
Rocky Enterprise Linux 9.2 Manual Pages on command 'pcap-filter.7'

$ man pcap-filter.7

PCAP-FILTER(7) Miscellaneous Information Manual PCAP-FILTER(7)

NAME

 pcap-filter - packet filter syntax

DESCRIPTION

 pcap_compile() is used to compile a string into a filter program. The resulting filter

 program can then be applied to some stream of packets to determine which packets will be

 supplied to pcap_loop(3PCAP), pcap_dispatch(3PCAP), pcap_next(3PCAP), or

 pcap_next_ex(3PCAP).

 The filter expression consists of one or more primitives. Primitives usually consist of

 an id (name or number) preceded by one or more qualifiers. There are three different

 kinds of qualifier:

 type type qualifiers say what kind of thing the id name or number refers to. Possible

 types are host, net, port and portrange. E.g., `host foo', `net 128.3', `port 20',

 `portrange 6000-6008'. If there is no type qualifier, host is assumed.

 dir dir qualifiers specify a particular transfer direction to and/or from id. Possible

 directions are src, dst, src or dst, src and dst, ra, ta, addr1, addr2, addr3, and

 addr4. E.g., `src foo', `dst net 128.3', `src or dst port ftp-data'. If there is

 no dir qualifier, `src or dst' is assumed. The ra, ta, addr1, addr2, addr3, and

 addr4 qualifiers are only valid for IEEE 802.11 Wireless LAN link layers.

 proto proto qualifiers restrict the match to a particular protocol. Possible protos are:

 ether, fddi, tr, wlan, ip, ip6, arp, rarp, decnet, tcp and udp. E.g., `ether src

 foo', `arp net 128.3', `tcp port 21', `udp portrange 7000-7009', `wlan addr2

 0:2:3:4:5:6'. If there is no proto qualifier, all protocols consistent with the Page 1/17

 type are assumed. E.g., `src foo' means `(ip or arp or rarp) src foo' (except the

 latter is not legal syntax), `net bar' means `(ip or arp or rarp) net bar' and

 `port 53' means `(tcp or udp) port 53'.

 [fddi is actually an alias for ether; the parser treats them identically as meaning ``the

 data link level used on the specified network interface''. FDDI headers contain Ethernet-

 like source and destination addresses, and often contain Ethernet-like packet types, so

 you can filter on these FDDI fields just as with the analogous Ethernet fields. FDDI

 headers also contain other fields, but you cannot name them explicitly in a filter expres?

 sion.

 Similarly, tr and wlan are aliases for ether; the previous paragraph's statements about

 FDDI headers also apply to Token Ring and 802.11 wireless LAN headers. For 802.11 head?

 ers, the destination address is the DA field and the source address is the SA field; the

 BSSID, RA, and TA fields aren't tested.]

 In addition to the above, there are some special `primitive' keywords that don't follow

 the pattern: gateway, broadcast, less, greater and arithmetic expressions. All of these

 are described below.

 More complex filter expressions are built up by using the words and, or and not (or equiv?

 alently: `&&', `||' and `!' respectively) to combine primitives. E.g., `host foo and not

 port ftp and not port ftp-data'. To save typing, identical qualifier lists can be omit?

 ted. E.g., `tcp dst port ftp or ftp-data or domain' is exactly the same as `tcp dst port

 ftp or tcp dst port ftp-data or tcp dst port domain'.

 Allowable primitives are:

 dst host host

 True if the IPv4/v6 destination field of the packet is host, which may be either an

 address or a name.

 src host host

 True if the IPv4/v6 source field of the packet is host.

 host host

 True if either the IPv4/v6 source or destination of the packet is host.

 Any of the above host expressions can be prepended with the keywords, ip, arp,

 rarp, or ip6 as in:

 ip host host

 which is equivalent to: Page 2/17

 ether proto \ip and host host

 If host is a name with multiple IPv4 addresses, each address will be checked for a

 match.

 ether dst ehost

 True if the Ethernet destination address is ehost. Ehost may be either a name from

 /etc/ethers or a numerical MAC address of the form "xx:xx:xx:xx:xx:xx",

 "xx.xx.xx.xx.xx.xx", "xx-xx-xx-xx-xx-xx", "xxxx.xxxx.xxxx", "xxxxxxxxxxxx", or var?

 ious mixes of ':', '.', and '-', where each "x" is a hex digit (0-9, a-f, or A-F).

 ether src ehost

 True if the Ethernet source address is ehost.

 ether host ehost

 True if either the Ethernet source or destination address is ehost.

 gateway host

 True if the packet used host as a gateway. I.e., the Ethernet source or destina?

 tion address was host but neither the IP source nor the IP destination was host.

 Host must be a name and must be found both by the machine's host-name-to-IP-address

 resolution mechanisms (host name file, DNS, NIS, etc.) and by the machine's host-

 name-to-Ethernet-address resolution mechanism (/etc/ethers, etc.). (An equivalent

 expression is

 ether host ehost and not host host

 which can be used with either names or numbers for host / ehost.) This syntax does

 not work in IPv6-enabled configuration at this moment.

 dst net net

 True if the IPv4/v6 destination address of the packet has a network number of net.

 Net may be either a name from the networks database (/etc/networks, etc.) or a net?

 work number. An IPv4 network number can be written as a dotted quad (e.g.,

 192.168.1.0), dotted triple (e.g., 192.168.1), dotted pair (e.g, 172.16), or single

 number (e.g., 10); the netmask is 255.255.255.255 for a dotted quad (which means

 that it's really a host match), 255.255.255.0 for a dotted triple, 255.255.0.0 for

 a dotted pair, or 255.0.0.0 for a single number. An IPv6 network number must be

 written out fully; the netmask is ff:ff:ff:ff:ff:ff:ff:ff, so IPv6 "network"

 matches are really always host matches, and a network match requires a netmask

 length. Page 3/17

 src net net

 True if the IPv4/v6 source address of the packet has a network number of net.

 net net

 True if either the IPv4/v6 source or destination address of the packet has a net?

 work number of net.

 net net mask netmask

 True if the IPv4 address matches net with the specific netmask. May be qualified

 with src or dst. Note that this syntax is not valid for IPv6 net.

 net net/len

 True if the IPv4/v6 address matches net with a netmask len bits wide. May be qual?

 ified with src or dst.

 dst port port

 True if the packet is IPv4 TCP, IPv4 UDP, IPv6 TCP or IPv6 UDP and has a destina?

 tion port value of port. The port can be a number or a name used in /etc/services

 (see tcp(4P) and udp(4P)). If a name is used, both the port number and protocol

 are checked. If a number or ambiguous name is used, only the port number is

 checked (e.g., `dst port 513' will print both tcp/login traffic and udp/who traf?

 fic, and `port domain' will print both tcp/domain and udp/domain traffic).

 src port port

 True if the packet has a source port value of port.

 port port

 True if either the source or destination port of the packet is port.

 dst portrange port1-port2

 True if the packet is IPv4 TCP, IPv4 UDP, IPv6 TCP or IPv6 UDP and has a destina?

 tion port value between port1 and port2 (both inclusive). port1 and port2 are in?

 terpreted in the same fashion as the port parameter for port.

 src portrange port1-port2

 True if the packet has a source port value between port1 and port2 (both inclu?

 sive).

 portrange port1-port2

 True if either the source or destination port of the packet is between port1 and

 port2 (both inclusive).

 Any of the above port or port range expressions can be prepended with the keywords, Page 4/17

 tcp or udp, as in:

 tcp src port port

 which matches only TCP packets whose source port is port.

 less length

 True if the packet has a length less than or equal to length. This is equivalent

 to:

 len <= length

 greater length

 True if the packet has a length greater than or equal to length. This is equiva?

 lent to:

 len >= length

 ip proto protocol

 True if the packet is an IPv4 packet (see ip(4P)) of protocol type protocol. Pro?

 tocol can be a number or one of the names icmp, icmp6, igmp, igrp, pim, ah, esp,

 vrrp, udp, or tcp. Note that the identifiers tcp, udp, and icmp are also keywords

 and must be escaped via backslash (\). Note that this primitive does not chase the

 protocol header chain.

 ip6 proto protocol

 True if the packet is an IPv6 packet of protocol type protocol. Note that this

 primitive does not chase the protocol header chain.

 proto protocol

 True if the packet is an IPv4 or IPv6 packet of protocol type protocol. Note that

 this primitive does not chase the protocol header chain.

 tcp, udp, icmp

 Abbreviations for:

 proto \protocol

 where protocol is one of the above protocols.

 ip6 protochain protocol

 True if the packet is IPv6 packet, and contains protocol header with type protocol

 in its protocol header chain. For example,

 ip6 protochain 6

 matches any IPv6 packet with TCP protocol header in the protocol header chain. The

 packet may contain, for example, authentication header, routing header, or hop-by- Page 5/17

 hop option header, between IPv6 header and TCP header. The BPF code emitted by

 this primitive is complex and cannot be optimized by the BPF optimizer code, and is

 not supported by filter engines in the kernel, so this can be somewhat slow, and

 may cause more packets to be dropped.

 ip protochain protocol

 Equivalent to ip6 protochain protocol, but this is for IPv4.

 protochain protocol

 True if the packet is an IPv4 or IPv6 packet of protocol type protocol. Note that

 this primitive chases the protocol header chain.

 ether broadcast

 True if the packet is an Ethernet broadcast packet. The ether keyword is optional.

 ip broadcast

 True if the packet is an IPv4 broadcast packet. It checks for both the all-zeroes

 and all-ones broadcast conventions, and looks up the subnet mask on the interface

 on which the capture is being done.

 If the subnet mask of the interface on which the capture is being done is not

 available, either because the interface on which capture is being done has no net?

 mask or because the capture is being done on the Linux "any" interface, which can

 capture on more than one interface, this check will not work correctly.

 ether multicast

 True if the packet is an Ethernet multicast packet. The ether keyword is optional.

 This is shorthand for `ether[0] & 1 != 0'.

 ip multicast

 True if the packet is an IPv4 multicast packet.

 ip6 multicast

 True if the packet is an IPv6 multicast packet.

 ether proto protocol

 True if the packet is of ether type protocol. Protocol can be a number or one of

 the names aarp, arp, atalk, decnet, ip, ip6, ipx, iso, lat, loopback, mopdl, moprc,

 netbeui, rarp, sca or stp. Note these identifiers (except loopback) are also key?

 words and must be escaped via backslash (\).

 [In the case of FDDI (e.g., `fddi proto \arp'), Token Ring (e.g., `tr proto \arp'),

 and IEEE 802.11 wireless LANs (e.g., `wlan proto \arp'), for most of those proto? Page 6/17

 cols, the protocol identification comes from the 802.2 Logical Link Control (LLC)

 header, which is usually layered on top of the FDDI, Token Ring, or 802.11 header.

 When filtering for most protocol identifiers on FDDI, Token Ring, or 802.11, the

 filter checks only the protocol ID field of an LLC header in so-called SNAP format

 with an Organizational Unit Identifier (OUI) of 0x000000, for encapsulated Ether?

 net; it doesn't check whether the packet is in SNAP format with an OUI of 0x000000.

 The exceptions are:

 iso the filter checks the DSAP (Destination Service Access Point) and SSAP

 (Source Service Access Point) fields of the LLC header;

 stp and netbeui

 the filter checks the DSAP of the LLC header;

 atalk the filter checks for a SNAP-format packet with an OUI of 0x080007 and the

 AppleTalk etype.

 In the case of Ethernet, the filter checks the Ethernet type field for most of

 those protocols. The exceptions are:

 iso, stp, and netbeui

 the filter checks for an 802.3 frame and then checks the LLC header as it

 does for FDDI, Token Ring, and 802.11;

 atalk the filter checks both for the AppleTalk etype in an Ethernet frame and for

 a SNAP-format packet as it does for FDDI, Token Ring, and 802.11;

 aarp the filter checks for the AppleTalk ARP etype in either an Ethernet frame or

 an 802.2 SNAP frame with an OUI of 0x000000;

 ipx the filter checks for the IPX etype in an Ethernet frame, the IPX DSAP in

 the LLC header, the 802.3-with-no-LLC-header encapsulation of IPX, and the

 IPX etype in a SNAP frame.

 ip, ip6, arp, rarp, atalk, aarp, decnet, iso, stp, ipx, netbeui

 Abbreviations for:

 ether proto \protocol

 where protocol is one of the above protocols.

 lat, moprc, mopdl

 Abbreviations for:

 ether proto \protocol

 where protocol is one of the above protocols. Note that not all applications using Page 7/17

 pcap(3PCAP) currently know how to parse these protocols.

 decnet src host

 True if the DECnet source address is host, which may be an address of the form

 ``10.123'', or a DECnet host name. [DECnet host name support is only available on

 ULTRIX systems that are configured to run DECnet.]

 decnet dst host

 True if the DECnet destination address is host.

 decnet host host

 True if either the DECnet source or destination address is host.

 llc True if the packet has an 802.2 LLC header. This includes:

 Ethernet packets with a length field rather than a type field that aren't raw Net?

 Ware-over-802.3 packets;

 IEEE 802.11 data packets;

 Token Ring packets (no check is done for LLC frames);

 FDDI packets (no check is done for LLC frames);

 LLC-encapsulated ATM packets, for SunATM on Solaris.

 llc type

 True if the packet has an 802.2 LLC header and has the specified type. type can be

 one of:

 i Information (I) PDUs

 s Supervisory (S) PDUs

 u Unnumbered (U) PDUs

 rr Receiver Ready (RR) S PDUs

 rnr Receiver Not Ready (RNR) S PDUs

 rej Reject (REJ) S PDUs

 ui Unnumbered Information (UI) U PDUs

 ua Unnumbered Acknowledgment (UA) U PDUs

 disc Disconnect (DISC) U PDUs

 sabme Set Asynchronous Balanced Mode Extended (SABME) U PDUs

 test Test (TEST) U PDUs

 xid Exchange Identification (XID) U PDUs

 frmr Frame Reject (FRMR) U PDUs

 inbound Page 8/17

 Packet was received by the host performing the capture rather than being sent by

 that host. This is only supported for certain link-layer types, such as SLIP and

 the ``cooked'' Linux capture mode used for the ``any'' device and for some other

 device types.

 outbound

 Packet was sent by the host performing the capture rather than being received by

 that host. This is only supported for certain link-layer types, such as SLIP and

 the ``cooked'' Linux capture mode used for the ``any'' device and for some other

 device types.

 ifname interface

 True if the packet was logged as coming from the specified interface (applies only

 to packets logged by OpenBSD's or FreeBSD's pf(4)).

 on interface

 Synonymous with the ifname modifier.

 rnr num

 True if the packet was logged as matching the specified PF rule number (applies

 only to packets logged by OpenBSD's or FreeBSD's pf(4)).

 rulenum num

 Synonymous with the rnr modifier.

 reason code

 True if the packet was logged with the specified PF reason code. The known codes

 are: match, bad-offset, fragment, short, normalize, and memory (applies only to

 packets logged by OpenBSD's or FreeBSD's pf(4)).

 rset name

 True if the packet was logged as matching the specified PF ruleset name of an an?

 chored ruleset (applies only to packets logged by OpenBSD's or FreeBSD's pf(4)).

 ruleset name

 Synonymous with the rset modifier.

 srnr num

 True if the packet was logged as matching the specified PF rule number of an an?

 chored ruleset (applies only to packets logged by OpenBSD's or FreeBSD's pf(4)).

 subrulenum num

 Synonymous with the srnr modifier. Page 9/17

 action act

 True if PF took the specified action when the packet was logged. Known actions

 are: pass and block and, with later versions of pf(4), nat, rdr, binat and scrub

 (applies only to packets logged by OpenBSD's or FreeBSD's pf(4)).

 wlan ra ehost

 True if the IEEE 802.11 RA is ehost. The RA field is used in all frames except for

 management frames.

 wlan ta ehost

 True if the IEEE 802.11 TA is ehost. The TA field is used in all frames except for

 management frames and CTS (Clear To Send) and ACK (Acknowledgment) control frames.

 wlan addr1 ehost

 True if the first IEEE 802.11 address is ehost.

 wlan addr2 ehost

 True if the second IEEE 802.11 address, if present, is ehost. The second address

 field is used in all frames except for CTS (Clear To Send) and ACK (Acknowledgment)

 control frames.

 wlan addr3 ehost

 True if the third IEEE 802.11 address, if present, is ehost. The third address

 field is used in management and data frames, but not in control frames.

 wlan addr4 ehost

 True if the fourth IEEE 802.11 address, if present, is ehost. The fourth address

 field is only used for WDS (Wireless Distribution System) frames.

 type wlan_type

 True if the IEEE 802.11 frame type matches the specified wlan_type. Valid

 wlan_types are: mgt, ctl and data.

 type wlan_type subtype wlan_subtype

 True if the IEEE 802.11 frame type matches the specified wlan_type and frame sub?

 type matches the specified wlan_subtype.

 If the specified wlan_type is mgt, then valid wlan_subtypes are: assoc-req, assoc-

 resp, reassoc-req, reassoc-resp, probe-req, probe-resp, beacon, atim, disassoc,

 auth and deauth.

 If the specified wlan_type is ctl, then valid wlan_subtypes are: ps-poll, rts, cts,

 ack, cf-end and cf-end-ack. Page 10/17

 If the specified wlan_type is data, then valid wlan_subtypes are: data, data-cf-

 ack, data-cf-poll, data-cf-ack-poll, null, cf-ack, cf-poll, cf-ack-poll, qos-data,

 qos-data-cf-ack, qos-data-cf-poll, qos-data-cf-ack-poll, qos, qos-cf-poll and qos-

 cf-ack-poll.

 subtype wlan_subtype

 True if the IEEE 802.11 frame subtype matches the specified wlan_subtype and frame

 has the type to which the specified wlan_subtype belongs.

 dir dir

 True if the IEEE 802.11 frame direction matches the specified dir. Valid direc?

 tions are: nods, tods, fromds, dstods, or a numeric value.

 vlan [vlan_id]

 True if the packet is an IEEE 802.1Q VLAN packet. If the optional vlan_id is spec?

 ified, only true if the packet has the specified vlan_id. Note that the first vlan

 keyword encountered in an expression changes the decoding offsets for the remainder

 of the expression on the assumption that the packet is a VLAN packet. The `vlan

 [vlan_id]` keyword may be used more than once, to filter on VLAN hierarchies. Each

 use of that keyword increments the filter offsets by 4.

 For example:

 vlan 100 && vlan 200

 filters on VLAN 200 encapsulated within VLAN 100, and

 vlan && vlan 300 && ip

 filters IPv4 protocol encapsulated in VLAN 300 encapsulated within any higher order

 VLAN.

 mpls [label_num]

 True if the packet is an MPLS packet. If the optional label_num is specified, only

 true if the packet has the specified label_num. Note that the first mpls keyword

 encountered in an expression changes the decoding offsets for the remainder of the

 expression on the assumption that the packet is a MPLS-encapsulated IP packet. The

 `mpls [label_num]` keyword may be used more than once, to filter on MPLS hierar?

 chies. Each use of that keyword increments the filter offsets by 4.

 For example:

 mpls 100000 && mpls 1024

 filters packets with an outer label of 100000 and an inner label of 1024, and Page 11/17

 mpls && mpls 1024 && host 192.9.200.1

 filters packets to or from 192.9.200.1 with an inner label of 1024 and any outer

 label.

 pppoed True if the packet is a PPP-over-Ethernet Discovery packet (Ethernet type 0x8863).

 pppoes [session_id]

 True if the packet is a PPP-over-Ethernet Session packet (Ethernet type 0x8864).

 If the optional session_id is specified, only true if the packet has the specified

 session_id. Note that the first pppoes keyword encountered in an expression

 changes the decoding offsets for the remainder of the expression on the assumption

 that the packet is a PPPoE session packet.

 For example:

 pppoes 0x27 && ip

 filters IPv4 protocol encapsulated in PPPoE session id 0x27.

 geneve [vni]

 True if the packet is a Geneve packet (UDP port 6081). If the optional vni is spec?

 ified, only true if the packet has the specified vni. Note that when the geneve

 keyword is encountered in an expression, it changes the decoding offsets for the

 remainder of the expression on the assumption that the packet is a Geneve packet.

 For example:

 geneve 0xb && ip

 filters IPv4 protocol encapsulated in Geneve with VNI 0xb. This will match both

 IPv4 directly encapsulated in Geneve as well as IPv4 contained inside an Ethernet

 frame.

 iso proto protocol

 True if the packet is an OSI packet of protocol type protocol. Protocol can be a

 number or one of the names clnp, esis, or isis.

 clnp, esis, isis

 Abbreviations for:

 iso proto \protocol

 where protocol is one of the above protocols.

 l1, l2, iih, lsp, snp, csnp, psnp

 Abbreviations for IS-IS PDU types.

 vpi n True if the packet is an ATM packet, for SunATM on Solaris, with a virtual path Page 12/17

 identifier of n.

 vci n True if the packet is an ATM packet, for SunATM on Solaris, with a virtual channel

 identifier of n.

 lane True if the packet is an ATM packet, for SunATM on Solaris, and is an ATM LANE

 packet. Note that the first lane keyword encountered in an expression changes the

 tests done in the remainder of the expression on the assumption that the packet is

 either a LANE emulated Ethernet packet or a LANE LE Control packet. If lane isn't

 specified, the tests are done under the assumption that the packet is an LLC-encap?

 sulated packet.

 oamf4s True if the packet is an ATM packet, for SunATM on Solaris, and is a segment OAM F4

 flow cell (VPI=0 & VCI=3).

 oamf4e True if the packet is an ATM packet, for SunATM on Solaris, and is an end-to-end

 OAM F4 flow cell (VPI=0 & VCI=4).

 oamf4 True if the packet is an ATM packet, for SunATM on Solaris, and is a segment or

 end-to-end OAM F4 flow cell (VPI=0 & (VCI=3 | VCI=4)).

 oam True if the packet is an ATM packet, for SunATM on Solaris, and is a segment or

 end-to-end OAM F4 flow cell (VPI=0 & (VCI=3 | VCI=4)).

 metac True if the packet is an ATM packet, for SunATM on Solaris, and is on a meta sig?

 naling circuit (VPI=0 & VCI=1).

 bcc True if the packet is an ATM packet, for SunATM on Solaris, and is on a broadcast

 signaling circuit (VPI=0 & VCI=2).

 sc True if the packet is an ATM packet, for SunATM on Solaris, and is on a signaling

 circuit (VPI=0 & VCI=5).

 ilmic True if the packet is an ATM packet, for SunATM on Solaris, and is on an ILMI cir?

 cuit (VPI=0 & VCI=16).

 connectmsg

 True if the packet is an ATM packet, for SunATM on Solaris, and is on a signaling

 circuit and is a Q.2931 Setup, Call Proceeding, Connect, Connect Ack, Release, or

 Release Done message.

 metaconnect

 True if the packet is an ATM packet, for SunATM on Solaris, and is on a meta sig?

 naling circuit and is a Q.2931 Setup, Call Proceeding, Connect, Release, or Release

 Done message. Page 13/17

 expr relop expr

 True if the relation holds, where relop is one of >, <, >=, <=, =, !=, and expr is

 an arithmetic expression composed of integer constants (expressed in standard C

 syntax), the normal binary operators [+, -, *, /, %, &, |, ^, <<, >>], a length op?

 erator, and special packet data accessors. Note that all comparisons are unsigned,

 so that, for example, 0x80000000 and 0xffffffff are > 0.

 The % and ^ operators are currently only supported for filtering in the kernel on

 Linux with 3.7 and later kernels; on all other systems, if those operators are

 used, filtering will be done in user mode, which will increase the overhead of cap?

 turing packets and may cause more packets to be dropped.

 To access data inside the packet, use the following syntax:

 proto [expr : size]

 Proto is one of ether, fddi, tr, wlan, ppp, slip, link, ip, arp, rarp, tcp, udp,

 icmp, ip6 or radio, and indicates the protocol layer for the index operation.

 (ether, fddi, wlan, tr, ppp, slip and link all refer to the link layer. radio

 refers to the "radio header" added to some 802.11 captures.) Note that tcp, udp

 and other upper-layer protocol types only apply to IPv4, not IPv6 (this will be

 fixed in the future). The byte offset, relative to the indicated protocol layer,

 is given by expr. Size is optional and indicates the number of bytes in the field

 of interest; it can be either one, two, or four, and defaults to one. The length

 operator, indicated by the keyword len, gives the length of the packet.

 For example, `ether[0] & 1 != 0' catches all multicast traffic. The expression

 `ip[0] & 0xf != 5' catches all IPv4 packets with options. The expression `ip[6:2]

 & 0x1fff = 0' catches only unfragmented IPv4 datagrams and frag zero of fragmented

 IPv4 datagrams. This check is implicitly applied to the tcp and udp index opera?

 tions. For instance, tcp[0] always means the first byte of the TCP header, and

 never means the first byte of an intervening fragment.

 Some offsets and field values may be expressed as names rather than as numeric val?

 ues. The following protocol header field offsets are available: icmptype (ICMP

 type field), icmp6type (ICMPv6 type field), icmpcode (ICMP code field), icmp6code

 (ICMPv6 code field) and tcpflags (TCP flags field).

 The following ICMP type field values are available: icmp-echoreply, icmp-unreach,

 icmp-sourcequench, icmp-redirect, icmp-echo, icmp-routeradvert, icmp-routersolicit, Page 14/17

 icmp-timxceed, icmp-paramprob, icmp-tstamp, icmp-tstampreply, icmp-ireq, icmp-ire?

 qreply, icmp-maskreq, icmp-maskreply.

 The following ICMPv6 type fields are available: icmp6-destinationrunreach,

 icmp6-packettoobig, icmp6-timeexceeded, icmp6-parameterproblem, icmp6-echo,

 icmp6-echoreply, icmp6-multicastlistenerquery, icmp6-multicastlistenerreportv1,

 icmp6-multicastlistenerdone, icmp6-routersolicit, icmp6-routeradvert, icmp6-neigh?

 borsolicit, icmp6-neighboradvert, icmp6-redirect, icmp6-routerrenum, icmp6-nodein?

 formationquery, icmp6-nodeinformationresponse, icmp6-ineighbordiscoverysolicit,

 icmp6-ineighbordiscoveryadvert, icmp6-multicastlistenerreportv2, icmp6-homeagent?

 discoveryrequest, icmp6-homeagentdiscoveryreply, icmp6-mobileprefixsolicit,

 icmp6-mobileprefixadvert, icmp6-certpathsolicit, icmp6-certpathadvert, icmp6-multi?

 castrouteradvert, icmp6-multicastroutersolicit, icmp6-multicastrouterterm.

 The following TCP flags field values are available: tcp-fin, tcp-syn, tcp-rst, tcp-

 push, tcp-ack, tcp-urg, tcp-ece, tcp-cwr.

 Primitives may be combined using:

 A parenthesized group of primitives and operators.

 Negation (`!' or `not').

 Concatenation (`&&' or `and').

 Alternation (`||' or `or').

 Negation has the highest precedence. Alternation and concatenation have equal precedence

 and associate left to right. Note that explicit and tokens, not juxtaposition, are now

 required for concatenation.

 If an identifier is given without a keyword, the most recent keyword is assumed. For ex?

 ample,

 not host vs and ace

 is short for

 not host vs and host ace

 which should not be confused with

 not (host vs or ace)

EXAMPLES

 To select all packets arriving at or departing from `sundown':

 host sundown

 To select traffic between `helios' and either `hot' or `ace': Page 15/17

 host helios and (hot or ace)

 To select all IPv4 packets between `ace' and any host except `helios':

 ip host ace and not helios

 To select all traffic between local hosts and hosts at Berkeley:

 net ucb-ether

 To select all FTP traffic through Internet gateway `snup':

 gateway snup and (port ftp or ftp-data)

 To select IPv4 traffic neither sourced from nor destined for local hosts (if you gateway

 to one other net, this stuff should never make it onto your local net).

 ip and not net localnet

 To select the start and end packets (the SYN and FIN packets) of each TCP conversation

 that involves a non-local host.

 tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net localnet

 To select the TCP packets with flags RST and ACK both set. (i.e. select only the RST and

 ACK flags in the flags field, and if the result is "RST and ACK both set", match)

 tcp[tcpflags] & (tcp-rst|tcp-ack) == (tcp-rst|tcp-ack)

 To select all IPv4 HTTP packets to and from port 80, i.e. print only packets that contain

 data, not, for example, SYN and FIN packets and ACK-only packets. (IPv6 is left as an ex?

 ercise for the reader.)

 tcp port 80 and (((ip[2:2] - ((ip[0]&0xf)<<2)) - ((tcp[12]&0xf0)>>2)) != 0)

 To select IPv4 packets longer than 576 bytes sent through gateway `snup':

 gateway snup and ip[2:2] > 576

 To select IPv4 broadcast or multicast packets that were not sent via Ethernet broadcast or

 multicast:

 ether[0] & 1 = 0 and ip[16] >= 224

 To select all ICMP packets that are not echo requests/replies (i.e., not ping packets):

 icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply

 icmp6[icmp6type] != icmp6-echo and icmp6[icmp6type] != icmp6-echoreply

SEE ALSO

 pcap(3PCAP)

BUGS

 To report a security issue please send an e-mail to security@tcpdump.org.

 To report bugs and other problems, contribute patches, request a feature, provide generic Page 16/17

 feedback etc please see the file CONTRIBUTING.md in the libpcap source tree root.

 Filter expressions on fields other than those in Token Ring headers will not correctly

 handle source-routed Token Ring packets.

 Filter expressions on fields other than those in 802.11 headers will not correctly handle

 802.11 data packets with both To DS and From DS set.

 `ip6 proto' should chase header chain, but at this moment it does not. `ip6 protochain'

 is supplied for this behavior. For example, to match IPv6 fragments: `ip6 protochain 44'

 Arithmetic expression against transport layer headers, like tcp[0], does not work against

 IPv6 packets. It only looks at IPv4 packets.

 6 February 2021 PCAP-FILTER(7)

Page 17/17

