
Rocky Enterprise Linux 9.2 Manual Pages on command 'perl5260delta.1'

$ man perl5260delta.1

PERL5260DELTA(1) Perl Programmers Reference Guide PERL5260DELTA(1)

NAME

 perl5260delta - what is new for perl v5.26.0

DESCRIPTION

 This document describes the differences between the 5.24.0 release and the 5.26.0 release.

Notice

 This release includes three updates with widespread effects:

 ? "." no longer in @INC

 For security reasons, the current directory (".") is no longer included by default at

 the end of the module search path (@INC). This may have widespread implications for

 the building, testing and installing of modules, and for the execution of scripts.

 See the section "Removal of the current directory (".") from @INC" for the full

 details.

 ? "do" may now warn

 "do" now gives a deprecation warning when it fails to load a file which it would have

 loaded had "." been in @INC.

 ? In regular expression patterns, a literal left brace "{" should be escaped

 See "Unescaped literal "{" characters in regular expression patterns are no longer

 permissible".

Core Enhancements

 Lexical subroutines are no longer experimental

 Using the "lexical_subs" feature introduced in v5.18 no longer emits a warning. Existing

 code that disables the "experimental::lexical_subs" warning category that the feature Page 1/44

 previously used will continue to work. The "lexical_subs" feature has no effect; all Perl

 code can use lexical subroutines, regardless of what feature declarations are in scope.

 Indented Here-documents

 This adds a new modifier "~" to here-docs that tells the parser that it should look for

 "/^\s*$DELIM\n/" as the closing delimiter.

 These syntaxes are all supported:

 <<~EOF;

 <<~\EOF;

 <<~'EOF';

 <<~"EOF";

 <<~`EOF`;

 <<~ 'EOF';

 <<~ "EOF";

 <<~ `EOF`;

 The "~" modifier will strip, from each line in the here-doc, the same whitespace that

 appears before the delimiter.

 Newlines will be copied as-is, and lines that don't include the proper beginning

 whitespace will cause perl to croak.

 For example:

 if (1) {

 print <<~EOF;

 Hello there

 EOF

 }

 prints "Hello there\n" with no leading whitespace.

 New regular expression modifier "/xx"

 Specifying two "x" characters to modify a regular expression pattern does everything that

 a single one does, but additionally TAB and SPACE characters within a bracketed character

 class are generally ignored and can be added to improve readability, like

 "/[?^?A-Z?d-f?p-x?]/xx". Details are at "/x and /xx" in perlre.

 "@{^CAPTURE}", "%{^CAPTURE}", and "%{^CAPTURE_ALL}"

 "@{^CAPTURE}" exposes the capture buffers of the last match as an array. So $1 is

 "${^CAPTURE}[0]". This is a more efficient equivalent to code like Page 2/44

 "substr($matched_string,$-[0],$+[0]-$-[0])", and you don't have to keep track of the

 $matched_string either. This variable has no single character equivalent. Note that,

 like the other regex magic variables, the contents of this variable is dynamic; if you

 wish to store it beyond the lifetime of the match you must copy it to another array.

 "%{^CAPTURE}" is equivalent to "%+" (i.e., named captures). Other than being more self-

 documenting there is no difference between the two forms.

 "%{^CAPTURE_ALL}" is equivalent to "%-" (i.e., all named captures). Other than being more

 self-documenting there is no difference between the two forms.

 Declaring a reference to a variable

 As an experimental feature, Perl now allows the referencing operator to come after "my()",

 "state()", "our()", or "local()". This syntax must be enabled with "use feature

 'declared_refs'". It is experimental, and will warn by default unless "no warnings

 'experimental::refaliasing'" is in effect. It is intended mainly for use in assignments

 to references. For example:

 use experimental 'refaliasing', 'declared_refs';

 my \$a = \$b;

 See "Assigning to References" in perlref for more details.

 Unicode 9.0 is now supported

 A list of changes is at <http://www.unicode.org/versions/Unicode9.0.0/>. Modules that are

 shipped with core Perl but not maintained by p5p do not necessarily support Unicode 9.0.

 Unicode::Normalize does work on 9.0.

 Use of "\p{script}" uses the improved Script_Extensions property

 Unicode 6.0 introduced an improved form of the Script ("sc") property, and called it

 Script_Extensions ("scx"). Perl now uses this improved version when a property is

 specified as just "\p{script}". This should make programs more accurate when determining

 if a character is used in a given script, but there is a slight chance of breakage for

 programs that very specifically needed the old behavior. The meaning of compound forms,

 like "\p{sc=script}" are unchanged. See "Scripts" in perlunicode.

 Perl can now do default collation in UTF-8 locales on platforms that support it

 Some platforms natively do a reasonable job of collating and sorting in UTF-8 locales.

 Perl now works with those. For portability and full control, Unicode::Collate is still

 recommended, but now you may not need to do anything special to get good-enough results,

 depending on your application. See "Category "LC_COLLATE": Collation: Text Comparisons Page 3/44

 and Sorting" in perllocale.

 Better locale collation of strings containing embedded "NUL" characters

 In locales that have multi-level character weights, "NUL"s are now ignored at the higher

 priority ones. There are still some gotchas in some strings, though. See "Collation of

 strings containing embedded "NUL" characters" in perllocale.

 "CORE" subroutines for hash and array functions callable via reference

 The hash and array functions in the "CORE" namespace ("keys", "each", "values", "push",

 "pop", "shift", "unshift" and "splice") can now be called with ampersand syntax

 ("&CORE::keys(\%hash") and via reference ("my $k = \&CORE::keys; $k->(\%hash)").

 Previously they could only be used when inlined.

 New Hash Function For 64-bit Builds

 We have switched to a hybrid hash function to better balance performance for short and

 long keys.

 For short keys, 16 bytes and under, we use an optimised variant of One At A Time Hard, and

 for longer keys we use Siphash 1-3. For very long keys this is a big improvement in

 performance. For shorter keys there is a modest improvement.

Security

 Removal of the current directory (".") from @INC

 The perl binary includes a default set of paths in @INC. Historically it has also

 included the current directory (".") as the final entry, unless run with taint mode

 enabled ("perl -T"). While convenient, this has security implications: for example, where

 a script attempts to load an optional module when its current directory is untrusted (such

 as /tmp), it could load and execute code from under that directory.

 Starting with v5.26, "." is always removed by default, not just under tainting. This has

 major implications for installing modules and executing scripts.

 The following new features have been added to help ameliorate these issues.

 ? Configure -Udefault_inc_excludes_dot

 There is a new Configure option, "default_inc_excludes_dot" (enabled by default) which

 builds a perl executable without "."; unsetting this option using "-U" reverts perl to

 the old behaviour. This may fix your path issues but will reintroduce all the

 security concerns, so don't build a perl executable like this unless you're really

 confident that such issues are not a concern in your environment.

 ? "PERL_USE_UNSAFE_INC" Page 4/44

 There is a new environment variable recognised by the perl interpreter. If this

 variable has the value 1 when the perl interpreter starts up, then "." will be

 automatically appended to @INC (except under tainting).

 This allows you restore the old perl interpreter behaviour on a case-by-case basis.

 But note that this is intended to be a temporary crutch, and this feature will likely

 be removed in some future perl version. It is currently set by the "cpan" utility and

 "Test::Harness" to ease installation of CPAN modules which have not been updated to

 handle the lack of dot. Once again, don't use this unless you are sure that this will

 not reintroduce any security concerns.

 ? A new deprecation warning issued by "do".

 While it is well-known that "use" and "require" use @INC to search for the file to

 load, many people don't realise that "do "file"" also searches @INC if the file is a

 relative path. With the removal of ".", a simple "do "file.pl"" will fail to read in

 and execute "file.pl" from the current directory. Since this is commonly expected

 behaviour, a new deprecation warning is now issued whenever "do" fails to load a file

 which it otherwise would have found if a dot had been in @INC.

 Here are some things script and module authors may need to do to make their software work

 in the new regime.

 ? Script authors

 If the issue is within your own code (rather than within included modules), then you

 have two main options. Firstly, if you are confident that your script will only be

 run within a trusted directory (under which you expect to find trusted files and

 modules), then add "." back into the path; e.g.:

 BEGIN {

 my $dir = "/some/trusted/directory";

 chdir $dir or die "Can't chdir to $dir: $!\n";

 # safe now

 push @INC, '.';

 }

 use "Foo::Bar"; # may load /some/trusted/directory/Foo/Bar.pm

 do "config.pl"; # may load /some/trusted/directory/config.pl

 On the other hand, if your script is intended to be run from within untrusted

 directories (such as /tmp), then your script suddenly failing to load files may be Page 5/44

 indicative of a security issue. You most likely want to replace any relative paths

 with full paths; for example,

 do "foo_config.pl"

 might become

 do "$ENV{HOME}/foo_config.pl"

 If you are absolutely certain that you want your script to load and execute a file

 from the current directory, then use a "./" prefix; for example:

 do "./foo_config.pl"

 ? Installing and using CPAN modules

 If you install a CPAN module using an automatic tool like "cpan", then this tool will

 itself set the "PERL_USE_UNSAFE_INC" environment variable while building and testing

 the module, which may be sufficient to install a distribution which hasn't been

 updated to be dot-aware. If you want to install such a module manually, then you'll

 need to replace the traditional invocation:

 perl Makefile.PL && make && make test && make install

 with something like

 (export PERL_USE_UNSAFE_INC=1; \

 perl Makefile.PL && make && make test && make install)

 Note that this only helps build and install an unfixed module. It's possible for the

 tests to pass (since they were run under "PERL_USE_UNSAFE_INC=1"), but for the module

 itself to fail to perform correctly in production. In this case, you may have to

 temporarily modify your script until a fixed version of the module is released. For

 example:

 use Foo::Bar;

 {

 local @INC = (@INC, '.');

 # assuming read_config() needs '.' in @INC

 $config = Foo::Bar->read_config();

 }

 This is only rarely expected to be necessary. Again, if doing this, assess the

 resultant risks first.

 ? Module Authors

 If you maintain a CPAN distribution, it may need updating to run in a dotless Page 6/44

 environment. Although "cpan" and other such tools will currently set the

 "PERL_USE_UNSAFE_INC" during module build, this is a temporary workaround for the set

 of modules which rely on "." being in @INC for installation and testing, and this may

 mask deeper issues. It could result in a module which passes tests and installs, but

 which fails at run time.

 During build, test, and install, it will normally be the case that any perl processes

 will be executing directly within the root directory of the untarred distribution, or

 a known subdirectory of that, such as t/. It may well be that Makefile.PL or t/foo.t

 will attempt to include local modules and configuration files using their direct

 relative filenames, which will now fail.

 However, as described above, automatic tools like cpan will (for now) set the

 "PERL_USE_UNSAFE_INC" environment variable, which introduces dot during a build.

 This makes it likely that your existing build and test code will work, but this may

 mask issues with your code which only manifest when used after install. It is prudent

 to try and run your build process with that variable explicitly disabled:

 (export PERL_USE_UNSAFE_INC=0; \

 perl Makefile.PL && make && make test && make install)

 This is more likely to show up any potential problems with your module's build

 process, or even with the module itself. Fixing such issues will ensure both that

 your module can again be installed manually, and that it will still build once the

 "PERL_USE_UNSAFE_INC" crutch goes away.

 When fixing issues in tests due to the removal of dot from @INC, reinsertion of dot

 into @INC should be performed with caution, for this too may suppress real errors in

 your runtime code. You are encouraged wherever possible to apply the aforementioned

 approaches with explicit absolute/relative paths, or to relocate your needed files

 into a subdirectory and insert that subdirectory into @INC instead.

 If your runtime code has problems under the dotless @INC, then the comments above on

 how to fix for script authors will mostly apply here too. Bear in mind though that it

 is considered bad form for a module to globally add a dot to @INC, since it introduces

 both a security risk and hides issues of accidentally requiring dot in @INC, as

 explained above.

 Escaped colons and relative paths in PATH

 On Unix systems, Perl treats any relative paths in the "PATH" environment variable as Page 7/44

 tainted when starting a new process. Previously, it was allowing a backslash to escape a

 colon (unlike the OS), consequently allowing relative paths to be considered safe if the

 PATH was set to something like "/\:.". The check has been fixed to treat "." as tainted

 in that example.

 New "-Di" switch is now required for PerlIO debugging output

 This is used for debugging of code within PerlIO to avoid recursive calls. Previously

 this output would be sent to the file specified by the "PERLIO_DEBUG" environment variable

 if perl wasn't running setuid and the "-T" or "-t" switches hadn't been parsed yet.

 If perl performed output at a point where it hadn't yet parsed its switches this could

 result in perl creating or overwriting the file named by "PERLIO_DEBUG" even when the "-T"

 switch had been supplied.

 Perl now requires the "-Di" switch to be present before it will produce PerlIO debugging

 output. By default this is written to "stderr", but can optionally be redirected to a

 file by setting the "PERLIO_DEBUG" environment variable.

 If perl is running setuid or the "-T" switch was supplied, "PERLIO_DEBUG" is ignored and

 the debugging output is sent to "stderr" as for any other "-D" switch.

Incompatible Changes

 Unescaped literal "{" characters in regular expression patterns are no longer permissible

 You have to now say something like "\{" or "[{]" to specify to match a LEFT CURLY BRACKET;

 otherwise, it is a fatal pattern compilation error. This change will allow future

 extensions to the language.

 These have been deprecated since v5.16, with a deprecation message raised for some uses

 starting in v5.22. Unfortunately, the code added to raise the message was buggy and

 failed to warn in some cases where it should have. Therefore, enforcement of this ban for

 these cases is deferred until Perl 5.30, but the code has been fixed to raise a default-on

 deprecation message for them in the meantime.

 Some uses of literal "{" occur in contexts where we do not foresee the meaning ever being

 anything but the literal, such as the very first character in the pattern, or after a "|"

 meaning alternation. Thus

 qr/{fee|{fie/

 matches either of the strings "{fee" or "{fie". To avoid forcing unnecessary code

 changes, these uses do not need to be escaped, and no warning is raised about them, and

 there are no current plans to change this. Page 8/44

 But it is always correct to escape "{", and the simple rule to remember is to always do

 so.

 See Unescaped left brace in regex is illegal here.

 "scalar(%hash)" return signature changed

 The value returned for "scalar(%hash)" will no longer show information about the buckets

 allocated in the hash. It will simply return the count of used keys. It is thus

 equivalent to "0+keys(%hash)".

 A form of backward compatibility is provided via "Hash::Util::bucket_ratio()" which

 provides the same behavior as "scalar(%hash)" provided in Perl 5.24 and earlier.

 "keys" returned from an lvalue subroutine

 "keys" returned from an lvalue subroutine can no longer be assigned to in list context.

 sub foo : lvalue { keys(%INC) }

 (foo) = 3; # death

 sub bar : lvalue { keys(@_) }

 (bar) = 3; # also an error

 This makes the lvalue sub case consistent with "(keys %hash) = ..." and "(keys @_) = ...",

 which are also errors. [GH #15339] <https://github.com/Perl/perl5/issues/15339>

 The "${^ENCODING}" facility has been removed

 The special behaviour associated with assigning a value to this variable has been removed.

 As a consequence, the encoding pragma's default mode is no longer supported. If you still

 need to write your source code in encodings other than UTF-8, use a source filter such as

 Filter::Encoding on CPAN or encoding's "Filter" option.

 "POSIX::tmpnam()" has been removed

 The fundamentally unsafe "tmpnam()" interface was deprecated in Perl 5.22 and has now been

 removed. In its place, you can use, for example, the File::Temp interfaces.

 require ::Foo::Bar is now illegal.

 Formerly, "require ::Foo::Bar" would try to read /Foo/Bar.pm. Now any bareword require

 which starts with a double colon dies instead.

 Literal control character variable names are no longer permissible

 A variable name may no longer contain a literal control character under any circumstances.

 These previously were allowed in single-character names on ASCII platforms, but have been

 deprecated there since Perl 5.20. This affects things like "$\cT", where \cT is a literal

 control (such as a "NAK" or "NEGATIVE ACKNOWLEDGE" character) in the source code. Page 9/44

 "NBSP" is no longer permissible in "\N{...}"

 The name of a character may no longer contain non-breaking spaces. It has been deprecated

 to do so since Perl 5.22.

Deprecations

 String delimiters that aren't stand-alone graphemes are now deprecated

 For Perl to eventually allow string delimiters to be Unicode grapheme clusters (which look

 like a single character, but may be a sequence of several ones), we have to stop allowing

 a single character delimiter that isn't a grapheme by itself. These are unlikely to exist

 in actual code, as they would typically display as attached to the character in front of

 them.

 "\cX" that maps to a printable is no longer deprecated

 This means we have no plans to remove this feature. It still raises a warning, but only

 if syntax warnings are enabled. The feature was originally intended to be a way to

 express non-printable characters that don't have a mnemonic ("\t" and "\n" are mnemonics

 for two non-printable characters, but most non-printables don't have a mnemonic.) But the

 feature can be used to specify a few printable characters, though those are more clearly

 expressed as the printable itself. See

 <http://www.nntp.perl.org/group/perl.perl5.porters/2017/02/msg242944.html>.

Performance Enhancements

 ? A hash in boolean context is now sometimes faster, e.g.

 if (!%h) { ... }

 This was already special-cased, but some cases were missed (such as "grep %$_, @AoH"),

 and even the ones which weren't have been improved.

 ? New Faster Hash Function on 64 bit builds

 We use a different hash function for short and long keys. This should improve

 performance and security, especially for long keys.

 ? readline is faster

 Reading from a file line-by-line with "readline()" or "<>" should now typically be

 faster due to a better implementation of the code that searches for the next newline

 character.

 ? Assigning one reference to another, e.g. "$ref1 = $ref2" has been optimized in some

 cases.

 ? Remove some exceptions to creating Copy-on-Write strings. The string buffer growth Page 10/44

 algorithm has been slightly altered so that you're less likely to encounter a string

 which can't be COWed.

 ? Better optimise array and hash assignment: where an array or hash appears in the LHS

 of a list assignment, such as "(..., @a) = (...);", it's likely to be considerably

 faster, especially if it involves emptying the array/hash. For example, this code runs

 about a third faster compared to Perl 5.24.0:

 my @a;

 for my $i (1..10_000_000) {

 @a = (1,2,3);

 @a = ();

 }

 ? Converting a single-digit string to a number is now substantially faster.

 ? The "split" builtin is now slightly faster in many cases: in particular for the two

 specially-handled forms

 my @a = split ...;

 local @a = split ...;

 ? The rather slow implementation for the experimental subroutine signatures feature has

 been made much faster; it is now comparable in speed with the traditional "my ($a, $b,

 @c) = @_".

 ? Bareword constant strings are now permitted to take part in constant folding. They

 were originally exempted from constant folding in August 1999, during the development

 of Perl 5.6, to ensure that "use strict "subs"" would still apply to bareword

 constants. That has now been accomplished a different way, so barewords, like other

 constants, now gain the performance benefits of constant folding.

 This also means that void-context warnings on constant expressions of barewords now

 report the folded constant operand, rather than the operation; this matches the

 behaviour for non-bareword constants.

Modules and Pragmata

 Updated Modules and Pragmata

 ? IO::Compress has been upgraded from version 2.069 to 2.074.

 ? Archive::Tar has been upgraded from version 2.04 to 2.24.

 ? arybase has been upgraded from version 0.11 to 0.12.

 ? attributes has been upgraded from version 0.27 to 0.29. Page 11/44

 The deprecation message for the ":unique" and ":locked" attributes now mention that

 they will disappear in Perl 5.28.

 ? B has been upgraded from version 1.62 to 1.68.

 ? B::Concise has been upgraded from version 0.996 to 0.999.

 Its output is now more descriptive for "op_private" flags.

 ? B::Debug has been upgraded from version 1.23 to 1.24.

 ? B::Deparse has been upgraded from version 1.37 to 1.40.

 ? B::Xref has been upgraded from version 1.05 to 1.06.

 It now uses 3-arg "open()" instead of 2-arg "open()". [GH #15721]

 <https://github.com/Perl/perl5/issues/15721>

 ? base has been upgraded from version 2.23 to 2.25.

 ? bignum has been upgraded from version 0.42 to 0.47.

 ? Carp has been upgraded from version 1.40 to 1.42.

 ? charnames has been upgraded from version 1.43 to 1.44.

 ? Compress::Raw::Bzip2 has been upgraded from version 2.069 to 2.074.

 ? Compress::Raw::Zlib has been upgraded from version 2.069 to 2.074.

 ? Config::Perl::V has been upgraded from version 0.25 to 0.28.

 ? CPAN has been upgraded from version 2.11 to 2.18.

 ? CPAN::Meta has been upgraded from version 2.150005 to 2.150010.

 ? Data::Dumper has been upgraded from version 2.160 to 2.167.

 The XS implementation now supports Deparse.

 ? DB_File has been upgraded from version 1.835 to 1.840.

 ? Devel::Peek has been upgraded from version 1.23 to 1.26.

 ? Devel::PPPort has been upgraded from version 3.32 to 3.35.

 ? Devel::SelfStubber has been upgraded from version 1.05 to 1.06.

 It now uses 3-arg "open()" instead of 2-arg "open()". [GH #15721]

 <https://github.com/Perl/perl5/issues/15721>

 ? diagnostics has been upgraded from version 1.34 to 1.36.

 It now uses 3-arg "open()" instead of 2-arg "open()". [GH #15721]

 <https://github.com/Perl/perl5/issues/15721>

 ? Digest has been upgraded from version 1.17 to 1.17_01.

 ? Digest::MD5 has been upgraded from version 2.54 to 2.55.

 ? Digest::SHA has been upgraded from version 5.95 to 5.96. Page 12/44

 ? DynaLoader has been upgraded from version 1.38 to 1.42.

 ? Encode has been upgraded from version 2.80 to 2.88.

 ? encoding has been upgraded from version 2.17 to 2.19.

 This module's default mode is no longer supported. It now dies when imported, unless

 the "Filter" option is being used.

 ? encoding::warnings has been upgraded from version 0.12 to 0.13.

 This module is no longer supported. It emits a warning to that effect and then does

 nothing.

 ? Errno has been upgraded from version 1.25 to 1.28.

 It now documents that using "%!" automatically loads Errno for you.

 It now uses 3-arg "open()" instead of 2-arg "open()". [GH #15721]

 <https://github.com/Perl/perl5/issues/15721>

 ? ExtUtils::Embed has been upgraded from version 1.33 to 1.34.

 It now uses 3-arg "open()" instead of 2-arg "open()". [GH #15721]

 <https://github.com/Perl/perl5/issues/15721>

 ? ExtUtils::MakeMaker has been upgraded from version 7.10_01 to 7.24.

 ? ExtUtils::Miniperl has been upgraded from version 1.05 to 1.06.

 ? ExtUtils::ParseXS has been upgraded from version 3.31 to 3.34.

 ? ExtUtils::Typemaps has been upgraded from version 3.31 to 3.34.

 ? feature has been upgraded from version 1.42 to 1.47.

 ? File::Copy has been upgraded from version 2.31 to 2.32.

 ? File::Fetch has been upgraded from version 0.48 to 0.52.

 ? File::Glob has been upgraded from version 1.26 to 1.28.

 It now Issues a deprecation message for "File::Glob::glob()".

 ? File::Spec has been upgraded from version 3.63 to 3.67.

 ? FileHandle has been upgraded from version 2.02 to 2.03.

 ? Filter::Simple has been upgraded from version 0.92 to 0.93.

 It no longer treats "no MyFilter" immediately following "use MyFilter" as end-of-file.

 [GH #11853] <https://github.com/Perl/perl5/issues/11853>

 ? Getopt::Long has been upgraded from version 2.48 to 2.49.

 ? Getopt::Std has been upgraded from version 1.11 to 1.12.

 ? Hash::Util has been upgraded from version 0.19 to 0.22.

 ? HTTP::Tiny has been upgraded from version 0.056 to 0.070. Page 13/44

 Internal 599-series errors now include the redirect history.

 ? I18N::LangTags has been upgraded from version 0.40 to 0.42.

 It now uses 3-arg "open()" instead of 2-arg "open()". [GH #15721]

 <https://github.com/Perl/perl5/issues/15721>

 ? IO has been upgraded from version 1.36 to 1.38.

 ? IO::Socket::IP has been upgraded from version 0.37 to 0.38.

 ? IPC::Cmd has been upgraded from version 0.92 to 0.96.

 ? IPC::SysV has been upgraded from version 2.06_01 to 2.07.

 ? JSON::PP has been upgraded from version 2.27300 to 2.27400_02.

 ? lib has been upgraded from version 0.63 to 0.64.

 It now uses 3-arg "open()" instead of 2-arg "open()". [GH #15721]

 <https://github.com/Perl/perl5/issues/15721>

 ? List::Util has been upgraded from version 1.42_02 to 1.46_02.

 ? Locale::Codes has been upgraded from version 3.37 to 3.42.

 ? Locale::Maketext has been upgraded from version 1.26 to 1.28.

 ? Locale::Maketext::Simple has been upgraded from version 0.21 to 0.21_01.

 ? Math::BigInt has been upgraded from version 1.999715 to 1.999806.

 ? Math::BigInt::FastCalc has been upgraded from version 0.40 to 0.5005.

 ? Math::BigRat has been upgraded from version 0.260802 to 0.2611.

 ? Math::Complex has been upgraded from version 1.59 to 1.5901.

 ? Memoize has been upgraded from version 1.03 to 1.03_01.

 ? Module::CoreList has been upgraded from version 5.20170420 to 5.20170530.

 ? Module::Load::Conditional has been upgraded from version 0.64 to 0.68.

 ? Module::Metadata has been upgraded from version 1.000031 to 1.000033.

 ? mro has been upgraded from version 1.18 to 1.20.

 ? Net::Ping has been upgraded from version 2.43 to 2.55.

 IPv6 addresses and "AF_INET6" sockets are now supported, along with several other

 enhancements.

 ? NEXT has been upgraded from version 0.65 to 0.67.

 ? Opcode has been upgraded from version 1.34 to 1.39.

 ? open has been upgraded from version 1.10 to 1.11.

 ? OS2::Process has been upgraded from version 1.11 to 1.12.

 It now uses 3-arg "open()" instead of 2-arg "open()". [GH #15721] Page 14/44

 <https://github.com/Perl/perl5/issues/15721>

 ? overload has been upgraded from version 1.26 to 1.28.

 Its compilation speed has been improved slightly.

 ? parent has been upgraded from version 0.234 to 0.236.

 ? perl5db.pl has been upgraded from version 1.50 to 1.51.

 It now ignores /dev/tty on non-Unix systems. [GH #12244]

 <https://github.com/Perl/perl5/issues/12244>

 ? Perl::OSType has been upgraded from version 1.009 to 1.010.

 ? perlfaq has been upgraded from version 5.021010 to 5.021011.

 ? PerlIO has been upgraded from version 1.09 to 1.10.

 ? PerlIO::encoding has been upgraded from version 0.24 to 0.25.

 ? PerlIO::scalar has been upgraded from version 0.24 to 0.26.

 ? Pod::Checker has been upgraded from version 1.60 to 1.73.

 ? Pod::Functions has been upgraded from version 1.10 to 1.11.

 ? Pod::Html has been upgraded from version 1.22 to 1.2202.

 ? Pod::Perldoc has been upgraded from version 3.25_02 to 3.28.

 ? Pod::Simple has been upgraded from version 3.32 to 3.35.

 ? Pod::Usage has been upgraded from version 1.68 to 1.69.

 ? POSIX has been upgraded from version 1.65 to 1.76.

 This remedies several defects in making its symbols exportable. [GH #15260]

 <https://github.com/Perl/perl5/issues/15260>

 The "POSIX::tmpnam()" interface has been removed, see "POSIX::tmpnam() has been

 removed".

 The following deprecated functions have been removed:

 POSIX::isalnum

 POSIX::isalpha

 POSIX::iscntrl

 POSIX::isdigit

 POSIX::isgraph

 POSIX::islower

 POSIX::isprint

 POSIX::ispunct

 POSIX::isspace Page 15/44

 POSIX::isupper

 POSIX::isxdigit

 POSIX::tolower

 POSIX::toupper

 Trying to import POSIX subs that have no real implementations (like "POSIX::atend()")

 now fails at import time, instead of waiting until runtime.

 ? re has been upgraded from version 0.32 to 0.34

 This adds support for the new "/xx" regular expression pattern modifier, and a change

 to the "use?re?'strict'" experimental feature. When "re?'strict'" is enabled, a

 warning now will be generated for all unescaped uses of the two characters "}" and "]"

 in regular expression patterns (outside bracketed character classes) that are taken

 literally. This brings them more in line with the ")" character which is always a

 metacharacter unless escaped. Being a metacharacter only sometimes, depending on an

 action at a distance, can lead to silently having the pattern mean something quite

 different than was intended, which the "re?'strict'" mode is intended to minimize.

 ? Safe has been upgraded from version 2.39 to 2.40.

 ? Scalar::Util has been upgraded from version 1.42_02 to 1.46_02.

 ? Storable has been upgraded from version 2.56 to 2.62.

 Fixes [GH #15714] <https://github.com/Perl/perl5/issues/15714>.

 ? Symbol has been upgraded from version 1.07 to 1.08.

 ? Sys::Syslog has been upgraded from version 0.33 to 0.35.

 ? Term::ANSIColor has been upgraded from version 4.04 to 4.06.

 ? Term::ReadLine has been upgraded from version 1.15 to 1.16.

 It now uses 3-arg "open()" instead of 2-arg "open()". [GH #15721]

 <https://github.com/Perl/perl5/issues/15721>

 ? Test has been upgraded from version 1.28 to 1.30.

 It now uses 3-arg "open()" instead of 2-arg "open()". [GH #15721]

 <https://github.com/Perl/perl5/issues/15721>

 ? Test::Harness has been upgraded from version 3.36 to 3.38.

 ? Test::Simple has been upgraded from version 1.001014 to 1.302073.

 ? Thread::Queue has been upgraded from version 3.09 to 3.12.

 ? Thread::Semaphore has been upgraded from 2.12 to 2.13.

 Added the "down_timed" method. Page 16/44

 ? threads has been upgraded from version 2.07 to 2.15.

 ? threads::shared has been upgraded from version 1.51 to 1.56.

 ? Tie::Hash::NamedCapture has been upgraded from version 0.09 to 0.10.

 ? Time::HiRes has been upgraded from version 1.9733 to 1.9741.

 It now builds on systems with C++11 compilers (such as G++ 6 and Clang++ 3.9).

 Now uses "clockid_t".

 ? Time::Local has been upgraded from version 1.2300 to 1.25.

 ? Unicode::Collate has been upgraded from version 1.14 to 1.19.

 ? Unicode::UCD has been upgraded from version 0.64 to 0.68.

 It now uses 3-arg "open()" instead of 2-arg "open()". [GH #15721]

 <https://github.com/Perl/perl5/issues/15721>

 ? version has been upgraded from version 0.9916 to 0.9917.

 ? VMS::DCLsym has been upgraded from version 1.06 to 1.08.

 It now uses 3-arg "open()" instead of 2-arg "open()". [GH #15721]

 <https://github.com/Perl/perl5/issues/15721>

 ? warnings has been upgraded from version 1.36 to 1.37.

 ? XS::Typemap has been upgraded from version 0.14 to 0.15.

 ? XSLoader has been upgraded from version 0.21 to 0.27.

 Fixed a security hole in which binary files could be loaded from a path outside of

 @INC.

 It now uses 3-arg "open()" instead of 2-arg "open()". [GH #15721]

 <https://github.com/Perl/perl5/issues/15721>

Documentation

 New Documentation

 perldeprecation

 This file documents all upcoming deprecations, and some of the deprecations which already

 have been removed. The purpose of this documentation is two-fold: document what will

 disappear, and by which version, and serve as a guide for people dealing with code which

 has features that no longer work after an upgrade of their perl.

 Changes to Existing Documentation

 We have attempted to update the documentation to reflect the changes listed in this

 document. If you find any we have missed, send email to perlbug@perl.org

 <mailto:perlbug@perl.org>. Page 17/44

 Additionally, all references to Usenet have been removed, and the following selected

 changes have been made:

 perlfunc

 ? Removed obsolete text about "defined()" on aggregates that should have been deleted

 earlier, when the feature was removed.

 ? Corrected documentation of "eval()", and "evalbytes()".

 ? Clarified documentation of "seek()", "tell()" and "sysseek()" emphasizing that

 positions are in bytes and not characters. [GH #15438]

 <https://github.com/Perl/perl5/issues/15438>

 ? Clarified documentation of "sort()" concerning the variables $a and $b.

 ? In "split()" noted that certain pattern modifiers are legal, and added a caution about

 its use in Perls before v5.11.

 ? Removed obsolete documentation of "study()", noting that it is now a no-op.

 ? Noted that "vec()" doesn't work well when the string contains characters whose code

 points are above 255.

 perlguts

 ? Added advice on formatted printing of operands of "Size_t" and "SSize_t"

 perlhack

 ? Clarify what editor tab stop rules to use, and note that we are migrating away from

 using tabs, replacing them with sequences of SPACE characters.

 perlhacktips

 ? Give another reason to use "cBOOL" to cast an expression to boolean.

 ? Note that the macros "TRUE" and "FALSE" are available to express boolean values.

 perlinterp

 ? perlinterp has been expanded to give a more detailed example of how to hunt around in

 the parser for how a given operator is handled.

 perllocale

 ? Some locales aren't compatible with Perl. Note that these can cause core dumps.

 perlmod

 ? Various clarifications have been added.

 perlmodlib

 ? Updated the site mirror list.

 perlobj Page 18/44

 ? Added a section on calling methods using their fully qualified names.

 ? Do not discourage manual @ISA.

 perlootut

 ? Mention "Moo" more.

 perlop

 ? Note that white space must be used for quoting operators if the delimiter is a word

 character (i.e., matches "\w").

 ? Clarify that in regular expression patterns delimited by single quotes, no variable

 interpolation is done.

 perlre

 ? The first part was extensively rewritten to incorporate various basic points, that in

 earlier versions were mentioned in sort of an appendix on Version 8 regular

 expressions.

 ? Note that it is common to have the "/x" modifier and forget that this means that "#"

 has to be escaped.

 perlretut

 ? Add introductory material.

 ? Note that a metacharacter occurring in a context where it can't mean that, silently

 loses its meta-ness and matches literally. "use re 'strict'" can catch some of these.

 perlunicode

 ? Corrected the text about Unicode BYTE ORDER MARK handling.

 ? Updated the text to correspond with changes in Unicode UTS#18, concerning regular

 expressions, and Perl compatibility with what it says.

 perlvar

 ? Document @ISA. It was documented in other places, but not in perlvar.

Diagnostics

 New Diagnostics

 New Errors

 ? A signature parameter must start with '$', '@' or '%'

 ? Bareword in require contains "%s"

 ? Bareword in require maps to empty filename

 ? Bareword in require maps to disallowed filename "%s"

 ? Bareword in require must not start with a double-colon: "%s" Page 19/44

 ? %s: command not found

 (A) You've accidentally run your script through bash or another shell instead of Perl.

 Check the "#!" line, or manually feed your script into Perl yourself. The "#!" line

 at the top of your file could look like:

 #!/usr/bin/perl

 ? %s: command not found: %s

 (A) You've accidentally run your script through zsh or another shell instead of Perl.

 Check the "#!" line, or manually feed your script into Perl yourself. The "#!" line

 at the top of your file could look like:

 #!/usr/bin/perl

 ? The experimental declared_refs feature is not enabled

 (F) To declare references to variables, as in "my \%x", you must first enable the

 feature:

 no warnings "experimental::declared_refs";

 use feature "declared_refs";

 See "Declaring a reference to a variable".

 ? Illegal character following sigil in a subroutine signature

 ? Indentation on line %d of here-doc doesn't match delimiter

 ? Infinite recursion via empty pattern.

 Using the empty pattern (which re-executes the last successfully-matched pattern)

 inside a code block in another regex, as in "/(?{ s!!new! })/", has always previously

 yielded a segfault. It now produces this error.

 ? Malformed UTF-8 string in "%s"

 ? Multiple slurpy parameters not allowed

 ? '#' not allowed immediately following a sigil in a subroutine signature

 ? panic: unknown OA_*: %x

 ? Unescaped left brace in regex is illegal here

 Unescaped left braces are now illegal in some contexts in regular expression patterns.

 In other contexts, they are still just deprecated; they will be illegal in Perl 5.30.

 ? Version control conflict marker

 (F) The parser found a line starting with "<<<<<<<", ">>>>>>>", or "=======". These

 may be left by a version control system to mark conflicts after a failed merge

 operation. Page 20/44

 New Warnings

 ? Can't determine class of operator %s, assuming "BASEOP"

 ? Declaring references is experimental

 (S experimental::declared_refs) This warning is emitted if you use a reference

 constructor on the right-hand side of "my()", "state()", "our()", or "local()".

 Simply suppress the warning if you want to use the feature, but know that in doing so

 you are taking the risk of using an experimental feature which may change or be

 removed in a future Perl version:

 no warnings "experimental::declared_refs";

 use feature "declared_refs";

 $fooref = my \$foo;

 See "Declaring a reference to a variable".

 ? do "%s" failed, '.' is no longer in @INC

 Since "." is now removed from @INC by default, "do" will now trigger a warning

 recommending to fix the "do" statement.

 ? "File::Glob::glob()" will disappear in perl 5.30. Use "File::Glob::bsd_glob()"

 instead.

 ? Unescaped literal '%c' in regex; marked by <-- HERE in m/%s/

 ? Use of unassigned code point or non-standalone grapheme for a delimiter will be a

 fatal error starting in Perl 5.30

 See "Deprecations"

 Changes to Existing Diagnostics

 ? When a "require" fails, we now do not provide @INC when the "require" is for a file

 instead of a module.

 ? When @INC is not scanned for a "require" call, we no longer display @INC to avoid

 confusion.

 ? Attribute "locked" is deprecated, and will disappear in Perl 5.28

 This existing warning has had the and will disappear text added in this release.

 ? Attribute "unique" is deprecated, and will disappear in Perl 5.28

 This existing warning has had the and will disappear text added in this release.

 ? Calling POSIX::%s() is deprecated

 This warning has been removed, as the deprecated functions have been removed from

 POSIX. Page 21/44

 ? Constants from lexical variables potentially modified elsewhere are deprecated. This

 will not be allowed in Perl 5.32

 This existing warning has had the this will not be allowed text added in this release.

 ? Deprecated use of "my()" in false conditional. This will be a fatal error in Perl 5.30

 This existing warning has had the this will be a fatal error text added in this

 release.

 ? "dump()" better written as "CORE::dump()". "dump()" will no longer be available in

 Perl 5.30

 This existing warning has had the no longer be available text added in this release.

 ? Experimental %s on scalar is now forbidden

 This message is now followed by more helpful text. [GH #15291]

 <https://github.com/Perl/perl5/issues/15291>

 ? Experimental "%s" subs not enabled

 This warning was been removed, as lexical subs are no longer experimental.

 ? Having more than one /%c regexp modifier is deprecated

 This deprecation warning has been removed, since "/xx" now has a new meaning.

 ? %s() is deprecated on ":utf8" handles. This will be a fatal error in Perl 5.30 .

 where "%s" is one of "sysread", "recv", "syswrite", or "send".

 This existing warning has had the this will be a fatal error text added in this

 release.

 This warning is now enabled by default, as all "deprecated" category warnings should

 be.

 ? $* is no longer supported. Its use will be fatal in Perl 5.30

 This existing warning has had the its use will be fatal text added in this release.

 ? $# is no longer supported. Its use will be fatal in Perl 5.30

 This existing warning has had the its use will be fatal text added in this release.

 ? Malformed UTF-8 character%s

 Details as to the exact problem have been added at the end of this message

 ? Missing or undefined argument to %s

 This warning used to warn about "require", even if it was actually "do" which being

 executed. It now gets the operation name right.

 ? NO-BREAK SPACE in a charnames alias definition is deprecated

 This warning has been removed as the behavior is now an error. Page 22/44

 ? Odd name/value argument for subroutine '%s'

 This warning now includes the name of the offending subroutine.

 ? Opening dirhandle %s also as a file. This will be a fatal error in Perl 5.28

 This existing warning has had the this will be a fatal error text added in this

 release.

 ? Opening filehandle %s also as a directory. This will be a fatal error in Perl 5.28

 This existing warning has had the this will be a fatal error text added in this

 release.

 ? panic: ck_split, type=%u

 panic: pp_split, pm=%p, s=%p

 These panic errors have been removed.

 ? Passing malformed UTF-8 to "%s" is deprecated

 This warning has been changed to the fatal Malformed UTF-8 string in "%s"

 ? Setting $/ to a reference to %s as a form of slurp is deprecated, treating as undef.

 This will be fatal in Perl 5.28

 This existing warning has had the this will be fatal text added in this release.

 ? "${^ENCODING}" is no longer supported. Its use will be fatal in Perl 5.28

 This warning used to be: "Setting "${^ENCODING}" is deprecated".

 The special action of the variable "${^ENCODING}" was formerly used to implement the

 "encoding" pragma. As of Perl 5.26, rather than being deprecated, assigning to this

 variable now has no effect except to issue the warning.

 ? Too few arguments for subroutine '%s'

 This warning now includes the name of the offending subroutine.

 ? Too many arguments for subroutine '%s'

 This warning now includes the name of the offending subroutine.

 ? Unescaped left brace in regex is deprecated here (and will be fatal in Perl 5.30),

 passed through in regex; marked by <--?HERE in m/%s/

 This existing warning has had the here (and will be fatal...) text added in this

 release.

 ? Unknown charname '' is deprecated. Its use will be fatal in Perl 5.28

 This existing warning has had the its use will be fatal text added in this release.

 ? Use of bare << to mean <<"" is deprecated. Its use will be fatal in Perl 5.28

 This existing warning has had the its use will be fatal text added in this release. Page 23/44

 ? Use of code point 0x%s is deprecated; the permissible max is 0x%s. This will be fatal

 in Perl 5.28

 This existing warning has had the this will be fatal text added in this release.

 ? Use of comma-less variable list is deprecated. Its use will be fatal in Perl 5.28

 This existing warning has had the its use will be fatal text added in this release.

 ? Use of inherited "AUTOLOAD" for non-method %s() is deprecated. This will be fatal in

 Perl 5.28

 This existing warning has had the this will be fatal text added in this release.

 ? Use of strings with code points over 0xFF as arguments to %s operator is deprecated.

 This will be a fatal error in Perl 5.28

 This existing warning has had the this will be a fatal error text added in this

 release.

Utility Changes

 c2ph and pstruct

 ? These old utilities have long since superceded by h2xs, and are now gone from the

 distribution.

 Porting/pod_lib.pl

 ? Removed spurious executable bit.

 ? Account for the possibility of DOS file endings.

 Porting/sync-with-cpan

 ? Many improvements.

 perf/benchmarks

 ? Tidy file, rename some symbols.

 Porting/checkAUTHORS.pl

 ? Replace obscure character range with "\w".

 t/porting/regen.t

 ? Try to be more helpful when tests fail.

 utils/h2xs.PL

 ? Avoid infinite loop for enums.

 perlbug

 ? Long lines in the message body are now wrapped at 900 characters, to stay well within

 the 1000-character limit imposed by SMTP mail transfer agents. This is particularly

 likely to be important for the list of arguments to Configure, which can readily Page 24/44

 exceed the limit if, for example, it names several non-default installation paths.

 This change also adds the first unit tests for perlbug. [perl #128020]

 <https://rt.perl.org/Public/Bug/Display.html?id=128020>

Configuration and Compilation

 ? "-Ddefault_inc_excludes_dot" has added, and enabled by default.

 ? The "dtrace" build process has further changes [GH #15718]

 <https://github.com/Perl/perl5/issues/15718>:

 ? If the "-xnolibs" is available, use that so a dtrace perl can be built within a

 FreeBSD jail.

 ? On systems that build a dtrace object file (FreeBSD, Solaris, and SystemTap's

 dtrace emulation), copy the input objects to a separate directory and process them

 there, and use those objects in the link, since "dtrace -G" also modifies these

 objects.

 ? Add libelf to the build on FreeBSD 10.x, since dtrace adds references to libelf

 symbols.

 ? Generate a dummy dtrace_main.o if "dtrace -G" fails to build it. A default build

 on Solaris generates probes from the unused inline functions, while they don't on

 FreeBSD, which causes "dtrace -G" to fail.

 ? You can now disable perl's use of the "PERL_HASH_SEED" and "PERL_PERTURB_KEYS"

 environment variables by configuring perl with "-Accflags=NO_PERL_HASH_ENV".

 ? You can now disable perl's use of the "PERL_HASH_SEED_DEBUG" environment variable by

 configuring perl with "-Accflags=-DNO_PERL_HASH_SEED_DEBUG".

 ? Configure now zeroes out the alignment bytes when calculating the bytes for 80-bit

 "NaN" and "Inf" to make builds more reproducible. [GH #15725]

 <https://github.com/Perl/perl5/issues/15725>

 ? Since v5.18, for testing purposes we have included support for building perl with a

 variety of non-standard, and non-recommended hash functions. Since we do not

 recommend the use of these functions, we have removed them and their corresponding

 build options. Specifically this includes the following build options:

 PERL_HASH_FUNC_SDBM

 PERL_HASH_FUNC_DJB2

 PERL_HASH_FUNC_SUPERFAST

 PERL_HASH_FUNC_MURMUR3 Page 25/44

 PERL_HASH_FUNC_ONE_AT_A_TIME

 PERL_HASH_FUNC_ONE_AT_A_TIME_OLD

 PERL_HASH_FUNC_MURMUR_HASH_64A

 PERL_HASH_FUNC_MURMUR_HASH_64B

 ? Remove "Warning: perl appears in your path"

 This install warning is more or less obsolete, since most platforms already will have

 a /usr/bin/perl or similar provided by the OS.

 ? Reduce verbosity of "make install.man"

 Previously, two progress messages were emitted for each manpage: one by installman

 itself, and one by the function in install_lib.pl that it calls to actually install

 the file. Disabling the second of those in each case saves over 750 lines of

 unhelpful output.

 ? Cleanup for "clang -Weverything" support. [GH #15683]

 <https://github.com/Perl/perl5/issues/15683>

 ? Configure: signbit scan was assuming too much, stop assuming negative 0.

 ? Various compiler warnings have been silenced.

 ? Several smaller changes have been made to remove impediments to compiling under C++11.

 ? Builds using "USE_PAD_RESET" now work again; this configuration had bit-rotted.

 ? A probe for "gai_strerror" was added to Configure that checks if the "gai_strerror()"

 routine is available and can be used to translate error codes returned by

 "getaddrinfo()" into human readable strings.

 ? Configure now aborts if both "-Duselongdouble" and "-Dusequadmath" are requested. [GH

 #14944] <https://github.com/Perl/perl5/issues/14944>

 ? Fixed a bug in which Configure could append "-quadmath" to the archname even if it was

 already present. [GH #15423] <https://github.com/Perl/perl5/issues/15423>

 ? Clang builds with "-DPERL_GLOBAL_STRUCT" or "-DPERL_GLOBAL_STRUCT_PRIVATE" have been

 fixed (by disabling Thread Safety Analysis for these configurations).

 ? make_ext.pl no longer updates a module's pm_to_blib file when no files require

 updates. This could cause dependencies, perlmain.c in particular, to be rebuilt

 unnecessarily. [GH #15060] <https://github.com/Perl/perl5/issues/15060>

 ? The output of "perl -V" has been reformatted so that each configuration and compile-

 time option is now listed one per line, to improve readability.

 ? Configure now builds "miniperl" and "generate_uudmap" if you invoke it with Page 26/44

 "-Dusecrosscompiler" but not "-Dtargethost=somehost". This means you can supply your

 target platform "config.sh", generate the headers and proceed to build your cross-

 target perl. [GH #15126] <https://github.com/Perl/perl5/issues/15126>

 ? Perl built with "-Accflags=-DPERL_TRACE_OPS" now only dumps the operator counts when

 the environment variable "PERL_TRACE_OPS" is set to a non-zero integer. This allows

 "make test" to pass on such a build.

 ? When building with GCC 6 and link-time optimization (the "-flto" option to "gcc"),

 Configure was treating all probed symbols as present on the system, regardless of

 whether they actually exist. This has been fixed. [GH #15322]

 <https://github.com/Perl/perl5/issues/15322>

 ? The t/test.pl library is used for internal testing of Perl itself, and also copied by

 several CPAN modules. Some of those modules must work on older versions of Perl, so

 t/test.pl must in turn avoid newer Perl features. Compatibility with Perl 5.8 was

 inadvertently removed some time ago; it has now been restored. [GH #15302]

 <https://github.com/Perl/perl5/issues/15302>

 ? The build process no longer emits an extra blank line before building each "simple"

 extension (those with only *.pm and *.pod files).

Testing

 Tests were added and changed to reflect the other additions and changes in this release.

 Furthermore, these substantive changes were made:

 ? A new test script, comp/parser_run.t, has been added that is like comp/parser.t but

 with test.pl included so that "runperl()" and the like are available for use.

 ? Tests for locales were erroneously using locales incompatible with Perl.

 ? Some parts of the test suite that try to exhaustively test edge cases in the regex

 implementation have been restricted to running for a maximum of five minutes. On slow

 systems they could otherwise take several hours, without significantly improving our

 understanding of the correctness of the code under test.

 ? A new internal facility allows analysing the time taken by the individual tests in

 Perl's own test suite; see Porting/harness-timer-report.pl.

 ? t/re/regexp_nonull.t has been added to test that the regular expression engine can

 handle scalars that do not have a null byte just past the end of the string.

 ? A new test script, t/op/decl-refs.t, has been added to test the new feature "Declaring

 a reference to a variable". Page 27/44

 ? A new test script, t/re/keep_tabs.t has been added to contain tests where "\t"

 characters should not be expanded into spaces.

 ? A new test script, t/re/anyof.t, has been added to test that the ANYOF nodes generated

 by bracketed character classes are as expected.

 ? There is now more extensive testing of the Unicode-related API macros and functions.

 ? Several of the longer running API test files have been split into multiple test files

 so that they can be run in parallel.

 ? t/harness now tries really hard not to run tests which are located outside of the Perl

 source tree. [GH #14578] <https://github.com/Perl/perl5/issues/14578>

 ? Prevent debugger tests (lib/perl5db.t) from failing due to the contents of

 $ENV{PERLDB_OPTS}. [GH #15782] <https://github.com/Perl/perl5/issues/15782>

Platform Support

 New Platforms

 NetBSD/VAX

 Perl now compiles under NetBSD on VAX machines. However, it's not possible for that

 platform to implement floating-point infinities and NaNs compatible with most modern

 systems, which implement the IEEE-754 floating point standard. The hexadecimal

 floating point ("0x...p[+-]n" literals, "printf %a") is not implemented, either. The

 "make test" passes 98% of tests.

 ? Test fixes and minor updates.

 ? Account for lack of "inf", "nan", and "-0.0" support.

 Platform-Specific Notes

 Darwin

 ? Don't treat "-Dprefix=/usr" as special: instead require an extra option

 "-Ddarwin_distribution" to produce the same results.

 ? OS X El Capitan doesn't implement the "clock_gettime()" or "clock_getres()" APIs;

 emulate them as necessary.

 ? Deprecated syscall(2) on macOS 10.12.

 EBCDIC

 Several tests have been updated to work (or be skipped) on EBCDIC platforms.

 HP-UX

 The Net::Ping UDP test is now skipped on HP-UX.

 Hurd Page 28/44

 The hints for Hurd have been improved, enabling malloc wrap and reporting the GNU libc

 used (previously it was an empty string when reported).

 VAX VAX floating point formats are now supported on NetBSD.

 VMS

 ? The path separator for the "PERL5LIB" and "PERLLIB" environment entries is now a

 colon (":") when running under a Unix shell. There is no change when running

 under DCL (it's still "|").

 ? configure.com now recognizes the VSI-branded C compiler and no longer recognizes

 the "DEC"-branded C compiler (as there hasn't been such a thing for 15 or more

 years).

 Windows

 ? Support for compiling perl on Windows using Microsoft Visual Studio 2015

 (containing Visual C++ 14.0) has been added.

 This version of VC++ includes a completely rewritten C run-time library, some of

 the changes in which mean that work done to resolve a socket "close()" bug in perl

 #120091 and perl #118059 is not workable in its current state with this version of

 VC++. Therefore, we have effectively reverted that bug fix for VS2015 onwards on

 the basis that being able to build with VS2015 onwards is more important than

 keeping the bug fix. We may revisit this in the future to attempt to fix the bug

 again in a way that is compatible with VS2015.

 These changes do not affect compilation with GCC or with Visual Studio versions up

 to and including VS2013, i.e., the bug fix is retained (unchanged) for those

 compilers.

 Note that you may experience compatibility problems if you mix a perl built with

 GCC or VS <= VS2013 with XS modules built with VS2015, or if you mix a perl built

 with VS2015 with XS modules built with GCC or VS <= VS2013. Some incompatibility

 may arise because of the bug fix that has been reverted for VS2015 builds of perl,

 but there may well be incompatibility anyway because of the rewritten CRT in

 VS2015 (e.g., see discussion at <http://stackoverflow.com/questions/30412951>).

 ? It now automatically detects GCC versus Visual C and sets the VC version number on

 Win32.

 Linux

 Drop support for Linux a.out executable format. Linux has used ELF for over twenty Page 29/44

 years.

 OpenBSD 6

 OpenBSD 6 still does not support returning "pid", "gid", or "uid" with "SA_SIGINFO".

 Make sure to account for it.

 FreeBSD

 t/uni/overload.t: Skip hanging test on FreeBSD.

 DragonFly BSD

 DragonFly BSD now has support for "setproctitle()". [GH #15703]

 <https://github.com/Perl/perl5/issues/15703>.

Internal Changes

 ? A new API function "sv_setpv_bufsize()" allows simultaneously setting the length and

 the allocated size of the buffer in an "SV", growing the buffer if necessary.

 ? A new API macro "SvPVCLEAR()" sets its "SV" argument to an empty string, like Perl-

 space "$x = ''", but with several optimisations.

 ? Several new macros and functions for dealing with Unicode and UTF-8-encoded strings

 have been added to the API, as well as some changes in the functionality of existing

 functions (see "Unicode Support" in perlapi for more details):

 ? New versions of the API macros like "isALPHA_utf8" and "toLOWER_utf8" have been

 added, each with the suffix "_safe", like "isSPACE_utf8_safe". These take an

 extra parameter, giving an upper limit of how far into the string it is safe to

 read. Using the old versions could cause attempts to read beyond the end of the

 input buffer if the UTF-8 is not well-formed, and their use now raises a

 deprecation warning. Details are at "Character classification" in perlapi.

 ? Macros like "isALPHA_utf8" and "toLOWER_utf8" now die if they detect that their

 input UTF-8 is malformed. A deprecation warning had been issued since Perl 5.18.

 ? Several new macros for analysing the validity of utf8 sequences. These are:

 "UTF8_GOT_ABOVE_31_BIT" "UTF8_GOT_CONTINUATION" "UTF8_GOT_EMPTY" "UTF8_GOT_LONG"

 "UTF8_GOT_NONCHAR" "UTF8_GOT_NON_CONTINUATION" "UTF8_GOT_OVERFLOW"

 "UTF8_GOT_SHORT" "UTF8_GOT_SUPER" "UTF8_GOT_SURROGATE" "UTF8_IS_INVARIANT"

 "UTF8_IS_NONCHAR" "UTF8_IS_SUPER" "UTF8_IS_SURROGATE" "UVCHR_IS_INVARIANT"

 "isUTF8_CHAR_flags" "isSTRICT_UTF8_CHAR" "isC9_STRICT_UTF8_CHAR"

 ? Functions that are all extensions of the "is_utf8_string_*()" functions, that

 apply various restrictions to the UTF-8 recognized as valid: Page 30/44

 "is_strict_utf8_string", "is_strict_utf8_string_loc",

 "is_strict_utf8_string_loclen",

 "is_c9strict_utf8_string", "is_c9strict_utf8_string_loc",

 "is_c9strict_utf8_string_loclen",

 "is_utf8_string_flags", "is_utf8_string_loc_flags", "is_utf8_string_loclen_flags",

 "is_utf8_fixed_width_buf_flags", "is_utf8_fixed_width_buf_loc_flags",

 "is_utf8_fixed_width_buf_loclen_flags".

 "is_utf8_invariant_string". "is_utf8_valid_partial_char".

 "is_utf8_valid_partial_char_flags".

 ? The functions "utf8n_to_uvchr" and its derivatives have had several changes of

 behaviour.

 Calling them, while passing a string length of 0 is now asserted against in

 DEBUGGING builds, and otherwise, returns the Unicode REPLACEMENT CHARACTER. If

 you have nothing to decode, you shouldn't call the decode function.

 They now return the Unicode REPLACEMENT CHARACTER if called with UTF-8 that has

 the overlong malformation and that malformation is allowed by the input

 parameters. This malformation is where the UTF-8 looks valid syntactically, but

 there is a shorter sequence that yields the same code point. This has been

 forbidden since Unicode version 3.1.

 They now accept an input flag to allow the overflow malformation. This

 malformation is when the UTF-8 may be syntactically valid, but the code point it

 represents is not capable of being represented in the word length on the platform.

 What "allowed" means, in this case, is that the function doesn't return an error,

 and it advances the parse pointer to beyond the UTF-8 in question, but it returns

 the Unicode REPLACEMENT CHARACTER as the value of the code point (since the real

 value is not representable).

 They no longer abandon searching for other malformations when the first one is

 encountered. A call to one of these functions thus can generate multiple

 diagnostics, instead of just one.

 ? "valid_utf8_to_uvchr()" has been added to the API (although it was present in core

 earlier). Like "utf8_to_uvchr_buf()", but assumes that the next character is well-

 formed. Use with caution.

 ? A new function, "utf8n_to_uvchr_error", has been added for use by modules that Page 31/44

 need to know the details of UTF-8 malformations beyond pass/fail. Previously, the

 only ways to know why a sequence was ill-formed was to capture and parse the

 generated diagnostics or to do your own analysis.

 ? There is now a safer version of utf8_hop(), called "utf8_hop_safe()". Unlike

 utf8_hop(), utf8_hop_safe() won't navigate before the beginning or after the end

 of the supplied buffer.

 ? Two new functions, "utf8_hop_forward()" and "utf8_hop_back()" are similar to

 "utf8_hop_safe()" but are for when you know which direction you wish to travel.

 ? Two new macros which return useful utf8 byte sequences:

 "BOM_UTF8"

 "REPLACEMENT_CHARACTER_UTF8"

 ? Perl is now built with the "PERL_OP_PARENT" compiler define enabled by default. To

 disable it, use the "PERL_NO_OP_PARENT" compiler define. This flag alters how the

 "op_sibling" field is used in "OP" structures, and has been available optionally since

 perl 5.22.

 See "Internal Changes" in perl5220delta for more details of what this build option

 does.

 ? Three new ops, "OP_ARGELEM", "OP_ARGDEFELEM", and "OP_ARGCHECK" have been added.

 These are intended principally to implement the individual elements of a subroutine

 signature, plus any overall checking required.

 ? The "OP_PUSHRE" op has been eliminated and the "OP_SPLIT" op has been changed from

 class "LISTOP" to "PMOP".

 Formerly the first child of a split would be a "pushre", which would have the

 "split"'s regex attached to it. Now the regex is attached directly to the "split" op,

 and the "pushre" has been eliminated.

 ? The "op_class()" API function has been added. This is like the existing "OP_CLASS()"

 macro, but can more accurately determine what struct an op has been allocated as. For

 example "OP_CLASS()" might return "OA_BASEOP_OR_UNOP" indicating that ops of this type

 are usually allocated as an "OP" or "UNOP"; while "op_class()" will return

 "OPclass_BASEOP" or "OPclass_UNOP" as appropriate.

 ? All parts of the internals now agree that the "sassign" op is a "BINOP"; previously it

 was listed as a "BASEOP" in regen/opcodes, which meant that several parts of the

 internals had to be special-cased to accommodate it. This oddity's original Page 32/44

 motivation was to handle code like "$x ||= 1"; that is now handled in a simpler way.

 ? The output format of the "op_dump()" function (as used by "perl -Dx") has changed: it

 now displays an "ASCII-art" tree structure, and shows more low-level details about

 each op, such as its address and class.

 ? The "PADOFFSET" type has changed from being unsigned to signed, and several pad-

 related variables such as "PL_padix" have changed from being of type "I32" to type

 "PADOFFSET".

 ? The "DEBUGGING"-mode output for regex compilation and execution has been enhanced.

 ? Several obscure SV flags have been eliminated, sometimes along with the macros which

 manipulate them: "SVpbm_VALID", "SVpbm_TAIL", "SvTAIL_on", "SvTAIL_off",

 "SVrepl_EVAL", "SvEVALED".

 ? An OP "op_private" flag has been eliminated: "OPpRUNTIME". This used to often get set

 on "PMOP" ops, but had become meaningless over time.

Selected Bug Fixes

 ? Perl no longer panics when switching into some locales on machines with buggy

 "strxfrm()" implementations in their libc. [GH #13768]

 <https://github.com/Perl/perl5/issues/13768>

 ? " $-{$name} " would leak an "AV" on each access if the regular expression had no named

 captures. The same applies to access to any hash tied with Tie::Hash::NamedCapture

 and "all => 1". [GH #15882] <https://github.com/Perl/perl5/issues/15882>

 ? Attempting to use the deprecated variable $# as the object in an indirect object

 method call could cause a heap use after free or buffer overflow. [GH #15599]

 <https://github.com/Perl/perl5/issues/15599>

 ? When checking for an indirect object method call, in some rare cases the parser could

 reallocate the line buffer but then continue to use pointers to the old buffer. [GH

 #15585] <https://github.com/Perl/perl5/issues/15585>

 ? Supplying a glob as the format argument to "formline" would cause an assertion

 failure. [GH #15862] <https://github.com/Perl/perl5/issues/15862>

 ? Code like " $value1 =~ qr/.../ ~~ $value2 " would have the match converted into a

 "qr//" operator, leaving extra elements on the stack to confuse any surrounding

 expression. [GH #15859] <https://github.com/Perl/perl5/issues/15859>

 ? Since v5.24 in some obscure cases, a regex which included code blocks from multiple

 sources (e.g., via embedded via "qr//" objects) could end up with the wrong current Page 33/44

 pad and crash or give weird results. [GH #15657]

 <https://github.com/Perl/perl5/issues/15657>

 ? Occasionally "local()"s in a code block within a patterns weren't being undone when

 the pattern matching backtracked over the code block. [GH #15056]

 <https://github.com/Perl/perl5/issues/15056>

 ? Using "substr()" to modify a magic variable could access freed memory in some cases.

 [GH #15871] <https://github.com/Perl/perl5/issues/15871>

 ? Under "use utf8", the entire source code is now checked for being UTF-8 well formed,

 not just quoted strings as before. [GH #14973]

 <https://github.com/Perl/perl5/issues/14973>.

 ? The range operator ".." on strings now handles its arguments correctly when in the

 scope of the "unicode_strings" feature. The previous behaviour was sufficiently

 unexpected that we believe no correct program could have made use of it.

 ? The "split" operator did not ensure enough space was allocated for its return value in

 scalar context. It could then write a single pointer immediately beyond the end of

 the memory block allocated for the stack. [GH #15749]

 <https://github.com/Perl/perl5/issues/15749>

 ? Using a large code point with the "W" pack template character with the current output

 position aligned at just the right point could cause a write of a single zero byte

 immediately beyond the end of an allocated buffer. [GH #15572]

 <https://github.com/Perl/perl5/issues/15572>

 ? Supplying a format's picture argument as part of the format argument list where the

 picture specifies modifying the argument could cause an access to the new freed

 compiled format. [GH #15566] <https://github.com/Perl/perl5/issues/15566>

 ? The sort() operator's built-in numeric comparison function didn't handle large

 integers that weren't exactly representable by a double. This now uses the same code

 used to implement the "<=>" operator. [GH #15768]

 <https://github.com/Perl/perl5/issues/15768>

 ? Fix issues with "/(?{ ... <<EOF })/" that broke Method::Signatures. [GH #15779]

 <https://github.com/Perl/perl5/issues/15779>

 ? Fixed an assertion failure with "chop" and "chomp", which could be triggered by

 "chop(@x =~ tr/1/1/)". [GH #15738] <https://github.com/Perl/perl5/issues/15738>.

 ? Fixed a comment skipping error in patterns under "/x"; it could stop skipping a byte Page 34/44

 early, which could be in the middle of a UTF-8 character. [GH #15790]

 <https://github.com/Perl/perl5/issues/15790>.

 ? perldb now ignores /dev/tty on non-Unix systems. [GH #12244]

 <https://github.com/Perl/perl5/issues/12244>;

 ? Fix assertion failure for "{}->$x" when $x isn't defined. [GH #15791]

 <https://github.com/Perl/perl5/issues/15791>.

 ? Fix an assertion error which could be triggered when a lookahead string in patterns

 exceeded a minimum length. [GH #15796] <https://github.com/Perl/perl5/issues/15796>.

 ? Only warn once per literal number about a misplaced "_". [GH #9989]

 <https://github.com/Perl/perl5/issues/9989>.

 ? The "tr///" parse code could be looking at uninitialized data after a perse error.

 [GH #15624] <https://github.com/Perl/perl5/issues/15624>.

 ? In a pattern match, a back-reference ("\1") to an unmatched capture could read back

 beyond the start of the string being matched. [GH #15634]

 <https://github.com/Perl/perl5/issues/15634>.

 ? "use re 'strict'" is supposed to warn if you use a range (such as "/(?[[X-Y]])/")

 whose start and end digit aren't from the same group of 10. It didn't do that for

 five groups of mathematical digits starting at "U+1D7E".

 ? A sub containing a "forward" declaration with the same name (e.g., "sub c { sub c; }")

 could sometimes crash or loop infinitely. [GH #15557]

 <https://github.com/Perl/perl5/issues/15557>

 ? A crash in executing a regex with a non-anchored UTF-8 substring against a target

 string that also used UTF-8 has been fixed. [GH #15628]

 <https://github.com/Perl/perl5/issues/15628>

 ? Previously, a shebang line like "#!perl -i u" could be erroneously interpreted as

 requesting the "-u" option. This has been fixed. [GH #15623]

 <https://github.com/Perl/perl5/issues/15623>

 ? The regex engine was previously producing incorrect results in some rare situations

 when backtracking past an alternation that matches only one thing; this showed up as

 capture buffers ($1, $2, etc.) erroneously containing data from regex execution paths

 that weren't actually executed for the final match. [GH #15666]

 <https://github.com/Perl/perl5/issues/15666>

 ? Certain regexes making use of the experimental "regex_sets" feature could trigger an Page 35/44

 assertion failure. This has been fixed. [GH #15620]

 <https://github.com/Perl/perl5/issues/15620>

 ? Invalid assignments to a reference constructor (e.g., "\eval=time") could sometimes

 crash in addition to giving a syntax error. [GH #14815]

 <https://github.com/Perl/perl5/issues/14815>

 ? The parser could sometimes crash if a bareword came after "evalbytes". [GH #15586]

 <https://github.com/Perl/perl5/issues/15586>

 ? Autoloading via a method call would warn erroneously ("Use of inherited AUTOLOAD for

 non-method") if there was a stub present in the package into which the invocant had

 been blessed. The warning is no longer emitted in such circumstances. [GH #9094]

 <https://github.com/Perl/perl5/issues/9094>

 ? The use of "splice" on arrays with non-existent elements could cause other operators

 to crash. [GH #15577] <https://github.com/Perl/perl5/issues/15577>

 ? A possible buffer overrun when a pattern contains a fixed utf8 substring. [GH #15534]

 <https://github.com/Perl/perl5/issues/15534>

 ? Fixed two possible use-after-free bugs in perl's lexer. [GH #15549]

 <https://github.com/Perl/perl5/issues/15549>

 ? Fixed a crash with "s///l" where it thought it was dealing with UTF-8 when it wasn't.

 [GH #15543] <https://github.com/Perl/perl5/issues/15543>

 ? Fixed a place where the regex parser was not setting the syntax error correctly on a

 syntactically incorrect pattern. [GH #15565]

 <https://github.com/Perl/perl5/issues/15565>

 ? The "&." operator (and the "&" operator, when it treats its arguments as strings) were

 failing to append a trailing null byte if at least one string was marked as utf8

 internally. Many code paths (system calls, regexp compilation) still expect there to

 be a null byte in the string buffer just past the end of the logical string. An

 assertion failure was the result. [GH #15606]

 <https://github.com/Perl/perl5/issues/15606>

 ? Avoid a heap-after-use error in the parser when creating an error messge for a

 syntactically invalid heredoc. [GH #15527]

 <https://github.com/Perl/perl5/issues/15527>

 ? Fix a segfault when run with "-DC" options on DEBUGGING builds. [GH #15563]

 <https://github.com/Perl/perl5/issues/15563> Page 36/44

 ? Fixed the parser error handling in subroutine attributes for an '":attr(foo"' that

 does not have an ending '")"'.

 ? Fix the perl lexer to correctly handle a backslash as the last char in quoted-string

 context. This actually fixed two bugs, [GH #15546]

 <https://github.com/Perl/perl5/issues/15546> and [GH #15582]

 <https://github.com/Perl/perl5/issues/15582>.

 ? In the API function "gv_fetchmethod_pvn_flags", rework separator parsing to prevent

 possible string overrun with an invalid "len" argument. [GH #15598]

 <https://github.com/Perl/perl5/issues/15598>

 ? Problems with in-place array sorts: code like "@a = sort { ... } @a", where the source

 and destination of the sort are the same plain array, are optimised to do less copying

 around. Two side-effects of this optimisation were that the contents of @a as seen by

 sort routines were partially sorted; and under some circumstances accessing @a during

 the sort could crash the interpreter. Both these issues have been fixed, and Sort

 functions see the original value of @a. [GH #15387]

 <https://github.com/Perl/perl5/issues/15387>

 ? Non-ASCII string delimiters are now reported correctly in error messages for

 unterminated strings. [GH #15469] <https://github.com/Perl/perl5/issues/15469>

 ? "pack("p", ...)" used to emit its warning ("Attempt to pack pointer to temporary

 value") erroneously in some cases, but has been fixed.

 ? @DB::args is now exempt from "used once" warnings. The warnings only occurred under

 -w, because warnings.pm itself uses @DB::args multiple times.

 ? The use of built-in arrays or hash slices in a double-quoted string no longer issues a

 warning ("Possible unintended interpolation...") if the variable has not been

 mentioned before. This affected code like "qq|@DB::args|" and "qq|@SIG{'CHLD',

 'HUP'}|". (The special variables "@-" and "@+" were already exempt from the warning.)

 ? "gethostent" and similar functions now perform a null check internally, to avoid

 crashing with the torsocks library. This was a regression from v5.22. [GH #15478]

 <https://github.com/Perl/perl5/issues/15478>

 ? "defined *{'!'}", "defined *{'['}", and "defined *{'-'}" no longer leak memory if the

 typeglob in question has never been accessed before.

 ? Mentioning the same constant twice in a row (which is a syntax error) no longer fails

 an assertion under debugging builds. This was a regression from v5.20. [GH #15017] Page 37/44

 <https://github.com/Perl/perl5/issues/15017>

 ? Many issues relating to "printf "%a"" of hexadecimal floating point were fixed. In

 addition, the "subnormals" (formerly known as "denormals") floating point numbers are

 now supported both with the plain IEEE 754 floating point numbers (64-bit or 128-bit)

 and the x86 80-bit "extended precision". Note that subnormal hexadecimal floating

 point literals will give a warning about "exponent underflow". [GH #15495]

 <https://github.com/Perl/perl5/issues/15495> [GH #15503]

 <https://github.com/Perl/perl5/issues/15503> [GH #15504]

 <https://github.com/Perl/perl5/issues/15504> [GH #15505]

 <https://github.com/Perl/perl5/issues/15505> [GH #15510]

 <https://github.com/Perl/perl5/issues/15510> [GH #15512]

 <https://github.com/Perl/perl5/issues/15512>

 ? A regression in v5.24 with "tr/\N{U+...}/foo/" when the code point was between 128 and

 255 has been fixed. [GH #15475] <https://github.com/Perl/perl5/issues/15475>.

 ? Use of a string delimiter whose code point is above 2**31 now works correctly on

 platforms that allow this. Previously, certain characters, due to truncation, would

 be confused with other delimiter characters with special meaning (such as "?" in

 "m?...?"), resulting in inconsistent behaviour. Note that this is non-portable, and

 is based on Perl's extension to UTF-8, and is probably not displayable nor enterable

 by any editor. [GH #15477] <https://github.com/Perl/perl5/issues/15477>

 ? "@{x" followed by a newline where "x" represents a control or non-ASCII character no

 longer produces a garbled syntax error message or a crash. [GH #15518]

 <https://github.com/Perl/perl5/issues/15518>

 ? An assertion failure with "%: = 0" has been fixed. [GH #15358]

 <https://github.com/Perl/perl5/issues/15358>

 ? In Perl 5.18, the parsing of "$foo::$bar" was accidentally changed, such that it would

 be treated as "$foo."::".$bar". The previous behavior, which was to parse it as

 "$foo:: . $bar", has been restored. [GH #15408]

 <https://github.com/Perl/perl5/issues/15408>

 ? Since Perl 5.20, line numbers have been off by one when perl is invoked with the -x

 switch. This has been fixed. [GH #15413]

 <https://github.com/Perl/perl5/issues/15413>

 ? Vivifying a subroutine stub in a deleted stash (e.g., "delete $My::{"Foo::"}; Page 38/44

 \&My::Foo::foo") no longer crashes. It had begun crashing in Perl 5.18. [GH #15420]

 <https://github.com/Perl/perl5/issues/15420>

 ? Some obscure cases of subroutines and file handles being freed at the same time could

 result in crashes, but have been fixed. The crash was introduced in Perl 5.22. [GH

 #15435] <https://github.com/Perl/perl5/issues/15435>

 ? Code that looks for a variable name associated with an uninitialized value could cause

 an assertion failure in cases where magic is involved, such as $ISA[0][0]. This has

 now been fixed. [GH #15364] <https://github.com/Perl/perl5/issues/15364>

 ? A crash caused by code generating the warning "Subroutine STASH::NAME redefined" in

 cases such as "sub P::f{} undef *P::; *P::f =sub{};" has been fixed. In these cases,

 where the STASH is missing, the warning will now appear as "Subroutine NAME

 redefined". [GH #15368] <https://github.com/Perl/perl5/issues/15368>

 ? Fixed an assertion triggered by some code that handles deprecated behavior in formats,

 e.g., in cases like this:

 format STDOUT =

 @

 0"$x"

 [GH #15366] <https://github.com/Perl/perl5/issues/15366>

 ? A possible divide by zero in string transformation code on Windows has been avoided,

 fixing a crash when collating an empty string. [GH #15439]

 <https://github.com/Perl/perl5/issues/15439>

 ? Some regular expression parsing glitches could lead to assertion failures with regular

 expressions such as "/(?<=/" and "/(?<!/". This has now been fixed. [GH #15332]

 <https://github.com/Perl/perl5/issues/15332>

 ? " until ($x = 1) { ... } " and " ... until $x = 1 " now properly warn when syntax

 warnings are enabled. [GH #15138] <https://github.com/Perl/perl5/issues/15138>

 ? socket() now leaves the error code returned by the system in $! on failure. [GH

 #15383] <https://github.com/Perl/perl5/issues/15383>

 ? Assignment variants of any bitwise ops under the "bitwise" feature would crash if the

 left-hand side was an array or hash. [GH #15346]

 <https://github.com/Perl/perl5/issues/15346>

 ? "require" followed by a single colon (as in "foo() ? require : ..." is now parsed

 correctly as "require" with implicit $_, rather than "require """. [GH #15380] Page 39/44

 <https://github.com/Perl/perl5/issues/15380>

 ? Scalar "keys %hash" can now be assigned to consistently in all scalar lvalue contexts.

 Previously it worked for some contexts but not others.

 ? List assignment to "vec" or "substr" with an array or hash for its first argument used

 to result in crashes or "Can't coerce" error messages at run time, unlike scalar

 assignment, which would give an error at compile time. List assignment now gives a

 compile-time error, too. [GH #15370] <https://github.com/Perl/perl5/issues/15370>

 ? Expressions containing an "&&" or "||" operator (or their synonyms "and" and "or")

 were being compiled incorrectly in some cases. If the left-hand side consisted of

 either a negated bareword constant or a negated "do {}" block containing a constant

 expression, and the right-hand side consisted of a negated non-foldable expression,

 one of the negations was effectively ignored. The same was true of "if" and "unless"

 statement modifiers, though with the left-hand and right-hand sides swapped. This

 long-standing bug has now been fixed. [GH #15285]

 <https://github.com/Perl/perl5/issues/15285>

 ? "reset" with an argument no longer crashes when encountering stash entries other than

 globs. [GH #15314] <https://github.com/Perl/perl5/issues/15314>

 ? Assignment of hashes to, and deletion of, typeglobs named *:::::: no longer causes

 crashes. [GH #15307] <https://github.com/Perl/perl5/issues/15307>

 ? Perl wasn't correctly handling true/false values in the LHS of a list assign;

 specifically the truth values returned by boolean operators. This could trigger an

 assertion failure in something like the following:

 for ($x > $y) {

 ($_, ...) = (...); # here $_ is aliased to a truth value

 }

 This was a regression from v5.24. [GH #15690]

 <https://github.com/Perl/perl5/issues/15690>

 ? Assertion failure with user-defined Unicode-like properties. [GH #15696]

 <https://github.com/Perl/perl5/issues/15696>

 ? Fix error message for unclosed "\N{" in a regex. An unclosed "\N{" could give the

 wrong error message: "\N{NAME} must be resolved by the lexer".

 ? List assignment in list context where the LHS contained aggregates and where there

 were not enough RHS elements, used to skip scalar lvalues. Previously, Page 40/44

 "(($a,$b,@c,$d) = (1))" in list context returned "($a)"; now it returns "($a,$b,$d)".

 "(($a,$b,$c) = (1))" is unchanged: it still returns "($a,$b,$c)". This can be seen in

 the following:

 sub inc { $_++ for @_ }

 inc(($a,$b,@c,$d) = (10))

 Formerly, the values of "($a,$b,$d)" would be left as "(11,undef,undef)"; now they are

 "(11,1,1)".

 ? Code like this: "/(?{ s!!! })/" could trigger infinite recursion on the C stack (not

 the normal perl stack) when the last successful pattern in scope is itself. We avoid

 the segfault by simply forbidding the use of the empty pattern when it would resolve

 to the currently executing pattern. [GH #15669]

 <https://github.com/Perl/perl5/issues/15669>

 ? Avoid reading beyond the end of the line buffer in perl's lexer when there's a short

 UTF-8 character at the end. [GH #15531] <https://github.com/Perl/perl5/issues/15531>

 ? Alternations in regular expressions were sometimes failing to match a utf8 string

 against a utf8 alternate. [GH #15680] <https://github.com/Perl/perl5/issues/15680>

 ? Make "do "a\0b"" fail silently (and return "undef" and set $!) instead of throwing an

 error. [GH #15676] <https://github.com/Perl/perl5/issues/15676>

 ? "chdir" with no argument didn't ensure that there was stack space available for

 returning its result. [GH #15569] <https://github.com/Perl/perl5/issues/15569>

 ? All error messages related to "do" now refer to "do"; some formerly claimed to be from

 "require" instead.

 ? Executing "undef $x" where $x is tied or magical no longer incorrectly blames the

 variable for an uninitialized-value warning encountered by the tied/magical code.

 ? Code like "$x = $x . "a"" was incorrectly failing to yield a use of uninitialized

 value warning when $x was a lexical variable with an undefined value. That has now

 been fixed. [GH #15269] <https://github.com/Perl/perl5/issues/15269>

 ? "undef *_; shift" or "undef *_; pop" inside a subroutine, with no argument to "shift"

 or "pop", began crashing in Perl 5.14, but has now been fixed.

 ? "string$scalar->$*" now correctly prefers concatenation overloading to string

 overloading if "$scalar->$*" returns an overloaded object, bringing it into

 consistency with $$scalar.

 ? "/@0{0*->@*/*0" and similar contortions used to crash, but no longer do, but merely Page 41/44

 produce a syntax error. [GH #15333] <https://github.com/Perl/perl5/issues/15333>

 ? "do" or "require" with an argument which is a reference or typeglob which, when

 stringified, contains a null character, started crashing in Perl 5.20, but has now

 been fixed. [GH #15337] <https://github.com/Perl/perl5/issues/15337>

 ? Improve the error message for a missing "tie()" package/method. This brings the error

 messages in line with the ones used for normal method calls.

 ? Parsing bad POSIX charclasses no longer leaks memory. [GH #15382]

 <https://github.com/Perl/perl5/issues/15382>

Known Problems

 ? G++ 6 handles subnormal (denormal) floating point values differently than gcc 6 or g++

 5 resulting in "flush-to-zero". The end result is that if you specify very small

 values using the hexadecimal floating point format, like "0x1.fffffffffffffp-1022",

 they become zeros. [GH #15990] <https://github.com/Perl/perl5/issues/15990>

Errata From Previous Releases

 ? Fixed issues with recursive regexes. The behavior was fixed in Perl 5.24. [GH

 #14935] <https://github.com/Perl/perl5/issues/14935>

Obituary

 Jon Portnoy (AVENJ), a prolific Perl author and admired Gentoo community member, has

 passed away on August 10, 2016. He will be remembered and missed by all those who he came

 in contact with, and enriched with his intellect, wit, and spirit.

 It is with great sadness that we also note Kip Hampton's passing. Probably best known as

 the author of the Perl & XML column on XML.com, he was a core contributor to AxKit, an XML

 server platform that became an Apache Foundation project. He was a frequent speaker in

 the early days at OSCON, and most recently at YAPC::NA in Madison. He was frequently on

 irc.perl.org as ubu, generally in the #axkit-dahut community, the group responsible for

 YAPC::NA Asheville in 2011.

 Kip and his constant contributions to the community will be greatly missed.

Acknowledgements

 Perl 5.26.0 represents approximately 13 months of development since Perl 5.24.0 and

 contains approximately 360,000 lines of changes across 2,600 files from 86 authors.

 Excluding auto-generated files, documentation and release tools, there were approximately

 230,000 lines of changes to 1,800 .pm, .t, .c and .h files.

 Perl continues to flourish into its third decade thanks to a vibrant community of users Page 42/44

 and developers. The following people are known to have contributed the improvements that

 became Perl 5.26.0:

 Aaron Crane, Abigail, ?var Arnfj?r? Bjarmason, Alex Vandiver, Andreas K?nig, Andreas

 Voegele, Andrew Fresh, Andy Lester, Aristotle Pagaltzis, Chad Granum, Chase Whitener,

 Chris 'BinGOs' Williams, Chris Lamb, Christian Hansen, Christian Millour, Colin Newell,

 Craig A. Berry, Dagfinn Ilmari Manns?ker, Dan Collins, Daniel Dragan, Dave Cross, Dave

 Rolsky, David Golden, David H. Gutteridge, David Mitchell, Dominic Hargreaves, Doug Bell,

 E. Choroba, Ed Avis, Father Chrysostomos, Fran?ois Perrad, Hauke D, H.Merijn Brand, Hugo

 van der Sanden, Ivan Pozdeev, James E Keenan, James Raspass, Jarkko Hietaniemi, Jerry D.

 Hedden, Jim Cromie, J. Nick Koston, John Lightsey, Karen Etheridge, Karl Williamson, Leon

 Timmermans, Lukas Mai, Matthew Horsfall, Maxwell Carey, Misty De Meo, Neil Bowers,

 Nicholas Clark, Nicolas R., Niko Tyni, Pali, Paul Marquess, Peter Avalos, Petr P?sa?, Pino

 Toscano, Rafael Garcia-Suarez, Reini Urban, Renee Baecker, Ricardo Signes, Richard

 Levitte, Rick Delaney, Salvador Fandi?o, Samuel Thibault, Sawyer X, S?bastien Aperghis-

 Tramoni, Sergey Aleynikov, Shlomi Fish, Smylers, Stefan Seifert, Steffen M?ller, Stevan

 Little, Steve Hay, Steven Humphrey, Sullivan Beck, Theo Buehler, Thomas Sibley, Todd

 Rinaldo, Tomasz Konojacki, Tony Cook, Unicode Consortium, Yaroslav Kuzmin, Yves Orton,

 Zefram.

 The list above is almost certainly incomplete as it is automatically generated from

 version control history. In particular, it does not include the names of the (very much

 appreciated) contributors who reported issues to the Perl bug tracker.

 Many of the changes included in this version originated in the CPAN modules included in

 Perl's core. We're grateful to the entire CPAN community for helping Perl to flourish.

 For a more complete list of all of Perl's historical contributors, please see the AUTHORS

 file in the Perl source distribution.

Reporting Bugs

 If you find what you think is a bug, you might check the perl bug database at

 <https://rt.perl.org/>. There may also be information at <http://www.perl.org/>, the Perl

 Home Page.

 If you believe you have an unreported bug, please run the perlbug program included with

 your release. Be sure to trim your bug down to a tiny but sufficient test case. Your bug

 report, along with the output of "perl -V", will be sent off to "perlbug@perl.org" to be

 analysed by the Perl porting team. Page 43/44

 If the bug you are reporting has security implications which make it inappropriate to send

 to a publicly archived mailing list, then see "SECURITY VULNERABILITY CONTACT INFORMATION"

 in perlsec for details of how to report the issue.

Give Thanks

 If you wish to thank the Perl 5 Porters for the work we had done in Perl 5, you can do so

 by running the "perlthanks" program:

 perlthanks

 This will send an email to the Perl 5 Porters list with your show of thanks.

SEE ALSO

 The Changes file for an explanation of how to view exhaustive details on what changed.

 The INSTALL file for how to build Perl.

 The README file for general stuff.

 The Artistic and Copying files for copyright information.

perl v5.34.0 2023-11-23 PERL5260DELTA(1)

Page 44/44

