77214 Perl_pp_entersub:sub-entry _force_writable

 1 77214 Perl_pp_entersub:sub-entry _force_writable

 System calls at compile time

 # dtrace -qZn 'phase-change /copyinstr(arg0) == "START"/ { self->interesting = 1 } phase-change /copyinstr(arg0) ==Page 5/6

"RUN"/ { self->interesting = 0 } syscall::: /self->interesting/ { @[probefunc] = count() } END { trunc(@, 3) }'

 lseek 310

 read 374

 stat64 1056

 Perl functions that execute the most opcodes

 # dtrace -qZn 'sub-entry { self->fqn = strjoin(copyinstr(arg3), strjoin("::", copyinstr(arg0))) } op-entry /self->fqn != ""/ {

@[self->fqn] = count() } END { trunc(@, 3) }'

 warnings::unimport 4589

 Exporter::Heavy::_rebuild_cache 5039

 Exporter::import 14578

REFERENCES

 DTrace Dynamic Tracing Guide

 <http://dtrace.org/guide/preface.html>

 DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X and FreeBSD

 <https://www.amazon.com/DTrace-Dynamic-Tracing-Solaris-FreeBSD/dp/0132091518/>

SEE ALSO

 Devel::DTrace::Provider

 This CPAN module lets you create application-level DTrace probes written in Perl.

AUTHORS

 Shawn M Moore "sartak@gmail.com"

perl v5.34.0 2023-11-23 PERLDTRACE(1)

Page 6/6

