
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlclib.1'

$ man perlclib.1

PERLCLIB(1) Perl Programmers Reference Guide PERLCLIB(1)

NAME

 perlclib - Internal replacements for standard C library functions

DESCRIPTION

 One thing Perl porters should note is that perl doesn't tend to use that much of the C

 standard library internally; you'll see very little use of, for example, the ctype.h

 functions in there. This is because Perl tends to reimplement or abstract standard library

 functions, so that we know exactly how they're going to operate.

 This is a reference card for people who are familiar with the C library and who want to do

 things the Perl way; to tell them which functions they ought to use instead of the more

 normal C functions.

 Conventions

 In the following tables:

 "t"

 is a type.

 "p"

 is a pointer. Page 1/8

 "n"

 is a number.

 "s"

 is a string.

 "sv", "av", "hv", etc. represent variables of their respective types.

 File Operations

 Instead of the stdio.h functions, you should use the Perl abstraction layer. Instead of

 "FILE*" types, you need to be handling "PerlIO*" types. Don't forget that with the new

 PerlIO layered I/O abstraction "FILE*" types may not even be available. See also the

 "perlapio" documentation for more information about the following functions:

 Instead Of: Use:

 stdin PerlIO_stdin()

 stdout PerlIO_stdout()

 stderr PerlIO_stderr()

 fopen(fn, mode) PerlIO_open(fn, mode)

 freopen(fn, mode, stream) PerlIO_reopen(fn, mode, perlio) (Dep-

 recated)

 fflush(stream) PerlIO_flush(perlio)

 fclose(stream) PerlIO_close(perlio)

 File Input and Output

 Instead Of: Use:

 fprintf(stream, fmt, ...) PerlIO_printf(perlio, fmt, ...)

 [f]getc(stream) PerlIO_getc(perlio) Page 2/8

 [f]putc(stream, n) PerlIO_putc(perlio, n)

 ungetc(n, stream) PerlIO_ungetc(perlio, n)

 Note that the PerlIO equivalents of "fread" and "fwrite" are slightly different from their

 C library counterparts:

 fread(p, size, n, stream) PerlIO_read(perlio, buf, numbytes)

 fwrite(p, size, n, stream) PerlIO_write(perlio, buf, numbytes)

 fputs(s, stream) PerlIO_puts(perlio, s)

 There is no equivalent to "fgets"; one should use "sv_gets" instead:

 fgets(s, n, stream) sv_gets(sv, perlio, append)

 File Positioning

 Instead Of: Use:

 feof(stream) PerlIO_eof(perlio)

 fseek(stream, n, whence) PerlIO_seek(perlio, n, whence)

 rewind(stream) PerlIO_rewind(perlio)

 fgetpos(stream, p) PerlIO_getpos(perlio, sv)

 fsetpos(stream, p) PerlIO_setpos(perlio, sv)

 ferror(stream) PerlIO_error(perlio)

 clearerr(stream) PerlIO_clearerr(perlio)

 Memory Management and String Handling

 Instead Of: Use:

 t* p = malloc(n) Newx(p, n, t)

 t* p = calloc(n, s) Newxz(p, n, t) Page 3/8

 p = realloc(p, n) Renew(p, n, t)

 memcpy(dst, src, n) Copy(src, dst, n, t)

 memmove(dst, src, n) Move(src, dst, n, t)

 memcpy(dst, src, sizeof(t)) StructCopy(src, dst, t)

 memset(dst, 0, n * sizeof(t)) Zero(dst, n, t)

 memzero(dst, 0) Zero(dst, n, char)

 free(p) Safefree(p)

 strdup(p) savepv(p)

 strndup(p, n) savepvn(p, n) (Hey, strndup doesn't

 exist!)

 strstr(big, little) instr(big, little)

 strcmp(s1, s2) strLE(s1, s2) / strEQ(s1, s2)

 / strGT(s1,s2)

 strncmp(s1, s2, n) strnNE(s1, s2, n) / strnEQ(s1, s2, n)

 memcmp(p1, p2, n) memNE(p1, p2, n)

 !memcmp(p1, p2, n) memEQ(p1, p2, n)

 Notice the different order of arguments to "Copy" and "Move" than used in "memcpy" and

 "memmove".

 Most of the time, though, you'll want to be dealing with SVs internally instead of raw

 "char *" strings:

 strlen(s) sv_len(sv)

 strcpy(dt, src) sv_setpv(sv, s)

 strncpy(dt, src, n) sv_setpvn(sv, s, n)

 strcat(dt, src) sv_catpv(sv, s)

 strncat(dt, src) sv_catpvn(sv, s)

 sprintf(s, fmt, ...) sv_setpvf(sv, fmt, ...)

Page 4/8

 Note also the existence of "sv_catpvf" and "sv_vcatpvfn", combining concatenation with

 formatting.

 Sometimes instead of zeroing the allocated heap by using Newxz() you should consider

 "poisoning" the data. This means writing a bit pattern into it that should be illegal as

 pointers (and floating point numbers), and also hopefully surprising enough as integers,

 so that any code attempting to use the data without forethought will break sooner rather

 than later. Poisoning can be done using the Poison() macros, which have similar arguments

 to Zero():

 PoisonWith(dst, n, t, b) scribble memory with byte b

 PoisonNew(dst, n, t) equal to PoisonWith(dst, n, t, 0xAB)

 PoisonFree(dst, n, t) equal to PoisonWith(dst, n, t, 0xEF)

 Poison(dst, n, t) equal to PoisonFree(dst, n, t)

 Character Class Tests

 There are several types of character class tests that Perl implements. The only ones

 described here are those that directly correspond to C library functions that operate on

 8-bit characters, but there are equivalents that operate on wide characters, and UTF-8

 encoded strings. All are more fully described in "Character classification" in perlapi

 and "Character case changing" in perlapi.

 The C library routines listed in the table below return values based on the current

 locale. Use the entries in the final column for that functionality. The other two

 columns always assume a POSIX (or C) locale. The entries in the ASCII column are only

 meaningful for ASCII inputs, returning FALSE for anything else. Use these only when you

 know that is what you want. The entries in the Latin1 column assume that the non-ASCII

 8-bit characters are as Unicode defines, them, the same as ISO-8859-1, often called Latin

 1.

 Instead Of: Use for ASCII: Use for Latin1: Use for locale:

 isalnum(c) isALPHANUMERIC(c) isALPHANUMERIC_L1(c) isALPHANUMERIC_LC(c) Page 5/8

 isalpha(c) isALPHA(c) isALPHA_L1(c) isALPHA_LC(u)

 isascii(c) isASCII(c) isASCII_LC(c)

 isblank(c) isBLANK(c) isBLANK_L1(c) isBLANK_LC(c)

 iscntrl(c) isCNTRL(c) isCNTRL_L1(c) isCNTRL_LC(c)

 isdigit(c) isDIGIT(c) isDIGIT_L1(c) isDIGIT_LC(c)

 isgraph(c) isGRAPH(c) isGRAPH_L1(c) isGRAPH_LC(c)

 islower(c) isLOWER(c) isLOWER_L1(c) isLOWER_LC(c)

 isprint(c) isPRINT(c) isPRINT_L1(c) isPRINT_LC(c)

 ispunct(c) isPUNCT(c) isPUNCT_L1(c) isPUNCT_LC(c)

 isspace(c) isSPACE(c) isSPACE_L1(c) isSPACE_LC(c)

 isupper(c) isUPPER(c) isUPPER_L1(c) isUPPER_LC(c)

 isxdigit(c) isXDIGIT(c) isXDIGIT_L1(c) isXDIGIT_LC(c)

 tolower(c) toLOWER(c) toLOWER_L1(c)

 toupper(c) toUPPER(c)

 To emphasize that you are operating only on ASCII characters, you can append "_A" to each

 of the macros in the ASCII column: "isALPHA_A", "isDIGIT_A", and so on.

 (There is no entry in the Latin1 column for "isascii" even though there is an

 "isASCII_L1", which is identical to "isASCII"; the latter name is clearer. There is no

 entry in the Latin1 column for "toupper" because the result can be non-Latin1. You have

 to use "toUPPER_uvchr", as described in "Character case changing" in perlapi.)

 stdlib.h functions

 Instead Of: Use:

 atof(s) Atof(s)

 atoi(s) grok_atoUV(s, &uv, &e)

 atol(s) grok_atoUV(s, &uv, &e)

 strtod(s, &p) Strtod(s, &p)

 strtol(s, &p, n) Strtol(s, &p, b)

 strtoul(s, &p, n) Strtoul(s, &p, b) Page 6/8

 Typical use is to do range checks on "uv" before casting:

 int i; UV uv;

 char* end_ptr = input_end;

 if (grok_atoUV(input, &uv, &end_ptr)

 && uv <= INT_MAX)

 i = (int)uv;

 ... /* continue parsing from end_ptr */

 } else {

 ... /* parse error: not a decimal integer in range 0 .. MAX_IV */

 }

 Notice also the "grok_bin", "grok_hex", and "grok_oct" functions in numeric.c for

 converting strings representing numbers in the respective bases into "NV"s. Note that

 grok_atoUV() doesn't handle negative inputs, or leading whitespace (being purposefully

 strict).

 Note that strtol() and strtoul() may be disguised as Strtol(), Strtoul(), Atol(), Atoul().

 Avoid those, too.

 In theory "Strtol" and "Strtoul" may not be defined if the machine perl is built on

 doesn't actually have strtol and strtoul. But as those 2 functions are part of the 1989

 ANSI C spec we suspect you'll find them everywhere by now.

 int rand() double Drand01()

 srand(n) { seedDrand01((Rand_seed_t)n);

 PL_srand_called = TRUE; }

 exit(n) my_exit(n)

 system(s) Don't. Look at pp_system or use my_popen.

 getenv(s) PerlEnv_getenv(s) Page 7/8

 setenv(s, val) my_setenv(s, val)

 Miscellaneous functions

 You should not even want to use setjmp.h functions, but if you think you do, use the

 "JMPENV" stack in scope.h instead.

 For "signal"/"sigaction", use "rsignal(signo, handler)".

SEE ALSO

 perlapi, perlapio, perlguts

perl v5.34.0 2023-11-23 PERLCLIB(1)

Page 8/8

