
Rocky Enterprise Linux 9.2 Manual Pages on command 'perldebguts.1'

$ man perldebguts.1

PERLDEBGUTS(1) Perl Programmers Reference Guide PERLDEBGUTS(1)

NAME

 perldebguts - Guts of Perl debugging

DESCRIPTION

 This is not perldebug, which tells you how to use the debugger. This manpage describes

 low-level details concerning the debugger's internals, which range from difficult to

 impossible to understand for anyone who isn't incredibly intimate with Perl's guts.

 Caveat lector.

Debugger Internals

 Perl has special debugging hooks at compile-time and run-time used to create debugging

 environments. These hooks are not to be confused with the perl -Dxxx command described in

 perlrun, which is usable only if a special Perl is built per the instructions in the

 INSTALL podpage in the Perl source tree.

 For example, whenever you call Perl's built-in "caller" function from the package "DB",

 the arguments that the corresponding stack frame was called with are copied to the

 @DB::args array. These mechanisms are enabled by calling Perl with the -d switch.

 Specifically, the following additional features are enabled (cf. "$^P" in perlvar):

 ? Perl inserts the contents of $ENV{PERL5DB} (or "BEGIN {require 'perl5db.pl'}" if not

 present) before the first line of your program.

 ? Each array "@{"_<$filename"}" holds the lines of $filename for a file compiled by

 Perl. The same is also true for "eval"ed strings that contain subroutines, or which

 are currently being executed. The $filename for "eval"ed strings looks like "(eval

 34)". Page 1/24

 Values in this array are magical in numeric context: they compare equal to zero only

 if the line is not breakable.

 ? Each hash "%{"_<$filename"}" contains breakpoints and actions keyed by line number.

 Individual entries (as opposed to the whole hash) are settable. Perl only cares about

 Boolean true here, although the values used by perl5db.pl have the form

 "$break_condition\0$action".

 The same holds for evaluated strings that contain subroutines, or which are currently

 being executed. The $filename for "eval"ed strings looks like "(eval 34)".

 ? Each scalar "${"_<$filename"}" contains $filename. This is also the case for

 evaluated strings that contain subroutines, or which are currently being executed.

 The $filename for "eval"ed strings looks like "(eval 34)".

 ? After each "require"d file is compiled, but before it is executed,

 "DB::postponed(*{"_<$filename"})" is called if the subroutine "DB::postponed" exists.

 Here, the $filename is the expanded name of the "require"d file, as found in the

 values of %INC.

 ? After each subroutine "subname" is compiled, the existence of $DB::postponed{subname}

 is checked. If this key exists, "DB::postponed(subname)" is called if the

 "DB::postponed" subroutine also exists.

 ? A hash %DB::sub is maintained, whose keys are subroutine names and whose values have

 the form "filename:startline-endline". "filename" has the form "(eval 34)" for

 subroutines defined inside "eval"s.

 ? When the execution of your program reaches a point that can hold a breakpoint, the

 "DB::DB()" subroutine is called if any of the variables $DB::trace, $DB::single, or

 $DB::signal is true. These variables are not "local"izable. This feature is disabled

 when executing inside "DB::DB()", including functions called from it unless "$^D &

 (1<<30)" is true.

 ? When execution of the program reaches a subroutine call, a call to &DB::sub(args) is

 made instead, with $DB::sub set to identify the called subroutine. (This doesn't

 happen if the calling subroutine was compiled in the "DB" package.) $DB::sub normally

 holds the name of the called subroutine, if it has a name by which it can be looked

 up. Failing that, $DB::sub will hold a reference to the called subroutine. Either

 way, the &DB::sub subroutine can use $DB::sub as a reference by which to call the

 called subroutine, which it will normally want to do. Page 2/24

 If the call is to an lvalue subroutine, and &DB::lsub is defined &DB::lsub(args) is

 called instead, otherwise falling back to &DB::sub(args).

 ? When execution of the program uses "goto" to enter a non-XS subroutine and the 0x80

 bit is set in $^P, a call to &DB::goto is made, with $DB::sub set to identify the

 subroutine being entered. The call to &DB::goto does not replace the "goto"; the

 requested subroutine will still be entered once &DB::goto has returned. $DB::sub

 normally holds the name of the subroutine being entered, if it has one. Failing that,

 $DB::sub will hold a reference to the subroutine being entered. Unlike when &DB::sub

 is called, it is not guaranteed that $DB::sub can be used as a reference to operate on

 the subroutine being entered.

 Note that if &DB::sub needs external data for it to work, no subroutine call is possible

 without it. As an example, the standard debugger's &DB::sub depends on the $DB::deep

 variable (it defines how many levels of recursion deep into the debugger you can go before

 a mandatory break). If $DB::deep is not defined, subroutine calls are not possible, even

 though &DB::sub exists.

 Writing Your Own Debugger

 Environment Variables

 The "PERL5DB" environment variable can be used to define a debugger. For example, the

 minimal "working" debugger (it actually doesn't do anything) consists of one line:

 sub DB::DB {}

 It can easily be defined like this:

 $ PERL5DB="sub DB::DB {}" perl -d your-script

 Another brief debugger, slightly more useful, can be created with only the line:

 sub DB::DB {print ++$i; scalar <STDIN>}

 This debugger prints a number which increments for each statement encountered and waits

 for you to hit a newline before continuing to the next statement.

 The following debugger is actually useful:

 {

 package DB;

 sub DB {}

 sub sub {print ++$i, " $sub\n"; &$sub}

 }

 It prints the sequence number of each subroutine call and the name of the called Page 3/24

 subroutine. Note that &DB::sub is being compiled into the package "DB" through the use of

 the "package" directive.

 When it starts, the debugger reads your rc file (./.perldb or ~/.perldb under Unix), which

 can set important options. (A subroutine (&afterinit) can be defined here as well; it is

 executed after the debugger completes its own initialization.)

 After the rc file is read, the debugger reads the PERLDB_OPTS environment variable and

 uses it to set debugger options. The contents of this variable are treated as if they were

 the argument of an "o ..." debugger command (q.v. in "Configurable Options" in perldebug).

 Debugger Internal Variables

 In addition to the file and subroutine-related variables mentioned above, the debugger

 also maintains various magical internal variables.

 ? @DB::dbline is an alias for "@{"::_<current_file"}", which holds the lines of the

 currently-selected file (compiled by Perl), either explicitly chosen with the

 debugger's "f" command, or implicitly by flow of execution.

 Values in this array are magical in numeric context: they compare equal to zero only

 if the line is not breakable.

 ? %DB::dbline is an alias for "%{"::_<current_file"}", which contains breakpoints and

 actions keyed by line number in the currently-selected file, either explicitly chosen

 with the debugger's "f" command, or implicitly by flow of execution.

 As previously noted, individual entries (as opposed to the whole hash) are settable.

 Perl only cares about Boolean true here, although the values used by perl5db.pl have

 the form "$break_condition\0$action".

 Debugger Customization Functions

 Some functions are provided to simplify customization.

 ? See "Configurable Options" in perldebug for a description of options parsed by

 "DB::parse_options(string)".

 ? "DB::dump_trace(skip[,count])" skips the specified number of frames and returns a list

 containing information about the calling frames (all of them, if "count" is missing).

 Each entry is reference to a hash with keys "context" (either ".", "$", or "@"), "sub"

 (subroutine name, or info about "eval"), "args" ("undef" or a reference to an array),

 "file", and "line".

 ? "DB::print_trace(FH, skip[, count[, short]])" prints formatted info about caller

 frames. The last two functions may be convenient as arguments to "<", "<<" commands. Page 4/24

 Note that any variables and functions that are not documented in this manpages (or in

 perldebug) are considered for internal use only, and as such are subject to change without

 notice.

Frame Listing Output Examples

 The "frame" option can be used to control the output of frame information. For example,

 contrast this expression trace:

 $ perl -de 42

 Stack dump during die enabled outside of evals.

 Loading DB routines from perl5db.pl patch level 0.94

 Emacs support available.

 Enter h or 'h h' for help.

 main::(-e:1): 0

 DB<1> sub foo { 14 }

 DB<2> sub bar { 3 }

 DB<3> t print foo() * bar()

 main::((eval 172):3): print foo() + bar();

 main::foo((eval 168):2):

 main::bar((eval 170):2):

 42

 with this one, once the "o"ption "frame=2" has been set:

 DB<4> o f=2

 frame = '2'

 DB<5> t print foo() * bar()

 3: foo() * bar()

 entering main::foo

 2: sub foo { 14 };

 exited main::foo

 entering main::bar

 2: sub bar { 3 };

 exited main::bar

 42

 By way of demonstration, we present below a laborious listing resulting from setting your

 "PERLDB_OPTS" environment variable to the value "f=n N", and running perl -d -V from the Page 5/24

 command line. Examples using various values of "n" are shown to give you a feel for the

 difference between settings. Long though it may be, this is not a complete listing, but

 only excerpts.

 1.

 entering main::BEGIN

 entering Config::BEGIN

 Package lib/Exporter.pm.

 Package lib/Carp.pm.

 Package lib/Config.pm.

 entering Config::TIEHASH

 entering Exporter::import

 entering Exporter::export

 entering Config::myconfig

 entering Config::FETCH

 entering Config::FETCH

 entering Config::FETCH

 entering Config::FETCH

 2.

 entering main::BEGIN

 entering Config::BEGIN

 Package lib/Exporter.pm.

 Package lib/Carp.pm.

 exited Config::BEGIN

 Package lib/Config.pm.

 entering Config::TIEHASH

 exited Config::TIEHASH

 entering Exporter::import

 entering Exporter::export

 exited Exporter::export

 exited Exporter::import

 exited main::BEGIN

 entering Config::myconfig

 entering Config::FETCH Page 6/24

 exited Config::FETCH

 entering Config::FETCH

 exited Config::FETCH

 entering Config::FETCH

 3.

 in $=main::BEGIN() from /dev/null:0

 in $=Config::BEGIN() from lib/Config.pm:2

 Package lib/Exporter.pm.

 Package lib/Carp.pm.

 Package lib/Config.pm.

 in $=Config::TIEHASH('Config') from lib/Config.pm:644

 in $=Exporter::import('Config', 'myconfig', 'config_vars') from /dev/null:0

 in $=Exporter::export('Config', 'main', 'myconfig', 'config_vars') from li

 in @=Config::myconfig() from /dev/null:0

 in $=Config::FETCH(ref(Config), 'package') from lib/Config.pm:574

 in $=Config::FETCH(ref(Config), 'baserev') from lib/Config.pm:574

 in $=Config::FETCH(ref(Config), 'PERL_VERSION') from lib/Config.pm:574

 in $=Config::FETCH(ref(Config), 'PERL_SUBVERSION') from lib/Config.pm:574

 in $=Config::FETCH(ref(Config), 'osname') from lib/Config.pm:574

 in $=Config::FETCH(ref(Config), 'osvers') from lib/Config.pm:574

 4.

 in $=main::BEGIN() from /dev/null:0

 in $=Config::BEGIN() from lib/Config.pm:2

 Package lib/Exporter.pm.

 Package lib/Carp.pm.

 out $=Config::BEGIN() from lib/Config.pm:0

 Package lib/Config.pm.

 in $=Config::TIEHASH('Config') from lib/Config.pm:644

 out $=Config::TIEHASH('Config') from lib/Config.pm:644

 in $=Exporter::import('Config', 'myconfig', 'config_vars') from /dev/null:0

 in $=Exporter::export('Config', 'main', 'myconfig', 'config_vars') from lib/

 out $=Exporter::export('Config', 'main', 'myconfig', 'config_vars') from lib/

 out $=Exporter::import('Config', 'myconfig', 'config_vars') from /dev/null:0 Page 7/24

 out $=main::BEGIN() from /dev/null:0

 in @=Config::myconfig() from /dev/null:0

 in $=Config::FETCH(ref(Config), 'package') from lib/Config.pm:574

 out $=Config::FETCH(ref(Config), 'package') from lib/Config.pm:574

 in $=Config::FETCH(ref(Config), 'baserev') from lib/Config.pm:574

 out $=Config::FETCH(ref(Config), 'baserev') from lib/Config.pm:574

 in $=Config::FETCH(ref(Config), 'PERL_VERSION') from lib/Config.pm:574

 out $=Config::FETCH(ref(Config), 'PERL_VERSION') from lib/Config.pm:574

 in $=Config::FETCH(ref(Config), 'PERL_SUBVERSION') from lib/Config.pm:574

 5.

 in $=main::BEGIN() from /dev/null:0

 in $=Config::BEGIN() from lib/Config.pm:2

 Package lib/Exporter.pm.

 Package lib/Carp.pm.

 out $=Config::BEGIN() from lib/Config.pm:0

 Package lib/Config.pm.

 in $=Config::TIEHASH('Config') from lib/Config.pm:644

 out $=Config::TIEHASH('Config') from lib/Config.pm:644

 in $=Exporter::import('Config', 'myconfig', 'config_vars') from /dev/null:0

 in $=Exporter::export('Config', 'main', 'myconfig', 'config_vars') from lib/E

 out $=Exporter::export('Config', 'main', 'myconfig', 'config_vars') from lib/E

 out $=Exporter::import('Config', 'myconfig', 'config_vars') from /dev/null:0

 out $=main::BEGIN() from /dev/null:0

 in @=Config::myconfig() from /dev/null:0

 in $=Config::FETCH('Config=HASH(0x1aa444)', 'package') from lib/Config.pm:574

 out $=Config::FETCH('Config=HASH(0x1aa444)', 'package') from lib/Config.pm:574

 in $=Config::FETCH('Config=HASH(0x1aa444)', 'baserev') from lib/Config.pm:574

 out $=Config::FETCH('Config=HASH(0x1aa444)', 'baserev') from lib/Config.pm:574

 6.

 in $=CODE(0x15eca4)() from /dev/null:0

 in $=CODE(0x182528)() from lib/Config.pm:2

 Package lib/Exporter.pm.

 out $=CODE(0x182528)() from lib/Config.pm:0 Page 8/24

 scalar context return from CODE(0x182528): undef

 Package lib/Config.pm.

 in $=Config::TIEHASH('Config') from lib/Config.pm:628

 out $=Config::TIEHASH('Config') from lib/Config.pm:628

 scalar context return from Config::TIEHASH: empty hash

 in $=Exporter::import('Config', 'myconfig', 'config_vars') from /dev/null:0

 in $=Exporter::export('Config', 'main', 'myconfig', 'config_vars') from lib/Exporter.pm:171

 out $=Exporter::export('Config', 'main', 'myconfig', 'config_vars') from lib/Exporter.pm:171

 scalar context return from Exporter::export: ''

 out $=Exporter::import('Config', 'myconfig', 'config_vars') from /dev/null:0

 scalar context return from Exporter::import: ''

 In all cases shown above, the line indentation shows the call tree. If bit 2 of "frame"

 is set, a line is printed on exit from a subroutine as well. If bit 4 is set, the

 arguments are printed along with the caller info. If bit 8 is set, the arguments are

 printed even if they are tied or references. If bit 16 is set, the return value is

 printed, too.

 When a package is compiled, a line like this

 Package lib/Carp.pm.

 is printed with proper indentation.

Debugging Regular Expressions

 There are two ways to enable debugging output for regular expressions.

 If your perl is compiled with "-DDEBUGGING", you may use the -Dr flag on the command line,

 and "-Drv" for more verbose information.

 Otherwise, one can "use re 'debug'", which has effects at both compile time and run time.

 Since Perl 5.9.5, this pragma is lexically scoped.

 Compile-time Output

 The debugging output at compile time looks like this:

 Compiling REx '[bc]d(ef*g)+h[ij]k$'

 size 45 Got 364 bytes for offset annotations.

 first at 1

 rarest char g at 0

 rarest char d at 0

 1: ANYOF[bc](12) Page 9/24

 12: EXACT <d>(14)

 14: CURLYX[0] {1,32767}(28)

 16: OPEN1(18)

 18: EXACT <e>(20)

 20: STAR(23)

 21: EXACT <f>(0)

 23: EXACT <g>(25)

 25: CLOSE1(27)

 27: WHILEM[1/1](0)

 28: NOTHING(29)

 29: EXACT <h>(31)

 31: ANYOF[ij](42)

 42: EXACT <k>(44)

 44: EOL(45)

 45: END(0)

 anchored 'de' at 1 floating 'gh' at 3..2147483647 (checking floating)

 stclass 'ANYOF[bc]' minlen 7

 Offsets: [45]

 1[4] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 5[1]

 0[0] 12[1] 0[0] 6[1] 0[0] 7[1] 0[0] 9[1] 8[1] 0[0] 10[1] 0[0]

 11[1] 0[0] 12[0] 12[0] 13[1] 0[0] 14[4] 0[0] 0[0] 0[0] 0[0]

 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 18[1] 0[0] 19[1] 20[0]

 Omitting $` $& $' support.

 The first line shows the pre-compiled form of the regex. The second shows the size of the

 compiled form (in arbitrary units, usually 4-byte words) and the total number of bytes

 allocated for the offset/length table, usually 4+"size"*8. The next line shows the label

 id of the first node that does a match.

 The

 anchored 'de' at 1 floating 'gh' at 3..2147483647 (checking floating)

 stclass 'ANYOF[bc]' minlen 7

 line (split into two lines above) contains optimizer information. In the example shown,

 the optimizer found that the match should contain a substring "de" at offset 1, plus

 substring "gh" at some offset between 3 and infinity. Moreover, when checking for these Page 10/24

 substrings (to abandon impossible matches quickly), Perl will check for the substring "gh"

 before checking for the substring "de". The optimizer may also use the knowledge that the

 match starts (at the "first" id) with a character class, and no string shorter than 7

 characters can possibly match.

 The fields of interest which may appear in this line are

 "anchored" STRING "at" POS

 "floating" STRING "at" POS1..POS2

 See above.

 "matching floating/anchored"

 Which substring to check first.

 "minlen"

 The minimal length of the match.

 "stclass" TYPE

 Type of first matching node.

 "noscan"

 Don't scan for the found substrings.

 "isall"

 Means that the optimizer information is all that the regular expression contains, and

 thus one does not need to enter the regex engine at all.

 "GPOS"

 Set if the pattern contains "\G".

 "plus"

 Set if the pattern starts with a repeated char (as in "x+y").

 "implicit"

 Set if the pattern starts with ".*".

 "with eval"

 Set if the pattern contain eval-groups, such as "(?{ code })" and "(??{ code })".

 "anchored(TYPE)"

 If the pattern may match only at a handful of places, with "TYPE" being "SBOL",

 "MBOL", or "GPOS". See the table below.

 If a substring is known to match at end-of-line only, it may be followed by "$", as in

 "floating 'k'$".

 The optimizer-specific information is used to avoid entering (a slow) regex engine on Page 11/24

 strings that will not definitely match. If the "isall" flag is set, a call to the regex

 engine may be avoided even when the optimizer found an appropriate place for the match.

 Above the optimizer section is the list of nodes of the compiled form of the regex. Each

 line has format

 " "id: TYPE OPTIONAL-INFO (next-id)

 Types of Nodes

 Here are the current possible types, with short descriptions:

 # TYPE arg-description [regnode-struct-suffix] [longjump-len] DESCRIPTION

 # Exit points

 END no End of program.

 SUCCEED no Return from a subroutine, basically.

 # Line Start Anchors:

 SBOL no Match "" at beginning of line: /^/, /\A/

 MBOL no Same, assuming multiline: /^/m

 # Line End Anchors:

 SEOL no Match "" at end of line: /$/

 MEOL no Same, assuming multiline: /$/m

 EOS no Match "" at end of string: /\z/

 # Match Start Anchors:

 GPOS no Matches where last m//g left off.

 # Word Boundary Opcodes:

 BOUND no Like BOUNDA for non-utf8, otherwise like

 BOUNDU

 BOUNDL no Like BOUND/BOUNDU, but \w and \W are

 defined by current locale

 BOUNDU no Match "" at any boundary of a given type

 using /u rules.

 BOUNDA no Match "" at any boundary between \w\W or

 \W\w, where \w is [_a-zA-Z0-9]

 NBOUND no Like NBOUNDA for non-utf8, otherwise like

 BOUNDU

 NBOUNDL no Like NBOUND/NBOUNDU, but \w and \W are

 defined by current locale Page 12/24

 NBOUNDU no Match "" at any non-boundary of a given

 type using using /u rules.

 NBOUNDA no Match "" betweeen any \w\w or \W\W, where

 \w is [_a-zA-Z0-9]

 # [Special] alternatives:

 REG_ANY no Match any one character (except newline).

 SANY no Match any one character.

 ANYOF sv Match character in (or not in) this class,

 charclass single char match only

 ANYOFD sv Like ANYOF, but /d is in effect

 charclass

 ANYOFL sv Like ANYOF, but /l is in effect

 charclass

 ANYOFPOSIXL sv Like ANYOFL, but matches [[:posix:]]

 charclass_ classes

 posixl

 ANYOFH sv 1 Like ANYOF, but only has "High" matches,

 none in the bitmap; the flags field

 contains the lowest matchable UTF-8 start

 byte

 ANYOFHb sv 1 Like ANYOFH, but all matches share the same

 UTF-8 start byte, given in the flags field

 ANYOFHr sv 1 Like ANYOFH, but the flags field contains

 packed bounds for all matchable UTF-8 start

 bytes.

 ANYOFHs sv 1 Like ANYOFHb, but has a string field that

 gives the leading matchable UTF-8 bytes;

 flags field is len

 ANYOFR packed 1 Matches any character in the range given by

 its packed args: upper 12 bits is the max

 delta from the base lower 20; the flags

 field contains the lowest matchable UTF-8

 start byte Page 13/24

 ANYOFRb packed 1 Like ANYOFR, but all matches share the same

 UTF-8 start byte, given in the flags field

 ANYOFM byte 1 Like ANYOF, but matches an invariant byte

 as determined by the mask and arg

 NANYOFM byte 1 complement of ANYOFM

 # POSIX Character Classes:

 POSIXD none Some [[:class:]] under /d; the FLAGS field

 gives which one

 POSIXL none Some [[:class:]] under /l; the FLAGS field

 gives which one

 POSIXU none Some [[:class:]] under /u; the FLAGS field

 gives which one

 POSIXA none Some [[:class:]] under /a; the FLAGS field

 gives which one

 NPOSIXD none complement of POSIXD, [[:^class:]]

 NPOSIXL none complement of POSIXL, [[:^class:]]

 NPOSIXU none complement of POSIXU, [[:^class:]]

 NPOSIXA none complement of POSIXA, [[:^class:]]

 CLUMP no Match any extended grapheme cluster

 sequence

 # Alternation

 # BRANCH The set of branches constituting a single choice are

 # hooked together with their "next" pointers, since

 # precedence prevents anything being concatenated to

 # any individual branch. The "next" pointer of the last

 # BRANCH in a choice points to the thing following the

 # whole choice. This is also where the final "next"

 # pointer of each individual branch points; each branch

 # starts with the operand node of a BRANCH node.

 #

 BRANCH node Match this alternative, or the next...

 # Literals

 EXACT str Match this string (flags field is the Page 14/24

 length).

 # In a long string node, the U32 argument is the length, and is

 # immediately followed by the string.

 LEXACT len:str 1 Match this long string (preceded by length;

 flags unused).

 EXACTL str Like EXACT, but /l is in effect (used so

 locale-related warnings can be checked for)

 EXACTF str Like EXACT, but match using /id rules;

 (string not UTF-8, ASCII folded; non-ASCII

 not)

 EXACTFL str Like EXACT, but match using /il rules;

 (string not likely to be folded)

 EXACTFU str Like EXACT, but match using /iu rules;

 (string folded)

 EXACTFAA str Like EXACT, but match using /iaa rules;

 (string folded except MICRO in non-UTF8

 patterns; doesn't contain SHARP S unless

 UTF-8; folded length <= unfolded)

 EXACTFAA_NO_TRIE str Like EXACTFAA, (string not UTF-8, folded

 except: MICRO, SHARP S; folded length <=

 unfolded, not currently trie-able)

 EXACTFUP str Like EXACT, but match using /iu rules;

 (string not UTF-8, folded except MICRO:

 hence Problematic)

 EXACTFLU8 str Like EXACTFU, but use /il, UTF-8, (string

 is folded, and everything in it is above

 255

 EXACT_REQ8 str Like EXACT, but only UTF-8 encoded targets

 can match

 LEXACT_REQ8 len:str 1 Like LEXACT, but only UTF-8 encoded targets

 can match

 EXACTFU_REQ8 str Like EXACTFU, but only UTF-8 encoded

 targets can match Page 15/24

 EXACTFU_S_EDGE str /di rules, but nothing in it precludes /ui,

 except begins and/or ends with [Ss];

 (string not UTF-8; compile-time only)

 # New charclass like patterns

 LNBREAK none generic newline pattern

 # Trie Related

 # Behave the same as A|LIST|OF|WORDS would. The '..C' variants

 # have inline charclass data (ascii only), the 'C' store it in the

 # structure.

 TRIE trie 1 Match many EXACT(F[ALU]?)? at once.

 flags==type

 TRIEC trie Same as TRIE, but with embedded charclass

 charclass data

 AHOCORASICK trie 1 Aho Corasick stclass. flags==type

 AHOCORASICKC trie Same as AHOCORASICK, but with embedded

 charclass charclass data

 # Do nothing types

 NOTHING no Match empty string.

 # A variant of above which delimits a group, thus stops optimizations

 TAIL no Match empty string. Can jump here from

 outside.

 # Loops

 # STAR,PLUS '?', and complex '*' and '+', are implemented as

 # circular BRANCH structures. Simple cases

 # (one character per match) are implemented with STAR

 # and PLUS for speed and to minimize recursive plunges.

 #

 STAR node Match this (simple) thing 0 or more times.

 PLUS node Match this (simple) thing 1 or more times.

 CURLY sv 2 Match this simple thing {n,m} times.

 CURLYN no 2 Capture next-after-this simple thing

 CURLYM no 2 Capture this medium-complex thing {n,m}

 times. Page 16/24

 CURLYX sv 2 Match this complex thing {n,m} times.

 # This terminator creates a loop structure for CURLYX

 WHILEM no Do curly processing and see if rest

 matches.

 # Buffer related

 # OPEN,CLOSE,GROUPP ...are numbered at compile time.

 OPEN num 1 Mark this point in input as start of #n.

 CLOSE num 1 Close corresponding OPEN of #n.

 SROPEN none Same as OPEN, but for script run

 SRCLOSE none Close preceding SROPEN

 REF num 1 Match some already matched string

 REFF num 1 Match already matched string, using /di

 rules.

 REFFL num 1 Match already matched string, using /li

 rules.

 REFFU num 1 Match already matched string, usng /ui.

 REFFA num 1 Match already matched string, using /aai

 rules.

 # Named references. Code in regcomp.c assumes that these all are after

 # the numbered references

 REFN no-sv 1 Match some already matched string

 REFFN no-sv 1 Match already matched string, using /di

 rules.

 REFFLN no-sv 1 Match already matched string, using /li

 rules.

 REFFUN num 1 Match already matched string, using /ui

 rules.

 REFFAN num 1 Match already matched string, using /aai

 rules.

 # Support for long RE

 LONGJMP off 1 1 Jump far away.

 BRANCHJ off 1 1 BRANCH with long offset.

 # Special Case Regops Page 17/24

 IFMATCH off 1 1 Succeeds if the following matches; non-zero

 flags "f", next_off "o" means lookbehind

 assertion starting "f..(f-o)" characters

 before current

 UNLESSM off 1 1 Fails if the following matches; non-zero

 flags "f", next_off "o" means lookbehind

 assertion starting "f..(f-o)" characters

 before current

 SUSPEND off 1 1 "Independent" sub-RE.

 IFTHEN off 1 1 Switch, should be preceded by switcher.

 GROUPP num 1 Whether the group matched.

 # The heavy worker

 EVAL evl/flags Execute some Perl code.

 2L

 # Modifiers

 MINMOD no Next operator is not greedy.

 LOGICAL no Next opcode should set the flag only.

 # This is not used yet

 RENUM off 1 1 Group with independently numbered parens.

 # Regex Subroutines

 GOSUB num/ofs 2L recurse to paren arg1 at (signed) ofs arg2

 # Special conditionals

 GROUPPN no-sv 1 Whether the group matched.

 INSUBP num 1 Whether we are in a specific recurse.

 DEFINEP none 1 Never execute directly.

 # Backtracking Verbs

 ENDLIKE none Used only for the type field of verbs

 OPFAIL no-sv 1 Same as (?!), but with verb arg

 ACCEPT no-sv/num Accepts the current matched string, with

 2L verbar

 # Verbs With Arguments

 VERB no-sv 1 Used only for the type field of verbs

 PRUNE no-sv 1 Pattern fails at this startpoint if no- Page 18/24

 backtracking through this

 MARKPOINT no-sv 1 Push the current location for rollback by

 cut.

 SKIP no-sv 1 On failure skip forward (to the mark)

 before retrying

 COMMIT no-sv 1 Pattern fails outright if backtracking

 through this

 CUTGROUP no-sv 1 On failure go to the next alternation in

 the group

 # Control what to keep in $&.

 KEEPS no $& begins here.

 # SPECIAL REGOPS

 # This is not really a node, but an optimized away piece of a "long"

 # node. To simplify debugging output, we mark it as if it were a node

 OPTIMIZED off Placeholder for dump.

 # Special opcode with the property that no opcode in a compiled program

 # will ever be of this type. Thus it can be used as a flag value that

 # no other opcode has been seen. END is used similarly, in that an END

 # node cant be optimized. So END implies "unoptimizable" and PSEUDO

 # mean "not seen anything to optimize yet".

 PSEUDO off Pseudo opcode for internal use.

 REGEX_SET depth p Regex set, temporary node used in pre-

 optimization compilation

 Following the optimizer information is a dump of the offset/length table, here split

 across several lines:

 Offsets: [45]

 1[4] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 5[1]

 0[0] 12[1] 0[0] 6[1] 0[0] 7[1] 0[0] 9[1] 8[1] 0[0] 10[1] 0[0]

 11[1] 0[0] 12[0] 12[0] 13[1] 0[0] 14[4] 0[0] 0[0] 0[0] 0[0]

 0[0] 0[0] 0[0] 0[0] 0[0] 0[0] 18[1] 0[0] 19[1] 20[0]

 The first line here indicates that the offset/length table contains 45 entries. Each

 entry is a pair of integers, denoted by "offset[length]". Entries are numbered starting

 with 1, so entry #1 here is "1[4]" and entry #12 is "5[1]". "1[4]" indicates that the Page 19/24

 node labeled "1:" (the "1: ANYOF[bc]") begins at character position 1 in the pre-compiled

 form of the regex, and has a length of 4 characters. "5[1]" in position 12 indicates that

 the node labeled "12:" (the "12: EXACT <d>") begins at character position 5 in the pre-

 compiled form of the regex, and has a length of 1 character. "12[1]" in position 14

 indicates that the node labeled "14:" (the "14: CURLYX[0] {1,32767}") begins at character

 position 12 in the pre-compiled form of the regex, and has a length of 1 character---that

 is, it corresponds to the "+" symbol in the precompiled regex.

 "0[0]" items indicate that there is no corresponding node.

 Run-time Output

 First of all, when doing a match, one may get no run-time output even if debugging is

 enabled. This means that the regex engine was never entered and that all of the job was

 therefore done by the optimizer.

 If the regex engine was entered, the output may look like this:

 Matching '[bc]d(ef*g)+h[ij]k$' against 'abcdefg__gh__'

 Setting an EVAL scope, savestack=3

 2 <ab> <cdefg__gh_> | 1: ANYOF

 3 <abc> <defg__gh_> | 11: EXACT <d>

 4 <abcd> <efg__gh_> | 13: CURLYX {1,32767}

 4 <abcd> <efg__gh_> | 26: WHILEM

 0 out of 1..32767 cc=effff31c

 4 <abcd> <efg__gh_> | 15: OPEN1

 4 <abcd> <efg__gh_> | 17: EXACT <e>

 5 <abcde> <fg__gh_> | 19: STAR

 EXACT <f> can match 1 times out of 32767...

 Setting an EVAL scope, savestack=3

 6 <bcdef> <g__gh__> | 22: EXACT <g>

 7 <bcdefg> <__gh__> | 24: CLOSE1

 7 <bcdefg> <__gh__> | 26: WHILEM

 1 out of 1..32767 cc=effff31c

 Setting an EVAL scope, savestack=12

 7 <bcdefg> <__gh__> | 15: OPEN1

 7 <bcdefg> <__gh__> | 17: EXACT <e>

 restoring \1 to 4(4)..7 Page 20/24

 failed, try continuation...

 7 <bcdefg> <__gh__> | 27: NOTHING

 7 <bcdefg> <__gh__> | 28: EXACT <h>

 failed...

 failed...

 The most significant information in the output is about the particular node of the

 compiled regex that is currently being tested against the target string. The format of

 these lines is

 " "STRING-OFFSET <PRE-STRING> <POST-STRING> |ID: TYPE

 The TYPE info is indented with respect to the backtracking level. Other incidental

 information appears interspersed within.

Debugging Perl Memory Usage

 Perl is a profligate wastrel when it comes to memory use. There is a saying that to

 estimate memory usage of Perl, assume a reasonable algorithm for memory allocation,

 multiply that estimate by 10, and while you still may miss the mark, at least you won't be

 quite so astonished. This is not absolutely true, but may provide a good grasp of what

 happens.

 Assume that an integer cannot take less than 20 bytes of memory, a float cannot take less

 than 24 bytes, a string cannot take less than 32 bytes (all these examples assume 32-bit

 architectures, the result are quite a bit worse on 64-bit architectures). If a variable

 is accessed in two of three different ways (which require an integer, a float, or a

 string), the memory footprint may increase yet another 20 bytes. A sloppy malloc(3)

 implementation can inflate these numbers dramatically.

 On the opposite end of the scale, a declaration like

 sub foo;

 may take up to 500 bytes of memory, depending on which release of Perl you're running.

 Anecdotal estimates of source-to-compiled code bloat suggest an eightfold increase. This

 means that the compiled form of reasonable (normally commented, properly indented etc.)

 code will take about eight times more space in memory than the code took on disk.

 The -DL command-line switch is obsolete since circa Perl 5.6.0 (it was available only if

 Perl was built with "-DDEBUGGING"). The switch was used to track Perl's memory

 allocations and possible memory leaks. These days the use of malloc debugging tools like

 Purify or valgrind is suggested instead. See also "PERL_MEM_LOG" in perlhacktips. Page 21/24

 One way to find out how much memory is being used by Perl data structures is to install

 the Devel::Size module from CPAN: it gives you the minimum number of bytes required to

 store a particular data structure. Please be mindful of the difference between the size()

 and total_size().

 If Perl has been compiled using Perl's malloc you can analyze Perl memory usage by setting

 $ENV{PERL_DEBUG_MSTATS}.

 Using $ENV{PERL_DEBUG_MSTATS}

 If your perl is using Perl's malloc() and was compiled with the necessary switches (this

 is the default), then it will print memory usage statistics after compiling your code when

 "$ENV{PERL_DEBUG_MSTATS} > 1", and before termination of the program when

 "$ENV{PERL_DEBUG_MSTATS} >= 1". The report format is similar to the following example:

 $ PERL_DEBUG_MSTATS=2 perl -e "require Carp"

 Memory allocation statistics after compilation: (buckets 4(4)..8188(8192)

 14216 free: 130 117 28 7 9 0 2 2 1 0 0

 437 61 36 0 5

 60924 used: 125 137 161 55 7 8 6 16 2 0 1

 74 109 304 84 20

 Total sbrk(): 77824/21:119. Odd ends: pad+heads+chain+tail: 0+636+0+2048.

 Memory allocation statistics after execution: (buckets 4(4)..8188(8192)

 30888 free: 245 78 85 13 6 2 1 3 2 0 1

 315 162 39 42 11

 175816 used: 265 176 1112 111 26 22 11 27 2 1 1

 196 178 1066 798 39

 Total sbrk(): 215040/47:145. Odd ends: pad+heads+chain+tail: 0+2192+0+6144.

 It is possible to ask for such a statistic at arbitrary points in your execution using the

 mstat() function out of the standard Devel::Peek module.

 Here is some explanation of that format:

 "buckets SMALLEST(APPROX)..GREATEST(APPROX)"

 Perl's malloc() uses bucketed allocations. Every request is rounded up to the closest

 bucket size available, and a bucket is taken from the pool of buckets of that size.

 The line above describes the limits of buckets currently in use. Each bucket has two

 sizes: memory footprint and the maximal size of user data that can fit into this

 bucket. Suppose in the above example that the smallest bucket were size 4. The Page 22/24

 biggest bucket would have usable size 8188, and the memory footprint would be 8192.

 In a Perl built for debugging, some buckets may have negative usable size. This means

 that these buckets cannot (and will not) be used. For larger buckets, the memory

 footprint may be one page greater than a power of 2. If so, the corresponding power

 of two is printed in the "APPROX" field above.

 Free/Used

 The 1 or 2 rows of numbers following that correspond to the number of buckets of each

 size between "SMALLEST" and "GREATEST". In the first row, the sizes (memory

 footprints) of buckets are powers of two--or possibly one page greater. In the second

 row, if present, the memory footprints of the buckets are between the memory

 footprints of two buckets "above".

 For example, suppose under the previous example, the memory footprints were

 free: 8 16 32 64 128 256 512 1024 2048 4096 8192

 4 12 24 48 80

 With a non-"DEBUGGING" perl, the buckets starting from 128 have a 4-byte overhead, and

 thus an 8192-long bucket may take up to 8188-byte allocations.

 "Total sbrk(): SBRKed/SBRKs:CONTINUOUS"

 The first two fields give the total amount of memory perl sbrk(2)ed (ess-broken? :-)

 and number of sbrk(2)s used. The third number is what perl thinks about continuity of

 returned chunks. So long as this number is positive, malloc() will assume that it is

 probable that sbrk(2) will provide continuous memory.

 Memory allocated by external libraries is not counted.

 "pad: 0"

 The amount of sbrk(2)ed memory needed to keep buckets aligned.

 "heads: 2192"

 Although memory overhead of bigger buckets is kept inside the bucket, for smaller

 buckets, it is kept in separate areas. This field gives the total size of these

 areas.

 "chain: 0"

 malloc() may want to subdivide a bigger bucket into smaller buckets. If only a part

 of the deceased bucket is left unsubdivided, the rest is kept as an element of a

 linked list. This field gives the total size of these chunks.

 "tail: 6144" Page 23/24

 To minimize the number of sbrk(2)s, malloc() asks for more memory. This field gives

 the size of the yet unused part, which is sbrk(2)ed, but never touched.

SEE ALSO

 perldebug, perl5db.pl, perlguts, perlrun, re, and Devel::DProf.

perl v5.34.0 2023-11-23 PERLDEBGUTS(1)

Page 24/24

