
Linux Ubuntu 22.4.5 Manual Pages on command 'pandoc.1'

$ man pandoc.1

PANDOC(1) General Commands Manual PANDOC(1)

NAME

 pandoc - general markup converter

SYNOPSIS

 pandoc [options] [input-file]...

DESCRIPTION

 Pandoc is a Haskell library for converting from one markup format to another, and a

 command-line tool that uses this library.

 Pandoc can convert between numerous markup and word processing formats, including,

 but not limited to, various flavors of Markdown, HTML, LaTeX and Word docx. For

 the full lists of input and output formats, see the --from and --to options below.

 Pandoc can also produce PDF output: see creating a PDF, below.

 Pandoc's enhanced version of Markdown includes syntax for tables, definition lists,

 metadata blocks, footnotes, citations, math, and much more. See below under Pan?

 doc's Markdown.

 Pandoc has a modular design: it consists of a set of readers, which parse text in a

 given format and produce a native representation of the document (an abstract syn?

 tax tree or AST), and a set of writers, which convert this native representation

 into a target format. Thus, adding an input or output format requires only adding

 a reader or writer. Users can also run custom pandoc filters to modify the inter?

 mediate AST.

 Because pandoc's intermediate representation of a document is less expressive than
Page 1/92

 many of the formats it converts between, one should not expect perfect conversions

 between every format and every other. Pandoc attempts to preserve the structural

 elements of a document, but not formatting details such as margin size. And some

 document elements, such as complex tables, may not fit into pandoc's simple docu?

 ment model. While conversions from pandoc's Markdown to all formats aspire to be

 perfect, conversions from formats more expressive than pandoc's Markdown can be ex?

 pected to be lossy.

 Using pandoc

 If no input-files are specified, input is read from stdin. Output goes to stdout

 by default. For output to a file, use the -o option:

 pandoc -o output.html input.txt

 By default, pandoc produces a document fragment. To produce a standalone document

 (e.g. a valid HTML file including <head> and <body>), use the -s or --standalone

 flag:

 pandoc -s -o output.html input.txt

 For more information on how standalone documents are produced, see Templates below.

 If multiple input files are given, pandoc will concatenate them all (with blank

 lines between them) before parsing. (Use --file-scope to parse files individu?

 ally.)

 Specifying formats

 The format of the input and output can be specified explicitly using command-line

 options. The input format can be specified using the -f/--from option, the output

 format using the -t/--to option. Thus, to convert hello.txt from Markdown to La?

 TeX, you could type:

 pandoc -f markdown -t latex hello.txt

 To convert hello.html from HTML to Markdown:

 pandoc -f html -t markdown hello.html

 Supported input and output formats are listed below under Options (see -f for input

 formats and -t for output formats). You can also use pandoc --list-input-formats

 and pandoc --list-output-formats to print lists of supported formats.

 If the input or output format is not specified explicitly, pandoc will attempt to

 guess it from the extensions of the filenames. Thus, for example,

 pandoc -o hello.tex hello.txt Page 2/92

 will convert hello.txt from Markdown to LaTeX. If no output file is specified (so

 that output goes to stdout), or if the output file's extension is unknown, the out?

 put format will default to HTML. If no input file is specified (so that input

 comes from stdin), or if the input files' extensions are unknown, the input format

 will be assumed to be Markdown.

 Character encoding

 Pandoc uses the UTF-8 character encoding for both input and output. If your local

 character encoding is not UTF-8, you should pipe input and output through iconv:

 iconv -t utf-8 input.txt | pandoc | iconv -f utf-8

 Note that in some output formats (such as HTML, LaTeX, ConTeXt, RTF, OPML, DocBook,

 and Texinfo), information about the character encoding is included in the document

 header, which will only be included if you use the -s/--standalone option.

 Creating a PDF

 To produce a PDF, specify an output file with a .pdf extension:

 pandoc test.txt -o test.pdf

 By default, pandoc will use LaTeX to create the PDF, which requires that a LaTeX

 engine be installed (see --pdf-engine below).

 Alternatively, pandoc can use ConTeXt, pdfroff, or any of the following

 HTML/CSS-to-PDF-engines, to create a PDF: wkhtmltopdf, weasyprint or prince. To do

 this, specify an output file with a .pdf extension, as before, but add the

 --pdf-engine option or -t context, -t html, or -t ms to the command line (-t html

 defaults to --pdf-engine=wkhtmltopdf).

 PDF output can be controlled using variables for LaTeX (if LaTeX is used) and vari?

 ables for ConTeXt (if ConTeXt is used). When using an HTML/CSS-to-PDF-engine,

 --css affects the output. If wkhtmltopdf is used, then the variables margin-left,

 margin-right, margin-top, margin-bottom, footer-html, header-html and papersize

 will affect the output.

 To debug the PDF creation, it can be useful to look at the intermediate representa?

 tion: instead of -o test.pdf, use for example -s -o test.tex to output the gener?

 ated LaTeX. You can then test it with pdflatex test.tex.

 When using LaTeX, the following packages need to be available (they are included

 with all recent versions of TeX Live): amsfonts, amsmath, lm, unicode-math, ifxe?

 tex, ifluatex, listings (if the --listings option is used), fancyvrb, longtable, Page 3/92

 booktabs, graphicx and grffile (if the document contains images), hyperref, xcolor

 (with colorlinks), ulem, geometry (with the geometry variable set), setspace (with

 linestretch), and babel (with lang). The use of xelatex or lualatex as the LaTeX

 engine requires fontspec. xelatex uses polyglossia (with lang), xecjk, and bidi

 (with the dir variable set). If the mathspec variable is set, xelatex will use

 mathspec instead of unicode-math. The upquote and microtype packages are used if

 available, and csquotes will be used for typography if \usepackage{csquotes} is

 present in the template or included via /H/--include-in-header. The natbib, bibla?

 tex, bibtex, and biber packages can optionally be used for citation rendering.

 Reading from the Web

 Instead of an input file, an absolute URI may be given. In this case pandoc will

 fetch the content using HTTP:

 pandoc -f html -t markdown http://www.fsf.org

 It is possible to supply a custom User-Agent string or other header when requesting

 a document from a URL:

 pandoc -f html -t markdown --request-header User-Agent:"Mozilla/5.0" \

 http://www.fsf.org

OPTIONS

 General options

 -f FORMAT, -r FORMAT, --from=FORMAT, --read=FORMAT

 Specify input format. FORMAT can be:

 ? commonmark (CommonMark Markdown)

 ? creole (Creole 1.0)

 ? docbook (DocBook)

 ? docx (Word docx)

 ? epub (EPUB)

 ? fb2 (FictionBook2 e-book)

 ? gfm (GitHub-Flavored Markdown), or the deprecated and less accurate mark?

 down_github; use markdown_github only if you need extensions not supported

 in gfm.

 ? haddock (Haddock markup)

 ? html (HTML)

 ? jats (JATS XML) Page 4/92

 ? json (JSON version of native AST)

 ? latex (LaTeX)

 ? markdown (Pandoc's Markdown)

 ? markdown_mmd (MultiMarkdown)

 ? markdown_phpextra (PHP Markdown Extra)

 ? markdown_strict (original unextended Markdown)

 ? mediawiki (MediaWiki markup)

 ? man (roff man)

 ? muse (Muse)

 ? native (native Haskell)

 ? odt (ODT)

 ? opml (OPML)

 ? org (Emacs Org mode)

 ? rst (reStructuredText)

 ? t2t (txt2tags)

 ? textile (Textile)

 ? tikiwiki (TikiWiki markup)

 ? twiki (TWiki markup)

 ? vimwiki (Vimwiki)

 Extensions can be individually enabled or disabled by appending +EXTENSION

 or -EXTENSION to the format name. See Extensions below, for a list of ex?

 tensions and their names. See --list-input-formats and --list-extensions,

 below.

 -t FORMAT, -w FORMAT, --to=FORMAT, --write=FORMAT

 Specify output format. FORMAT can be:

 ? asciidoc (AsciiDoc)

 ? beamer (LaTeX beamer slide show)

 ? commonmark (CommonMark Markdown)

 ? context (ConTeXt)

 ? docbook or docbook4 (DocBook 4)

 ? docbook5 (DocBook 5)

 ? docx (Word docx)

 ? dokuwiki (DokuWiki markup) Page 5/92

 ? epub or epub3 (EPUB v3 book)

 ? epub2 (EPUB v2)

 ? fb2 (FictionBook2 e-book)

 ? gfm (GitHub-Flavored Markdown), or the deprecated and less accurate mark?

 down_github; use markdown_github only if you need extensions not supported

 in gfm.

 ? haddock (Haddock markup)

 ? html or html5 (HTML, i.e. HTML5/XHTML polyglot markup)

 ? html4 (XHTML 1.0 Transitional)

 ? icml (InDesign ICML)

 ? jats (JATS XML)

 ? json (JSON version of native AST)

 ? latex (LaTeX)

 ? man (roff man)

 ? markdown (Pandoc's Markdown)

 ? markdown_mmd (MultiMarkdown)

 ? markdown_phpextra (PHP Markdown Extra)

 ? markdown_strict (original unextended Markdown)

 ? mediawiki (MediaWiki markup)

 ? ms (roff ms)

 ? muse (Muse),

 ? native (native Haskell),

 ? odt (OpenOffice text document)

 ? opml (OPML)

 ? opendocument (OpenDocument)

 ? org (Emacs Org mode)

 ? plain (plain text),

 ? pptx (PowerPoint slide show)

 ? rst (reStructuredText)

 ? rtf (Rich Text Format)

 ? texinfo (GNU Texinfo)

 ? textile (Textile)

 ? slideous (Slideous HTML and JavaScript slide show) Page 6/92

 ? slidy (Slidy HTML and JavaScript slide show)

 ? dzslides (DZSlides HTML5 + JavaScript slide show),

 ? revealjs (reveal.js HTML5 + JavaScript slide show)

 ? s5 (S5 HTML and JavaScript slide show)

 ? tei (TEI Simple)

 ? zimwiki (ZimWiki markup)

 ? the path of a custom lua writer, see Custom writers below

 Note that odt, docx, and epub output will not be directed to stdout unless

 forced with -o -.

 Extensions can be individually enabled or disabled by appending +EXTENSION

 or -EXTENSION to the format name. See Extensions below, for a list of ex?

 tensions and their names. See --list-output-formats and --list-extensions,

 below.

 -o FILE, --output=FILE

 Write output to FILE instead of stdout. If FILE is -, output will go to

 stdout, even if a non-textual format (docx, odt, epub2, epub3) is specified.

 --data-dir=DIRECTORY

 Specify the user data directory to search for pandoc data files. If this

 option is not specified, the default user data directory will be used. This

 is, in UNIX:

 $HOME/.pandoc

 in Windows XP:

 C:\Documents And Settings\USERNAME\Application Data\pandoc

 and in Windows Vista or later:

 C:\Users\USERNAME\AppData\Roaming\pandoc

 You can find the default user data directory on your system by looking at

 the output of pandoc --version. A reference.odt, reference.docx, epub.css,

 templates, slidy, slideous, or s5 directory placed in this directory will

 override pandoc's normal defaults.

 --bash-completion

 Generate a bash completion script. To enable bash completion with pandoc,

 add this to your .bashrc:

 eval "$(pandoc --bash-completion)" Page 7/92

 --verbose

 Give verbose debugging output. Currently this only has an effect with PDF

 output.

 --quiet

 Suppress warning messages.

 --fail-if-warnings

 Exit with error status if there are any warnings.

 --log=FILE

 Write log messages in machine-readable JSON format to FILE. All messages

 above DEBUG level will be written, regardless of verbosity settings (--ver?

 bose, --quiet).

 --list-input-formats

 List supported input formats, one per line.

 --list-output-formats

 List supported output formats, one per line.

 --list-extensions[=FORMAT]

 List supported extensions, one per line, preceded by a + or - indicating

 whether it is enabled by default in FORMAT. If FORMAT is not specified, de?

 faults for pandoc's Markdown are given.

 --list-highlight-languages

 List supported languages for syntax highlighting, one per line.

 --list-highlight-styles

 List supported styles for syntax highlighting, one per line. See --high?

 light-style.

 -v, --version

 Print version.

 -h, --help

 Show usage message.

 Reader options

 --base-header-level=NUMBER

 Specify the base level for headers (defaults to 1).

 --strip-empty-paragraphs

 Deprecated. Use the +empty_paragraphs extension instead. Ignore paragraphs Page 8/92

 with no content. This option is useful for converting word processing docu?

 ments where users have used empty paragraphs to create inter-paragraph

 space.

 --indented-code-classes=CLASSES

 Specify classes to use for indented code blocks--for example, perl,number?

 Lines or haskell. Multiple classes may be separated by spaces or commas.

 --default-image-extension=EXTENSION

 Specify a default extension to use when image paths/URLs have no extension.

 This allows you to use the same source for formats that require different

 kinds of images. Currently this option only affects the Markdown and LaTeX

 readers.

 --file-scope

 Parse each file individually before combining for multifile documents. This

 will allow footnotes in different files with the same identifiers to work as

 expected. If this option is set, footnotes and links will not work across

 files. Reading binary files (docx, odt, epub) implies --file-scope.

 -F PROGRAM, --filter=PROGRAM

 Specify an executable to be used as a filter transforming the pandoc AST af?

 ter the input is parsed and before the output is written. The executable

 should read JSON from stdin and write JSON to stdout. The JSON must be for?

 matted like pandoc's own JSON input and output. The name of the output for?

 mat will be passed to the filter as the first argument. Hence,

 pandoc --filter ./caps.py -t latex

 is equivalent to

 pandoc -t json | ./caps.py latex | pandoc -f json -t latex

 The latter form may be useful for debugging filters.

 Filters may be written in any language. Text.Pandoc.JSON exports toJSONFil?

 ter to facilitate writing filters in Haskell. Those who would prefer to

 write filters in python can use the module pandocfilters, installable from

 PyPI. There are also pandoc filter libraries in PHP, perl, and Java?

 Script/node.js.

 In order of preference, pandoc will look for filters in

 1. a specified full or relative path (executable or non-executable) Page 9/92

 2. $DATADIR/filters (executable or non-executable) where $DATADIR is the

 user data directory (see --data-dir, above).

 3. $PATH (executable only)

 Filters and lua-filters are applied in the order specified on the command

 line.

 --lua-filter=SCRIPT

 Transform the document in a similar fashion as JSON filters (see --filter),

 but use pandoc's build-in lua filtering system. The given lua script is ex?

 pected to return a list of lua filters which will be applied in order. Each

 lua filter must contain element-transforming functions indexed by the name

 of the AST element on which the filter function should be applied.

 The pandoc lua module provides helper functions for element creation. It is

 always loaded into the script's lua environment.

 The following is an example lua script for macro-expansion:

 function expand_hello_world(inline)

 if inline.c == '{{helloworld}}' then

 return pandoc.Emph{ pandoc.Str "Hello, World" }

 else

 return inline

 end

 end

 return {{Str = expand_hello_world}}

 In order of preference, pandoc will look for lua filters in

 1. a specified full or relative path (executable or non-executable)

 2. $DATADIR/filters (executable or non-executable) where $DATADIR is the

 user data directory (see --data-dir, above).

 -M KEY[=VAL], --metadata=KEY[:VAL]

 Set the metadata field KEY to the value VAL. A value specified on the com?

 mand line overrides a value specified in the document using YAML metadata

 blocks. Values will be parsed as YAML boolean or string values. If no

 value is specified, the value will be treated as Boolean true. Like --vari?

 able, --metadata causes template variables to be set. But unlike --vari?

 able, --metadata affects the metadata of the underlying document (which is Page 10/92

 accessible from filters and may be printed in some output formats) and meta?

 data values will be escaped when inserted into the template.

 --metadata-file=FILE

 Read metadata from the supplied YAML (or JSON) file. This option can be

 used with every input format, but string scalars in the YAML file will al?

 ways be parsed as Markdown. Generally, the input will be handled the same

 as in YAML metadata blocks. Metadata values specified inside the document,

 or by using -M, overwrite values specified with this option.

 -p, --preserve-tabs

 Preserve tabs instead of converting them to spaces (the default). Note that

 this will only affect tabs in literal code spans and code blocks; tabs in

 regular text will be treated as spaces.

 --tab-stop=NUMBER

 Specify the number of spaces per tab (default is 4).

 --track-changes=accept|reject|all

 Specifies what to do with insertions, deletions, and comments produced by

 the MS Word "Track Changes" feature. accept (the default), inserts all in?

 sertions, and ignores all deletions. reject inserts all deletions and ig?

 nores insertions. Both accept and reject ignore comments. all puts in in?

 sertions, deletions, and comments, wrapped in spans with insertion, dele?

 tion, comment-start, and comment-end classes, respectively. The author and

 time of change is included. all is useful for scripting: only accepting

 changes from a certain reviewer, say, or before a certain date. If a para?

 graph is inserted or deleted, track-changes=all produces a span with the

 class paragraph-insertion/paragraph-deletion before the affected paragraph

 break. This option only affects the docx reader.

 --extract-media=DIR

 Extract images and other media contained in or linked from the source docu?

 ment to the path DIR, creating it if necessary, and adjust the images refer?

 ences in the document so they point to the extracted files. If the source

 format is a binary container (docx, epub, or odt), the media is extracted

 from the container and the original filenames are used. Otherwise the media

 is read from the file system or downloaded, and new filenames are construc? Page 11/92

 ted based on SHA1 hashes of the contents.

 --abbreviations=FILE

 Specifies a custom abbreviations file, with abbreviations one to a line. If

 this option is not specified, pandoc will read the data file abbreviations

 from the user data directory or fall back on a system default. To see the

 system default, use pandoc --print-default-data-file=abbreviations. The

 only use pandoc makes of this list is in the Markdown reader. Strings end?

 ing in a period that are found in this list will be followed by a nonbreak?

 ing space, so that the period will not produce sentence-ending space in for?

 mats like LaTeX.

 General writer options

 -s, --standalone

 Produce output with an appropriate header and footer (e.g. a standalone

 HTML, LaTeX, TEI, or RTF file, not a fragment). This option is set automat?

 ically for pdf, epub, epub3, fb2, docx, and odt output. For native output,

 this option causes metadata to be included; otherwise, metadata is sup?

 pressed.

 --template=FILE|URL

 Use the specified file as a custom template for the generated document. Im?

 plies --standalone. See Templates, below, for a description of template

 syntax. If no extension is specified, an extension corresponding to the

 writer will be added, so that --template=special looks for special.html for

 HTML output. If the template is not found, pandoc will search for it in the

 templates subdirectory of the user data directory (see --data-dir). If this

 option is not used, a default template appropriate for the output format

 will be used (see -D/--print-default-template).

 -V KEY[=VAL], --variable=KEY[:VAL]

 Set the template variable KEY to the value VAL when rendering the document

 in standalone mode. This is generally only useful when the --template op?

 tion is used to specify a custom template, since pandoc automatically sets

 the variables used in the default templates. If no VAL is specified, the

 key will be given the value true.

 -D FORMAT, --print-default-template=FORMAT Page 12/92

 Print the system default template for an output FORMAT. (See -t for a list

 of possible FORMATs.) Templates in the user data directory are ignored.

 --print-default-data-file=FILE

 Print a system default data file. Files in the user data directory are ig?

 nored.

 --eol=crlf|lf|native

 Manually specify line endings: crlf (Windows), lf (macOS/Linux/UNIX), or na?

 tive (line endings appropriate to the OS on which pandoc is being run). The

 default is native.

 --dpi=NUMBER

 Specify the dpi (dots per inch) value for conversion from pixels to

 inch/centimeters and vice versa. The default is 96dpi. Technically, the

 correct term would be ppi (pixels per inch).

 --wrap=auto|none|preserve

 Determine how text is wrapped in the output (the source code, not the ren?

 dered version). With auto (the default), pandoc will attempt to wrap lines

 to the column width specified by --columns (default 72). With none, pandoc

 will not wrap lines at all. With preserve, pandoc will attempt to preserve

 the wrapping from the source document (that is, where there are nonsemantic

 newlines in the source, there will be nonsemantic newlines in the output as

 well). Automatic wrapping does not currently work in HTML output.

 --columns=NUMBER

 Specify length of lines in characters. This affects text wrapping in the

 generated source code (see --wrap). It also affects calculation of column

 widths for plain text tables (see Tables below).

 --toc, --table-of-contents

 Include an automatically generated table of contents (or, in the case of la?

 tex, context, docx, odt, opendocument, rst, or ms, an instruction to create

 one) in the output document. This option has no effect unless -s/--stand?

 alone is used, and it has no effect on man, docbook4, docbook5, or jats out?

 put.

 --toc-depth=NUMBER

 Specify the number of section levels to include in the table of contents. Page 13/92

 The default is 3 (which means that level 1, 2, and 3 headers will be listed

 in the contents).

 --strip-comments

 Strip out HTML comments in the Markdown or Textile source, rather than pass?

 ing them on to Markdown, Textile or HTML output as raw HTML. This does not

 apply to HTML comments inside raw HTML blocks when the mark?

 down_in_html_blocks extension is not set.

 --no-highlight

 Disables syntax highlighting for code blocks and inlines, even when a lan?

 guage attribute is given.

 --highlight-style=STYLE|FILE

 Specifies the coloring style to be used in highlighted source code. Options

 are pygments (the default), kate, monochrome, breezeDark, espresso, zenburn,

 haddock, and tango. For more information on syntax highlighting in pandoc,

 see Syntax highlighting, below. See also --list-highlight-styles.

 Instead of a STYLE name, a JSON file with extension .theme may be supplied.

 This will be parsed as a KDE syntax highlighting theme and (if valid) used

 as the highlighting style.

 To generate the JSON version of an existing style, use --print-high?

 light-style.

 --print-highlight-style=STYLE|FILE

 Prints a JSON version of a highlighting style, which can be modified, saved

 with a .theme extension, and used with --highlight-style.

 --syntax-definition=FILE

 Instructs pandoc to load a KDE XML syntax definition file, which will be

 used for syntax highlighting of appropriately marked code blocks. This can

 be used to add support for new languages or to use altered syntax defini?

 tions for existing languages.

 -H FILE, --include-in-header=FILE

 Include contents of FILE, verbatim, at the end of the header. This can be

 used, for example, to include special CSS or JavaScript in HTML documents.

 This option can be used repeatedly to include multiple files in the header.

 They will be included in the order specified. Implies --standalone. Page 14/92

 -B FILE, --include-before-body=FILE

 Include contents of FILE, verbatim, at the beginning of the document body

 (e.g. after the <body> tag in HTML, or the \begin{document} command in La?

 TeX). This can be used to include navigation bars or banners in HTML docu?

 ments. This option can be used repeatedly to include multiple files. They

 will be included in the order specified. Implies --standalone.

 -A FILE, --include-after-body=FILE

 Include contents of FILE, verbatim, at the end of the document body (before

 the </body> tag in HTML, or the \end{document} command in LaTeX). This op?

 tion can be used repeatedly to include multiple files. They will be in?

 cluded in the order specified. Implies --standalone.

 --resource-path=SEARCHPATH

 List of paths to search for images and other resources. The paths should be

 separated by : on Linux, UNIX, and macOS systems, and by ; on Windows. If

 --resource-path is not specified, the default resource path is the working

 directory. Note that, if --resource-path is specified, the working direc?

 tory must be explicitly listed or it will not be searched. For example:

 --resource-path=.:test will search the working directory and the test subdi?

 rectory, in that order.

 --resource-path only has an effect if (a) the output format embeds images

 (for example, docx, pdf, or html with --self-contained) or (b) it is used

 together with --extract-media.

 --request-header=NAME:VAL

 Set the request header NAME to the value VAL when making HTTP requests (for

 example, when a URL is given on the command line, or when resources used in

 a document must be downloaded). If you're behind a proxy, you also need to

 set the environment variable http_proxy to http://....

 Options affecting specific writers

 --self-contained

 Produce a standalone HTML file with no external dependencies, using data:

 URIs to incorporate the contents of linked scripts, stylesheets, images, and

 videos. Implies --standalone. The resulting file should be "self-con?

 tained," in the sense that it needs no external files and no net access to Page 15/92

 be displayed properly by a browser. This option works only with HTML output

 formats, including html4, html5, html+lhs, html5+lhs, s5, slidy, slideous,

 dzslides, and revealjs. Scripts, images, and stylesheets at absolute URLs

 will be downloaded; those at relative URLs will be sought relative to the

 working directory (if the first source file is local) or relative to the

 base URL (if the first source file is remote). Elements with the attribute

 data-external="1" will be left alone; the documents they link to will not be

 incorporated in the document. Limitation: resources that are loaded dynami?

 cally through JavaScript cannot be incorporated; as a result, --self-con?

 tained does not work with --mathjax, and some advanced features (e.g. zoom

 or speaker notes) may not work in an offline "self-contained" reveal.js

 slide show.

 --html-q-tags

 Use <q> tags for quotes in HTML.

 --ascii

 Use only ASCII characters in output. Currently supported for XML and HTML

 formats (which use entities instead of UTF-8 when this option is selected),

 CommonMark, gfm, and Markdown (which use entities), roff ms (which use hexa?

 decimal escapes), and to a limited degree LaTeX (which uses standard com?

 mands for accented characters when possible). roff man output uses ASCII by

 default.

 --reference-links

 Use reference-style links, rather than inline links, in writing Markdown or

 reStructuredText. By default inline links are used. The placement of link

 references is affected by the --reference-location option.

 --reference-location = block|section|document

 Specify whether footnotes (and references, if reference-links is set) are

 placed at the end of the current (top-level) block, the current section, or

 the document. The default is document. Currently only affects the markdown

 writer.

 --atx-headers

 Use ATX-style headers in Markdown output. The default is to use se?

 text-style headers for levels 1-2, and then ATX headers. (Note: for gfm Page 16/92

 output, ATX headers are always used.)

 --top-level-division=[default|section|chapter|part]

 Treat top-level headers as the given division type in LaTeX, ConTeXt, Doc?

 Book, and TEI output. The hierarchy order is part, chapter, then section;

 all headers are shifted such that the top-level header becomes the specified

 type. The default behavior is to determine the best division type via

 heuristics: unless other conditions apply, section is chosen. When the La?

 TeX document class is set to report, book, or memoir (unless the article op?

 tion is specified), chapter is implied as the setting for this option. If

 beamer is the output format, specifying either chapter or part will cause

 top-level headers to become \part{..}, while second-level headers remain as

 their default type.

 -N, --number-sections

 Number section headings in LaTeX, ConTeXt, HTML, or EPUB output. By de?

 fault, sections are not numbered. Sections with class unnumbered will never

 be numbered, even if --number-sections is specified.

 --number-offset=NUMBER[,NUMBER,...]

 Offset for section headings in HTML output (ignored in other output for?

 mats). The first number is added to the section number for top-level head?

 ers, the second for second-level headers, and so on. So, for example, if

 you want the first top-level header in your document to be numbered "6",

 specify --number-offset=5. If your document starts with a level-2 header

 which you want to be numbered "1.5", specify --number-offset=1,4. Offsets

 are 0 by default. Implies --number-sections.

 --listings

 Use the listings package for LaTeX code blocks. The package does not sup?

 port multi-byte encoding for source code. To handle UTF-8 you would need to

 use a custom template. This issue is fully documented here: Encoding issue

 with the listings package.

 -i, --incremental

 Make list items in slide shows display incrementally (one by one). The de?

 fault is for lists to be displayed all at once.

 --slide-level=NUMBER Page 17/92

 Specifies that headers with the specified level create slides (for beamer,

 s5, slidy, slideous, dzslides). Headers above this level in the hierarchy

 are used to divide the slide show into sections; headers below this level

 create subheads within a slide. Note that content that is not contained un?

 der slide-level headers will not appear in the slide show. The default is

 to set the slide level based on the contents of the document; see Structur?

 ing the slide show.

 --section-divs

 Wrap sections in <section> tags (or <div> tags for html4), and attach iden?

 tifiers to the enclosing <section> (or <div>) rather than the header itself.

 See Header identifiers, below.

 --email-obfuscation=none|javascript|references

 Specify a method for obfuscating mailto: links in HTML documents. none

 leaves mailto: links as they are. javascript obfuscates them using Java?

 Script. references obfuscates them by printing their letters as decimal or

 hexadecimal character references. The default is none.

 --id-prefix=STRING

 Specify a prefix to be added to all identifiers and internal links in HTML

 and DocBook output, and to footnote numbers in Markdown and Haddock output.

 This is useful for preventing duplicate identifiers when generating frag?

 ments to be included in other pages.

 -T STRING, --title-prefix=STRING

 Specify STRING as a prefix at the beginning of the title that appears in the

 HTML header (but not in the title as it appears at the beginning of the HTML

 body). Implies --standalone.

 -c URL, --css=URL

 Link to a CSS style sheet. This option can be used repeatedly to include

 multiple files. They will be included in the order specified.

 A stylesheet is required for generating EPUB. If none is provided using

 this option (or the css or stylesheet metadata fields), pandoc will look for

 a file epub.css in the user data directory (see --data-dir). If it is not

 found there, sensible defaults will be used.

 --reference-doc=FILE Page 18/92

 Use the specified file as a style reference in producing a docx or ODT file.

 Docx For best results, the reference docx should be a modified version of

 a docx file produced using pandoc. The contents of the reference

 docx are ignored, but its stylesheets and document properties (in?

 cluding margins, page size, header, and footer) are used in the new

 docx. If no reference docx is specified on the command line, pandoc

 will look for a file reference.docx in the user data directory (see

 --data-dir). If this is not found either, sensible defaults will be

 used.

 To produce a custom reference.docx, first get a copy of the default

 reference.docx: pandoc --print-default-data-file reference.docx >

 custom-reference.docx. Then open custom-reference.docx in Word, mod?

 ify the styles as you wish, and save the file. For best results, do

 not make changes to this file other than modifying the styles used by

 pandoc: [paragraph] Normal, Body Text, First Paragraph, Compact, Ti?

 tle, Subtitle, Author, Date, Abstract, Bibliography, Heading 1, Head?

 ing 2, Heading 3, Heading 4, Heading 5, Heading 6, Heading 7, Heading

 8, Heading 9, Block Text, Footnote Text, Definition Term, Definition,

 Caption, Table Caption, Image Caption, Figure, Captioned Figure, TOC

 Heading; [character] Default Paragraph Font, Body Text Char, Verbatim

 Char, Footnote Reference, Hyperlink; [table] Table.

 ODT For best results, the reference ODT should be a modified version of

 an ODT produced using pandoc. The contents of the reference ODT are

 ignored, but its stylesheets are used in the new ODT. If no refer?

 ence ODT is specified on the command line, pandoc will look for a

 file reference.odt in the user data directory (see --data-dir). If

 this is not found either, sensible defaults will be used.

 To produce a custom reference.odt, first get a copy of the default

 reference.odt: pandoc --print-default-data-file reference.odt > cus?

 tom-reference.odt. Then open custom-reference.odt in LibreOffice,

 modify the styles as you wish, and save the file.

 PowerPoint

 Any template included with a recent install of Microsoft PowerPoint Page 19/92

 (either with .pptx or .potx extension) should work, as will most tem?

 plates derived from these.

 The specific requirement is that the template should contain the fol?

 lowing four layouts as its first four layouts:

 1. Title Slide

 2. Title and Content

 3. Section Header

 4. Two Content

 All templates included with a recent version of MS PowerPoint will

 fit these criteria. (You can click on Layout under the Home menu to

 check.)

 You can also modify the default reference.pptx: first run pandoc

 --print-default-data-file reference.pptx > custom-reference.pptx, and

 then modify custom-reference.pptx in MS PowerPoint (pandoc will use

 the first four layout slides, as mentioned above).

 --epub-cover-image=FILE

 Use the specified image as the EPUB cover. It is recommended that the image

 be less than 1000px in width and height. Note that in a Markdown source

 document you can also specify cover-image in a YAML metadata block (see EPUB

 Metadata, below).

 --epub-metadata=FILE

 Look in the specified XML file for metadata for the EPUB. The file should

 contain a series of Dublin Core elements. For example:

 <dc:rights>Creative Commons</dc:rights>

 <dc:language>es-AR</dc:language>

 By default, pandoc will include the following metadata elements: <dc:title>

 (from the document title), <dc:creator> (from the document authors),

 <dc:date> (from the document date, which should be in ISO 8601 format),

 <dc:language> (from the lang variable, or, if is not set, the locale), and

 <dc:identifier id="BookId"> (a randomly generated UUID). Any of these may

 be overridden by elements in the metadata file.

 Note: if the source document is Markdown, a YAML metadata block in the docu?

 ment can be used instead. See below under EPUB Metadata. Page 20/92

 --epub-embed-font=FILE

 Embed the specified font in the EPUB. This option can be repeated to embed

 multiple fonts. Wildcards can also be used: for example, DejaVuSans-*.ttf.

 However, if you use wildcards on the command line, be sure to escape them or

 put the whole filename in single quotes, to prevent them from being inter?

 preted by the shell. To use the embedded fonts, you will need to add decla?

 rations like the following to your CSS (see --css):

 @font-face {

 font-family: DejaVuSans;

 font-style: normal;

 font-weight: normal;

 src:url("DejaVuSans-Regular.ttf");

 }

 @font-face {

 font-family: DejaVuSans;

 font-style: normal;

 font-weight: bold;

 src:url("DejaVuSans-Bold.ttf");

 }

 @font-face {

 font-family: DejaVuSans;

 font-style: italic;

 font-weight: normal;

 src:url("DejaVuSans-Oblique.ttf");

 }

 @font-face {

 font-family: DejaVuSans;

 font-style: italic;

 font-weight: bold;

 src:url("DejaVuSans-BoldOblique.ttf");

 }

 body { font-family: "DejaVuSans"; }

 --epub-chapter-level=NUMBER Page 21/92

 Specify the header level at which to split the EPUB into separate "chapter"

 files. The default is to split into chapters at level 1 headers. This op?

 tion only affects the internal composition of the EPUB, not the way chapters

 and sections are displayed to users. Some readers may be slow if the chap?

 ter files are too large, so for large documents with few level 1 headers,

 one might want to use a chapter level of 2 or 3.

 --epub-subdirectory=DIRNAME

 Specify the subdirectory in the OCF container that is to hold the EPUB-spe?

 cific contents. The default is EPUB. To put the EPUB contents in the top

 level, use an empty string.

 --pdf-engine=pdflatex|lualatex|xelatex|wkhtmltopdf|weasyprint|prince|con?

 text|pdfroff

 Use the specified engine when producing PDF output. The default is pdfla?

 tex. If the engine is not in your PATH, the full path of the engine may be

 specified here.

 --pdf-engine-opt=STRING

 Use the given string as a command-line argument to the pdf-engine. If used

 multiple times, the arguments are provided with spaces between them. Note

 that no check for duplicate options is done.

 Citation rendering

 --bibliography=FILE

 Set the bibliography field in the document's metadata to FILE, overriding

 any value set in the metadata, and process citations using pandoc-citeproc.

 (This is equivalent to --metadata bibliography=FILE --filter pan?

 doc-citeproc.) If --natbib or --biblatex is also supplied, pandoc-citeproc

 is not used, making this equivalent to --metadata bibliography=FILE. If you

 supply this argument multiple times, each FILE will be added to bibliogra?

 phy.

 --csl=FILE

 Set the csl field in the document's metadata to FILE, overriding any value

 set in the metadata. (This is equivalent to --metadata csl=FILE.) This op?

 tion is only relevant with pandoc-citeproc.

 --citation-abbreviations=FILE Page 22/92

 Set the citation-abbreviations field in the document's metadata to FILE,

 overriding any value set in the metadata. (This is equivalent to --metadata

 citation-abbreviations=FILE.) This option is only relevant with pan?

 doc-citeproc.

 --natbib

 Use natbib for citations in LaTeX output. This option is not for use with

 the pandoc-citeproc filter or with PDF output. It is intended for use in

 producing a LaTeX file that can be processed with bibtex.

 --biblatex

 Use biblatex for citations in LaTeX output. This option is not for use with

 the pandoc-citeproc filter or with PDF output. It is intended for use in

 producing a LaTeX file that can be processed with bibtex or biber.

 Math rendering in HTML

 The default is to render TeX math as far as possible using Unicode characters.

 Formulas are put inside a span with class="math", so that they may be styled dif?

 ferently from the surrounding text if needed. However, this gives acceptable re?

 sults only for basic math, usually you will want to use --mathjax or another of the

 following options.

 --mathjax[=URL]

 Use MathJax to display embedded TeX math in HTML output. TeX math will be

 put between \(...\) (for inline math) or \[...\] (for display math) and

 wrapped in tags with class math. Then the MathJax JavaScript will

 render it. The URL should point to the MathJax.js load script. If a URL is

 not provided, a link to the Cloudflare CDN will be inserted.

 --mathml

 Convert TeX math to MathML (in epub3, docbook4, docbook5, jats, html4 and

 html5). This is the default in odt output. Note that currently only Fire?

 fox and Safari (and select e-book readers) natively support MathML.

 --webtex[=URL]

 Convert TeX formulas to tags that link to an external script that con?

 verts formulas to images. The formula will be URL-encoded and concatenated

 with the URL provided. For SVG images you can for example use --webtex

 https://latex.codecogs.com/svg.latex?. If no URL is specified, the CodeCogs Page 23/92

 URL generating PNGs will be used (https://latex.codecogs.com/png.latex?).

 Note: the --webtex option will affect Markdown output as well as HTML, which

 is useful if you're targeting a version of Markdown without native math sup?

 port.

 --katex[=URL]

 Use KaTeX to display embedded TeX math in HTML output. The URL is the base

 URL for the KaTeX library. That directory should contain a katex.min.js and

 a katex.min.css file. If a URL is not provided, a link to the KaTeX CDN

 will be inserted.

 --gladtex

 Enclose TeX math in <eq> tags in HTML output. The resulting HTML can then

 be processed by GladTeX to produce images of the typeset formulas and an

 HTML file with links to these images. So, the procedure is:

 pandoc -s --gladtex input.md -o myfile.htex

 gladtex -d myfile-images myfile.htex

 # produces myfile.html and images in myfile-images

 Options for wrapper scripts

 --dump-args

 Print information about command-line arguments to stdout, then exit. This

 option is intended primarily for use in wrapper scripts. The first line of

 output contains the name of the output file specified with the -o option, or

 - (for stdout) if no output file was specified. The remaining lines contain

 the command-line arguments, one per line, in the order they appear. These

 do not include regular pandoc options and their arguments, but do include

 any options appearing after a -- separator at the end of the line.

 --ignore-args

 Ignore command-line arguments (for use in wrapper scripts). Regular pandoc

 options are not ignored. Thus, for example,

 pandoc --ignore-args -o foo.html -s foo.txt -- -e latin1

 is equivalent to

 pandoc -o foo.html -s

TEMPLATES

 When the -s/--standalone option is used, pandoc uses a template to add header and Page 24/92

 footer material that is needed for a self-standing document. To see the default

 template that is used, just type

 pandoc -D *FORMAT*

 where FORMAT is the name of the output format. A custom template can be specified

 using the --template option. You can also override the system default templates

 for a given output format FORMAT by putting a file templates/default.*FORMAT* in

 the user data directory (see --data-dir, above). Exceptions:

 ? For odt output, customize the default.opendocument template.

 ? For pdf output, customize the default.latex template (or the default.context tem?

 plate, if you use -t context, or the default.ms template, if you use -t ms, or

 the default.html template, if you use -t html).

 ? docx has no template (however, you can use --reference-doc to customize the out?

 put).

 Templates contain variables, which allow for the inclusion of arbitrary information

 at any point in the file. They may be set at the command line using the -V/--vari?

 able option. If a variable is not set, pandoc will look for the key in the docu?

 ment's metadata ? which can be set using either YAML metadata blocks or with the

 --metadata option.

 Variables set by pandoc

 Some variables are set automatically by pandoc. These vary somewhat depending on

 the output format, but include the following:

 sourcefile, outputfile

 source and destination filenames, as given on the command line. sourcefile

 can also be a list if input comes from multiple files, or empty if input is

 from stdin. You can use the following snippet in your template to distin?

 guish them:

 $if(sourcefile)$

 $for(sourcefile)$

 $sourcefile$

 $endfor$

 $else$

 (stdin)

 $endif$ Page 25/92

 Similarly, outputfile can be - if output goes to the terminal.

 title, author, date

 allow identification of basic aspects of the document. Included in PDF

 metadata through LaTeX and ConTeXt. These can be set through a pandoc title

 block, which allows for multiple authors, or through a YAML metadata block:

 author:

 - Aristotle

 - Peter Abelard

 ...

 subtitle

 document subtitle, included in HTML, EPUB, LaTeX, ConTeXt, and Word docx;

 renders in LaTeX only when using a document class that supports \subtitle,

 such as beamer or the KOMA-Script series (scrartcl, scrreprt, scrbook).

 institute

 author affiliations (in LaTeX and Beamer only). Can be a list, when there

 are multiple authors.

 abstract

 document summary, included in LaTeX, ConTeXt, AsciiDoc, and Word docx

 keywords

 list of keywords to be included in HTML, PDF, and AsciiDoc metadata; may be

 repeated as for author, above

 header-includes

 contents specified by -H/--include-in-header (may have multiple values)

 toc non-null value if --toc/--table-of-contents was specified

 toc-title

 title of table of contents (works only with EPUB, opendocument, odt, docx,

 pptx, beamer, LaTeX)

 include-before

 contents specified by -B/--include-before-body (may have multiple values)

 include-after

 contents specified by -A/--include-after-body (may have multiple values)

 body body of document Page 26/92

 meta-json

 JSON representation of all of the document's metadata. Field values are

 transformed to the selected output format.

 Language variables

 lang identifies the main language of the document, using a code according to BCP

 47 (e.g. en or en-GB). For some output formats, pandoc will convert it to

 an appropriate format stored in the additional variables babel-lang, poly?

 glossia-lang (LaTeX) and context-lang (ConTeXt).

 Native pandoc Spans and Divs with the lang attribute (value in BCP 47) can

 be used to switch the language in that range. In LaTeX output, babel-other?

 langs and polyglossia-otherlangs variables will be generated automatically

 based on the lang attributes of Spans and Divs in the document.

 dir the base direction of the document, either rtl (right-to-left) or ltr

 (left-to-right).

 For bidirectional documents, native pandoc spans and divs with the dir at?

 tribute (value rtl or ltr) can be used to override the base direction in

 some output formats. This may not always be necessary if the final renderer

 (e.g. the browser, when generating HTML) supports the Unicode Bidirectional

 Algorithm.

 When using LaTeX for bidirectional documents, only the xelatex engine is

 fully supported (use --pdf-engine=xelatex).

 Variables for slides

 Variables are available for producing slide shows with pandoc, including all re?

 veal.js configuration options.

 titlegraphic

 title graphic for Beamer documents

 logo logo for Beamer documents

 slidy-url

 base URL for Slidy documents (defaults to

 https://www.w3.org/Talks/Tools/Slidy2)

 slideous-url

 base URL for Slideous documents (defaults to slideous)

 s5-url base URL for S5 documents (defaults to s5/default) Page 27/92

 revealjs-url

 base URL for reveal.js documents (defaults to reveal.js)

 theme, colortheme, fonttheme, innertheme, outertheme

 themes for LaTeX beamer documents

 themeoptions

 options for LaTeX beamer themes (a list).

 navigation

 controls navigation symbols in beamer documents (default is empty for no

 navigation symbols; other valid values are frame, vertical, and horizontal).

 section-titles

 enables on "title pages" for new sections in beamer documents (default =

 true).

 beamerarticle

 when true, the beamerarticle package is loaded (for producing an article

 from beamer slides).

 aspectratio

 aspect ratio of slides (for beamer only, 1610 for 16:10, 169 for 16:9, 149

 for 14:9, 141 for 1.41:1, 54 for 5:4, 43 for 4:3 which is the default, and

 32 for 3:2).

 Variables for LaTeX

 LaTeX variables are used when creating a PDF.

 papersize

 paper size, e.g. letter, a4

 fontsize

 font size for body text (e.g. 10pt, 12pt)

 documentclass

 document class, e.g. article, report, book, memoir

 classoption

 option for document class, e.g. oneside; may be repeated for multiple op?

 tions

 beameroption

 In beamer, add extra beamer option with \setbeameroption{}

 geometry Page 28/92

 option for geometry package, e.g. margin=1in; may be repeated for multiple

 options

 margin-left, margin-right, margin-top, margin-bottom

 sets margins, if geometry is not used (otherwise geometry overrides these)

 linestretch

 adjusts line spacing using the setspace package, e.g. 1.25, 1.5

 fontfamily

 font package for use with pdflatex: TeX Live includes many options, docu?

 mented in the LaTeX Font Catalogue. The default is Latin Modern.

 fontfamilyoptions

 options for package used as fontfamily: e.g. osf,sc with fontfamily set to

 mathpazo provides Palatino with old-style figures and true small caps; may

 be repeated for multiple options

 mainfont, romanfont, sansfont, monofont, mathfont, CJKmainfont

 font families for use with xelatex or lualatex: take the name of any system

 font, using the fontspec package. Note that if CJKmainfont is used, the

 xecjk package must be available.

 mainfontoptions, romanfontoptions, sansfontoptions, monofontoptions, mathfontop?

 tions, CJKoptions

 options to use with mainfont, sansfont, monofont, mathfont, CJKmainfont in

 xelatex and lualatex. Allow for any choices available through fontspec,

 such as the OpenType features Numbers=OldStyle,Numbers=Proportional. May be

 repeated for multiple options.

 fontenc

 allows font encoding to be specified through fontenc package (with pdfla?

 tex); default is T1 (see guide to LaTeX font encodings)

 microtypeoptions

 options to pass to the microtype package

 colorlinks

 add color to link text; automatically enabled if any of linkcolor, file?

 color, citecolor, urlcolor, or toccolor are set

 linkcolor, filecolor, citecolor, urlcolor, toccolor

 color for internal links, external links, citation links, linked URLs, and Page 29/92

 links in table of contents, respectively: uses options allowed by xcolor,

 including the dvipsnames, svgnames, and x11names lists

 links-as-notes

 causes links to be printed as footnotes

 indent uses document class settings for indentation (the default LaTeX template

 otherwise removes indentation and adds space between paragraphs)

 subparagraph

 disables default behavior of LaTeX template that redefines (sub)paragraphs

 as sections, changing the appearance of nested headings in some classes

 thanks specifies contents of acknowledgments footnote after document title.

 toc include table of contents (can also be set using --toc/--table-of-contents)

 toc-depth

 level of section to include in table of contents

 secnumdepth

 numbering depth for sections, if sections are numbered

 lof, lot

 include list of figures, list of tables

 bibliography

 bibliography to use for resolving references

 biblio-style

 bibliography style, when used with --natbib and --biblatex.

 biblio-title

 bibliography title, when used with --natbib and --biblatex.

 biblatexoptions

 list of options for biblatex.

 natbiboptions

 list of options for natbib.

 pagestyle

 An option for LaTeX's \pagestyle{}. The default article class supports

 'plain' (default), 'empty', and 'headings'; headings puts section titles in

 the header.

 Variables for ConTeXt

 papersize Page 30/92

 paper size, e.g. letter, A4, landscape (see ConTeXt Paper Setup); may be

 repeated for multiple options

 layout options for page margins and text arrangement (see ConTeXt Layout); may be

 repeated for multiple options

 margin-left, margin-right, margin-top, margin-bottom

 sets margins, if layout is not used (otherwise layout overrides these)

 fontsize

 font size for body text (e.g. 10pt, 12pt)

 mainfont, sansfont, monofont, mathfont

 font families: take the name of any system font (see ConTeXt Font Switching)

 linkcolor, contrastcolor

 color for links outside and inside a page, e.g. red, blue (see ConTeXt

 Color)

 linkstyle

 typeface style for links, e.g. normal, bold, slanted, boldslanted, type,

 cap, small

 indenting

 controls indentation of paragraphs, e.g. yes,small,next (see ConTeXt Inden?

 tation); may be repeated for multiple options

 whitespace

 spacing between paragraphs, e.g. none, small (using setupwhitespace)

 interlinespace

 adjusts line spacing, e.g. 4ex (using setupinterlinespace); may be repeated

 for multiple options

 headertext, footertext

 text to be placed in running header or footer (see ConTeXt Headers and Foot?

 ers); may be repeated up to four times for different placement

 pagenumbering

 page number style and location (using setuppagenumbering); may be repeated

 for multiple options

 toc include table of contents (can also be set using --toc/--table-of-contents)

 lof, lot

 include list of figures, list of tables Page 31/92

 pdfa adds to the preamble the setup necessary to generate PDF/A-1b:2005. To suc?

 cessfully generate PDF/A the required ICC color profiles have to be avail?

 able and the content and all included files (such as images) have to be

 standard conforming. The ICC profiles can be obtained from ConTeXt ICC Pro?

 files. See also ConTeXt PDFA for more details.

 Variables for man pages

 section

 section number in man pages

 header header in man pages

 footer footer in man pages

 adjusting

 adjusts text to left (l), right (r), center (c), or both (b) margins

 hyphenate

 if true (the default), hyphenation will be used

 Variables for ms

 pointsize

 point size (e.g. 10p)

 lineheight

 line height (e.g. 12p)

 fontfamily

 font family (e.g. T or P)

 indent paragraph indent (e.g. 2m)

 Using variables in templates

 Variable names are sequences of alphanumerics, -, and _, starting with a letter. A

 variable name surrounded by $ signs will be replaced by its value. For example,

 the string $title$ in

 <title>$title$</title>

 will be replaced by the document title.

 To write a literal $ in a template, use $$.

 Templates may contain conditionals. The syntax is as follows:

 $if(variable)$

 X

 $else$ Page 32/92

 Y

 $endif$

 This will include X in the template if variable has a truthy value; otherwise it

 will include Y. Here a truthy value is any of the following:

 ? a string that is not entirely white space,

 ? a non-empty array where the first value is truthy,

 ? any number (including zero),

 ? any object,

 ? the boolean true (to specify the boolean true value using YAML metadata or the

 --metadata flag, use true, True, or TRUE; with the --variable flag, simply omit a

 value for the variable, e.g. --variable draft).

 X and Y are placeholders for any valid template text, and may include interpolated

 variables or other conditionals. The $else$ section may be omitted.

 When variables can have multiple values (for example, author in a multi-author doc?

 ument), you can use the for keyword:

 $for(author)$

 <meta name="author" content="$author$" />

 $endfor$

 You can optionally specify a separator to be used between consecutive items:

 $for(author)$$author$$sep$, $endfor$

 A dot can be used to select a field of a variable that takes an object as its

 value. So, for example:

 $author.name$ ($author.affiliation$)

 If you use custom templates, you may need to revise them as pandoc changes. We

 recommend tracking the changes in the default templates, and modifying your custom

 templates accordingly. An easy way to do this is to fork the pandoc-templates

 repository and merge in changes after each pandoc release.

 Templates may contain comments: anything on a line after $-- will be treated as a

 comment and ignored.

EXTENSIONS

 The behavior of some of the readers and writers can be adjusted by enabling or dis?

 abling various extensions.

 An extension can be enabled by adding +EXTENSION to the format name and disabled by Page 33/92

 adding -EXTENSION. For example, --from markdown_strict+footnotes is strict Mark?

 down with footnotes enabled, while --from markdown-footnotes-pipe_tables is pan?

 doc's Markdown without footnotes or pipe tables.

 The markdown reader and writer make by far the most use of extensions. Extensions

 only used by them are therefore covered in the section Pandoc's Markdown below (See

 Markdown variants for commonmark and gfm.) In the following, extensions that also

 work for other formats are covered.

 Typography

 Extension: smart

 Interpret straight quotes as curly quotes, --- as em-dashes, -- as en-dashes, and

 ... as ellipses. Nonbreaking spaces are inserted after certain abbreviations, such

 as "Mr."

 This extension can be enabled/disabled for the following formats:

 input formats

 markdown, commonmark, latex, mediawiki, org, rst, twiki

 output formats

 markdown, latex, context, rst

 enabled by default in

 markdown, latex, context (both input and output)

 Note: If you are writing Markdown, then the smart extension has the reverse effect:

 what would have been curly quotes comes out straight.

 In LaTeX, smart means to use the standard TeX ligatures for quotation marks (`` and

 '' for double quotes, ` and ' for single quotes) and dashes (-- for en-dash and ---

 for em-dash). If smart is disabled, then in reading LaTeX pandoc will parse these

 characters literally. In writing LaTeX, enabling smart tells pandoc to use the

 ligatures when possible; if smart is disabled pandoc will use unicode quotation

 mark and dash characters.

 Headers and sections

 Extension: auto_identifiers

 A header without an explicitly specified identifier will be automatically assigned

 a unique identifier based on the header text.

 This extension can be enabled/disabled for the following formats:

 input formats Page 34/92

 markdown, latex, rst, mediawiki, textile

 output formats

 markdown, muse

 enabled by default in

 markdown, muse

 The default algorithm used to derive the identifier from the header text is:

 ? Remove all formatting, links, etc.

 ? Remove all footnotes.

 ? Remove all punctuation, except underscores, hyphens, and periods.

 ? Replace all spaces and newlines with hyphens.

 ? Convert all alphabetic characters to lowercase.

 ? Remove everything up to the first letter (identifiers may not begin with a number

 or punctuation mark).

 ? If nothing is left after this, use the identifier section.

 Thus, for example,

 Header Identifier

 ??

 Header identifiers in HTML header-identifiers-in-html

 Dogs?--in *my* house? dogs--in-my-house

 [HTML], [S5], or [RTF]? html-s5-or-rtf

 3. Applications applications

 33 section

 These rules should, in most cases, allow one to determine the identifier from the

 header text. The exception is when several headers have the same text; in this

 case, the first will get an identifier as described above; the second will get the

 same identifier with -1 appended; the third with -2; and so on.

 (However, a different algorithm is used if gfm_auto_identifiers is enabled; see be?

 low.)

 These identifiers are used to provide link targets in the table of contents gener?

 ated by the --toc|--table-of-contents option. They also make it easy to provide

 links from one section of a document to another. A link to this section, for exam?

 ple, might look like this:

 See the section on Page 35/92

 [header identifiers](#header-identifiers-in-html-latex-and-context).

 Note, however, that this method of providing links to sections works only in HTML,

 LaTeX, and ConTeXt formats.

 If the --section-divs option is specified, then each section will be wrapped in a

 section (or a div, if html4 was specified), and the identifier will be attached to

 the enclosing <section> (or <div>) tag rather than the header itself. This allows

 entire sections to be manipulated using JavaScript or treated differently in CSS.

 Extension: ascii_identifiers

 Causes the identifiers produced by auto_identifiers to be pure ASCII. Accents are

 stripped off of accented Latin letters, and non-Latin letters are omitted.

 Extension: gfm_auto_identifiers

 Changes the algorithm used by auto_identifiers to conform to GitHub's method. Spa?

 ces are converted to dashes (-), uppercase characters to lowercase characters, and

 punctuation characters other than - and _ are removed.

 Math Input

 The extensions tex_math_dollars, tex_math_single_backslash, and tex_math_dou?

 ble_backslash are described in the section about Pandoc's Markdown.

 However, they can also be used with HTML input. This is handy for reading web

 pages formatted using MathJax, for example.

 Raw HTML/TeX

 The following extensions (especially how they affect Markdown input/output) are

 also described in more detail in their respective sections of Pandoc's Markdown.

 Extension: raw_html

 When converting from HTML, parse elements to raw HTML which are not representable

 in pandoc's AST. By default, this is disabled for HTML input.

 Extension: raw_tex

 Allows raw LaTeX, TeX, and ConTeXt to be included in a document.

 This extension can be enabled/disabled for the following formats (in addition to

 markdown):

 input formats

 latex, org, textile, html (environments, \ref, and \eqref only)

 output formats

 textile, commonmark Page 36/92

 Extension: native_divs

 This extension is enabled by default for HTML input. This means that divs are

 parsed to pandoc native elements. (Alternatively, you can parse them to raw HTML

 using -f html-native_divs+raw_html.)

 When converting HTML to Markdown, for example, you may want to drop all divs and

 spans:

 pandoc -f html-native_divs-native_spans -t markdown

 Extension: native_spans

 Analogous to native_divs above.

 Literate Haskell support

 Extension: literate_haskell

 Treat the document as literate Haskell source.

 This extension can be enabled/disabled for the following formats:

 input formats

 markdown, rst, latex

 output formats

 markdown, rst, latex, html

 If you append +lhs (or +literate_haskell) to one of the formats above, pandoc will

 treat the document as literate Haskell source. This means that

 ? In Markdown input, "bird track" sections will be parsed as Haskell code rather

 than block quotations. Text between \begin{code} and \end{code} will also be

 treated as Haskell code. For ATX-style headers the character '=' will be used

 instead of '#'.

 ? In Markdown output, code blocks with classes haskell and literate will be ren?

 dered using bird tracks, and block quotations will be indented one space, so they

 will not be treated as Haskell code. In addition, headers will be rendered se?

 text-style (with underlines) rather than ATX-style (with '#' characters). (This

 is because ghc treats '#' characters in column 1 as introducing line numbers.)

 ? In restructured text input, "bird track" sections will be parsed as Haskell code.

 ? In restructured text output, code blocks with class haskell will be rendered us?

 ing bird tracks.

 ? In LaTeX input, text in code environments will be parsed as Haskell code.

 ? In LaTeX output, code blocks with class haskell will be rendered inside code en? Page 37/92

 vironments.

 ? In HTML output, code blocks with class haskell will be rendered with class liter?

 atehaskell and bird tracks.

 Examples:

 pandoc -f markdown+lhs -t html

 reads literate Haskell source formatted with Markdown conventions and writes ordi?

 nary HTML (without bird tracks).

 pandoc -f markdown+lhs -t html+lhs

 writes HTML with the Haskell code in bird tracks, so it can be copied and pasted as

 literate Haskell source.

 Note that GHC expects the bird tracks in the first column, so indented literate

 code blocks (e.g. inside an itemized environment) will not be picked up by the

 Haskell compiler.

 Other extensions

 Extension: empty_paragraphs

 Allows empty paragraphs. By default empty paragraphs are omitted.

 This extension can be enabled/disabled for the following formats:

 input formats

 docx, html

 output formats

 docx, odt, opendocument, html

 Extension: styles

 Read all docx styles as divs (for paragraph styles) and spans (for character

 styles) regardless of whether pandoc understands the meaning of these styles. This

 can be used with docx custom styles. Disabled by default.

 input formats

 docx

 Extension: amuse

 In the muse input format, this enables Text::Amuse extensions to Emacs Muse markup.

 Extension: citations

 Some aspects of Pandoc's Markdown citation syntax are also accepted in org input.

 Extension: ntb

 In the context output format this enables the use of Natural Tables (TABLE) instead Page 38/92

 of the default Extreme Tables (xtables). Natural tables allow more fine-grained

 global customization but come at a performance penalty compared to extreme tables.

PANDOC'S MARKDOWN

 Pandoc understands an extended and slightly revised version of John Gruber's Mark?

 down syntax. This document explains the syntax, noting differences from standard

 Markdown. Except where noted, these differences can be suppressed by using the

 markdown_strict format instead of markdown. Extensions can be enabled or disabled

 to specify the behavior more granularly. They are described in the following. See

 also Extensions above, for extensions that work also on other formats.

 Philosophy

 Markdown is designed to be easy to write, and, even more importantly, easy to read:

 A Markdown-formatted document should be publishable as-is, as plain text,

 without looking like it's been marked up with tags or formatting instruc?

 tions. -- John Gruber

 This principle has guided pandoc's decisions in finding syntax for tables, foot?

 notes, and other extensions.

 There is, however, one respect in which pandoc's aims are different from the origi?

 nal aims of Markdown. Whereas Markdown was originally designed with HTML genera?

 tion in mind, pandoc is designed for multiple output formats. Thus, while pandoc

 allows the embedding of raw HTML, it discourages it, and provides other, non-HTM?

 Lish ways of representing important document elements like definition lists, ta?

 bles, mathematics, and footnotes.

 Paragraphs

 A paragraph is one or more lines of text followed by one or more blank lines. New?

 lines are treated as spaces, so you can reflow your paragraphs as you like. If you

 need a hard line break, put two or more spaces at the end of a line.

 Extension: escaped_line_breaks

 A backslash followed by a newline is also a hard line break. Note: in multiline

 and grid table cells, this is the only way to create a hard line break, since

 trailing spaces in the cells are ignored.

 Headers

 There are two kinds of headers: Setext and ATX.

 Setext-style headers Page 39/92

 A setext-style header is a line of text "underlined" with a row of = signs (for a

 level one header) or - signs (for a level two header):

 A level-one header

 ==================

 A level-two header

 The header text can contain inline formatting, such as emphasis (see Inline format?

 ting, below).

 ATX-style headers

 An ATX-style header consists of one to six # signs and a line of text, optionally

 followed by any number of # signs. The number of # signs at the beginning of the

 line is the header level:

 ## A level-two header

 ### A level-three header ###

 As with setext-style headers, the header text can contain formatting:

 # A level-one header with a [link](/url) and *emphasis*

 Extension: blank_before_header

 Standard Markdown syntax does not require a blank line before a header. Pandoc

 does require this (except, of course, at the beginning of the document). The rea?

 son for the requirement is that it is all too easy for a # to end up at the begin?

 ning of a line by accident (perhaps through line wrapping). Consider, for example:

 I like several of their flavors of ice cream:

 #22, for example, and #5.

 Extension: space_in_atx_header

 Many Markdown implementations do not require a space between the opening #s of an

 ATX header and the header text, so that #5 bolt and #hashtag count as headers.

 With this extension, pandoc does require the space.

 Header identifiers

 See also the auto_identifiers extension above.

 Extension: header_attributes

 Headers can be assigned attributes using this syntax at the end of the line con?

 taining the header text:

 {#identifier .class .class key=value key=value} Page 40/92

 Thus, for example, the following headers will all be assigned the identifier foo:

 # My header {#foo}

 ## My header ## {#foo}

 My other header {#foo}

 (This syntax is compatible with PHP Markdown Extra.)

 Note that although this syntax allows assignment of classes and key/value at?

 tributes, writers generally don't use all of this information. Identifiers,

 classes, and key/value attributes are used in HTML and HTML-based formats such as

 EPUB and slidy. Identifiers are used for labels and link anchors in the LaTeX,

 ConTeXt, Textile, and AsciiDoc writers.

 Headers with the class unnumbered will not be numbered, even if --number-sections

 is specified. A single hyphen (-) in an attribute context is equivalent to .unnum?

 bered, and preferable in non-English documents. So,

 # My header {-}

 is just the same as

 # My header {.unnumbered}

 Extension: implicit_header_references

 Pandoc behaves as if reference links have been defined for each header. So, to

 link to a header

 # Header identifiers in HTML

 you can simply write

 [Header identifiers in HTML]

 or

 [Header identifiers in HTML][]

 or

 [the section on header identifiers][header identifiers in

 HTML]

 instead of giving the identifier explicitly:

 [Header identifiers in HTML](#header-identifiers-in-html)

 If there are multiple headers with identical text, the corresponding reference will

 link to the first one only, and you will need to use explicit links to link to the

 others, as described above. Page 41/92

 Like regular reference links, these references are case-insensitive.

 Explicit link reference definitions always take priority over implicit header ref?

 erences. So, in the following example, the link will point to bar, not to #foo:

 # Foo

 [foo]: bar

 See [foo]

 Block quotations

 Markdown uses email conventions for quoting blocks of text. A block quotation is

 one or more paragraphs or other block elements (such as lists or headers), with

 each line preceded by a > character and an optional space. (The > need not start

 at the left margin, but it should not be indented more than three spaces.)

 > This is a block quote. This

 > paragraph has two lines.

 >

 > 1. This is a list inside a block quote.

 > 2. Second item.

 A "lazy" form, which requires the > character only on the first line of each block,

 is also allowed:

 > This is a block quote. This

 paragraph has two lines.

 > 1. This is a list inside a block quote.

 2. Second item.

 Among the block elements that can be contained in a block quote are other block

 quotes. That is, block quotes can be nested:

 > This is a block quote.

 >

 > > A block quote within a block quote.

 If the > character is followed by an optional space, that space will be considered

 part of the block quote marker and not part of the indentation of the contents.

 Thus, to put an indented code block in a block quote, you need five spaces after

 the >:

 > code

 Extension: blank_before_blockquote Page 42/92

 Standard Markdown syntax does not require a blank line before a block quote. Pan?

 doc does require this (except, of course, at the beginning of the document). The

 reason for the requirement is that it is all too easy for a > to end up at the be?

 ginning of a line by accident (perhaps through line wrapping). So, unless the

 markdown_strict format is used, the following does not produce a nested block quote

 in pandoc:

 > This is a block quote.

 >> Nested.

 Verbatim (code) blocks

 Indented code blocks

 A block of text indented four spaces (or one tab) is treated as verbatim text: that

 is, special characters do not trigger special formatting, and all spaces and line

 breaks are preserved. For example,

 if (a > 3) {

 moveShip(5 * gravity, DOWN);

 }

 The initial (four space or one tab) indentation is not considered part of the ver?

 batim text, and is removed in the output.

 Note: blank lines in the verbatim text need not begin with four spaces.

 Fenced code blocks

 Extension: fenced_code_blocks

 In addition to standard indented code blocks, pandoc supports fenced code blocks.

 These begin with a row of three or more tildes (~) and end with a row of tildes

 that must be at least as long as the starting row. Everything between these lines

 is treated as code. No indentation is necessary:

              ~~~~~~~

              if (a > 3) {

                moveShip(5 * gravity, DOWN);

              }

              ~~~~~~~

 Like regular code blocks, fenced code blocks must be separated from surrounding

 text by blank lines.

 If the code itself contains a row of tildes or backticks, just use a longer row of Page 43/92

 tildes or backticks at the start and end:

              ~~~~~~~~~~~~~~~~

              ~~~~~~~~~~

 code including tildes

              ~~~~~~~~~~

              ~~~~~~~~~~~~~~~~

 Extension: backtick_code_blocks

 Same as fenced_code_blocks, but uses backticks (`) instead of tildes (~).

 Extension: fenced_code_attributes

 Optionally, you may attach attributes to fenced or backtick code block using this

 syntax:

              ~~~~ {#mycode .haskell .numberLines startFrom="100"}

              qsort []     = []

              qsort (x:xs) = qsort (filter (< x) xs) ++ [x] ++

                             qsort (filter (>= x) xs)

              ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 Here mycode is an identifier, haskell and numberLines are classes, and startFrom is

 an attribute with value 100. Some output formats can use this information to do

 syntax highlighting. Currently, the only output formats that uses this information

 are HTML, LaTeX, Docx, Ms, and PowerPoint. If highlighting is supported for your

 output format and language, then the code block above will appear highlighted, with

 numbered lines. (To see which languages are supported, type pandoc --list-high?

 light-languages.) Otherwise, the code block above will appear as follows:

 <pre id="mycode" class="haskell numberLines" startFrom="100">

 <code>

 ...

 </code>

 </pre>

 The numberLines (or number-lines) class will cause the lines of the code block to

 be numbered, starting with 1 or the value of the startFrom attribute. The lineAn?

 chors (or line-anchors) class will cause the lines to be clickable anchors in HTML

 output.

 A shortcut form can also be used for specifying the language of the code block: Page 44/92


              ```haskell

              qsort [] = []

              ```

 This is equivalent to:

              ``` {.haskell}

              qsort [] = []

              ```

 If the fenced_code_attributes extension is disabled, but input contains class at?

 tribute(s) for the code block, the first class attribute will be printed after the

 opening fence as a bare word.

 To prevent all highlighting, use the --no-highlight flag. To set the highlighting

 style, use --highlight-style. For more information on highlighting, see Syntax

 highlighting, below.

 Line blocks

 Extension: line_blocks

 A line block is a sequence of lines beginning with a vertical bar (|) followed by a

 space. The division into lines will be preserved in the output, as will any lead?

 ing spaces; otherwise, the lines will be formatted as Markdown. This is useful for

 verse and addresses:

 | The limerick packs laughs anatomical

 | In space that is quite economical.

 | But the good ones I've seen

 | So seldom are clean

 | And the clean ones so seldom are comical

 | 200 Main St.

 | Berkeley, CA 94718

 The lines can be hard-wrapped if needed, but the continuation line must begin with

 a space.

 | The Right Honorable Most Venerable and Righteous Samuel L.

 Constable, Jr.

 | 200 Main St.

 | Berkeley, CA 94718

 This syntax is borrowed from reStructuredText. Page 45/92

 Lists

 Bullet lists

 A bullet list is a list of bulleted list items. A bulleted list item begins with a

 bullet (*, +, or -). Here is a simple example:

 * one

 * two

 * three

 This will produce a "compact" list. If you want a "loose" list, in which each item

 is formatted as a paragraph, put spaces between the items:

 * one

 * two

 * three

 The bullets need not be flush with the left margin; they may be indented one, two,

 or three spaces. The bullet must be followed by whitespace.

 List items look best if subsequent lines are flush with the first line (after the

 bullet):

 * here is my first

 list item.

 * and my second.

 But Markdown also allows a "lazy" format:

 * here is my first

 list item.

 * and my second.

 Block content in list items

 A list item may contain multiple paragraphs and other block-level content. How?

 ever, subsequent paragraphs must be preceded by a blank line and indented to line

 up with the first non-space content after the list marker.

 * First paragraph.

 Continued.

 * Second paragraph. With a code block, which must be indented

 eight spaces:

 { code }

 Exception: if the list marker is followed by an indented code block, which must be? Page 46/92

 gin 5 spaces after the list marker, then subsequent paragraphs must begin two col?

 umns after the last character of the list marker:

 * code

 continuation paragraph

 List items may include other lists. In this case the preceding blank line is op?

 tional. The nested list must be indented to line up with the first non-space char?

 acter after the list marker of the containing list item.

 * fruits

 + apples

 - macintosh

 - red delicious

 + pears

 + peaches

 * vegetables

 + broccoli

 + chard

 As noted above, Markdown allows you to write list items "lazily," instead of in?

 denting continuation lines. However, if there are multiple paragraphs or other

 blocks in a list item, the first line of each must be indented.

 + A lazy, lazy, list

 item.

 + Another one; this looks

 bad but is legal.

 Second paragraph of second

 list item.

 Ordered lists

 Ordered lists work just like bulleted lists, except that the items begin with enu?

 merators rather than bullets.

 In standard Markdown, enumerators are decimal numbers followed by a period and a

 space. The numbers themselves are ignored, so there is no difference between this

 list:

 1. one

 2. two Page 47/92

 3. three

 and this one:

 5. one

 7. two

 1. three

 Extension: fancy_lists

 Unlike standard Markdown, pandoc allows ordered list items to be marked with upper?

 case and lowercase letters and roman numerals, in addition to Arabic numerals.

 List markers may be enclosed in parentheses or followed by a single right-parenthe?

 ses or period. They must be separated from the text that follows by at least one

 space, and, if the list marker is a capital letter with a period, by at least two

 spaces.

 The fancy_lists extension also allows '#' to be used as an ordered list marker in

 place of a numeral:

 #. one

 #. two

 Extension: startnum

 Pandoc also pays attention to the type of list marker used, and to the starting

 number, and both of these are preserved where possible in the output format. Thus,

 the following yields a list with numbers followed by a single parenthesis, starting

 with 9, and a sublist with lowercase roman numerals:

 9) Ninth

 10) Tenth

 11) Eleventh

 i. subone

 ii. subtwo

 iii. subthree

 Pandoc will start a new list each time a different type of list marker is used.

 So, the following will create three lists:

 (2) Two

 (5) Three

 1. Four

 * Five Page 48/92

 If default list markers are desired, use #.:

 #. one

 #. two

 #. three

 Definition lists

 Extension: definition_lists

 Pandoc supports definition lists, using the syntax of PHP Markdown Extra with some

 extensions.

 Term 1

 : Definition 1

 Term 2 with *inline markup*

 : Definition 2

 { some code, part of Definition 2 }

 Third paragraph of definition 2.

 Each term must fit on one line, which may optionally be followed by a blank line,

 and must be followed by one or more definitions. A definition begins with a colon

 or tilde, which may be indented one or two spaces.

 A term may have multiple definitions, and each definition may consist of one or

 more block elements (paragraph, code block, list, etc.), each indented four spaces

 or one tab stop. The body of the definition (including the first line, aside from

 the colon or tilde) should be indented four spaces. However, as with other Mark?

 down lists, you can "lazily" omit indentation except at the beginning of a para?

 graph or other block element:

 Term 1

 : Definition

 with lazy continuation.

 Second paragraph of the definition.

 If you leave space before the definition (as in the example above), the text of the

 definition will be treated as a paragraph. In some output formats, this will mean

 greater spacing between term/definition pairs. For a more compact definition list,

 omit the space before the definition:

 Term 1

 ~ Definition 1 Page 49/92

 Term 2

 ~ Definition 2a

 ~ Definition 2b

 Note that space between items in a definition list is required. (A variant that

 loosens this requirement, but disallows "lazy" hard wrapping, can be activated with

 compact_definition_lists: see Non-pandoc extensions, below.)

 Numbered example lists

 Extension: example_lists

 The special list marker @ can be used for sequentially numbered examples. The

 first list item with a @ marker will be numbered '1', the next '2', and so on,

 throughout the document. The numbered examples need not occur in a single list;

 each new list using @ will take up where the last stopped. So, for example:

 (@) My first example will be numbered (1).

 (@) My second example will be numbered (2).

 Explanation of examples.

 (@) My third example will be numbered (3).

 Numbered examples can be labeled and referred to elsewhere in the document:

 (@good) This is a good example.

 As (@good) illustrates, ...

 The label can be any string of alphanumeric characters, underscores, or hyphens.

 Note: continuation paragraphs in example lists must always be indented four spaces,

 regardless of the length of the list marker. That is, example lists always behave

 as if the four_space_rule extension is set. This is because example labels tend to

 be long, and indenting content to the first non-space character after the label

 would be awkward.

 Compact and loose lists

 Pandoc behaves differently from Markdown.pl on some "edge cases" involving lists.

 Consider this source:

 + First

 + Second:

 - Fee

 - Fie

 - Foe Page 50/92

 + Third

 Pandoc transforms this into a "compact list" (with no <p> tags around "First",

 "Second", or "Third"), while Markdown puts <p> tags around "Second" and "Third"

 (but not "First"), because of the blank space around "Third". Pandoc follows a

 simple rule: if the text is followed by a blank line, it is treated as a paragraph.

 Since "Second" is followed by a list, and not a blank line, it isn't treated as a

 paragraph. The fact that the list is followed by a blank line is irrelevant.

 (Note: Pandoc works this way even when the markdown_strict format is specified.

 This behavior is consistent with the official Markdown syntax description, even

 though it is different from that of Markdown.pl.)

 Ending a list

 What if you want to put an indented code block after a list?

 - item one

 - item two

 { my code block }

 Trouble! Here pandoc (like other Markdown implementations) will treat { my code

 block } as the second paragraph of item two, and not as a code block.

 To "cut off" the list after item two, you can insert some non-indented content,

 like an HTML comment, which won't produce visible output in any format:

 - item one

 - item two

 <!-- end of list -->

 { my code block }

 You can use the same trick if you want two consecutive lists instead of one big

 list:

 1. one

 2. two

 3. three

 <!-- -->

 1. uno

 2. dos

 3. tres

 Horizontal rules Page 51/92

 A line containing a row of three or more *, -, or _ characters (optionally sepa?

 rated by spaces) produces a horizontal rule:

 * * * *

 Tables

 Four kinds of tables may be used. The first three kinds presuppose the use of a

 fixed-width font, such as Courier. The fourth kind can be used with proportionally

 spaced fonts, as it does not require lining up columns.

 Extension: table_captions

 A caption may optionally be provided with all 4 kinds of tables (as illustrated in

 the examples below). A caption is a paragraph beginning with the string Table: (or

 just :), which will be stripped off. It may appear either before or after the ta?

 ble.

 Extension: simple_tables

 Simple tables look like this:

 Right Left Center Default

 ------- ------ ---------- -------

 12 12 12 12

 123 123 123 123

 1 1 1 1

 Table: Demonstration of simple table syntax.

 The headers and table rows must each fit on one line. Column alignments are deter?

 mined by the position of the header text relative to the dashed line below it:

 ? If the dashed line is flush with the header text on the right side but extends

 beyond it on the left, the column is right-aligned.

 ? If the dashed line is flush with the header text on the left side but extends be?

 yond it on the right, the column is left-aligned.

 ? If the dashed line extends beyond the header text on both sides, the column is

 centered.

 ? If the dashed line is flush with the header text on both sides, the default

 alignment is used (in most cases, this will be left).

 The table must end with a blank line, or a line of dashes followed by a blank line.

 The column headers may be omitted, provided a dashed line is used to end the table. Page 52/92

 For example:

 ------- ------ ---------- -------

 12 12 12 12

 123 123 123 123

 1 1 1 1

 ------- ------ ---------- -------

 When headers are omitted, column alignments are determined on the basis of the

 first line of the table body. So, in the tables above, the columns would be right,

 left, center, and right aligned, respectively.

 Extension: multiline_tables

 Multiline tables allow headers and table rows to span multiple lines of text (but

 cells that span multiple columns or rows of the table are not supported). Here is

 an example:

 Centered Default Right Left

 Header Aligned Aligned Aligned

 ----------- ------- --------------- -------------------------

 First row 12.0 Example of a row that

 spans multiple lines.

 Second row 5.0 Here's another one. Note

 the blank line between

 rows.

 Table: Here's the caption. It, too, may span

 multiple lines.

 These work like simple tables, but with the following differences:

 ? They must begin with a row of dashes, before the header text (unless the headers

 are omitted).

 ? They must end with a row of dashes, then a blank line.

 ? The rows must be separated by blank lines.

 In multiline tables, the table parser pays attention to the widths of the columns,

 and the writers try to reproduce these relative widths in the output. So, if you

 find that one of the columns is too narrow in the output, try widening it in the Page 53/92

 Markdown source.

 Headers may be omitted in multiline tables as well as simple tables:

 ----------- ------- --------------- -------------------------

 First row 12.0 Example of a row that

 spans multiple lines.

 Second row 5.0 Here's another one. Note

 the blank line between

 rows.

 ----------- ------- --------------- -------------------------

 : Here's a multiline table without headers.

 It is possible for a multiline table to have just one row, but the row should be

 followed by a blank line (and then the row of dashes that ends the table), or the

 table may be interpreted as a simple table.

 Extension: grid_tables

 Grid tables look like this:

 : Sample grid table.

 +---------------+---------------+--------------------+

 | Fruit | Price | Advantages |

 +===============+===============+====================+

 | Bananas | $1.34 | - built-in wrapper |

 | | | - bright color |

 +---------------+---------------+--------------------+

 | Oranges | $2.10 | - cures scurvy |

 | | | - tasty |

 +---------------+---------------+--------------------+

 The row of =s separates the header from the table body, and can be omitted for a

 headerless table. The cells of grid tables may contain arbitrary block elements

 (multiple paragraphs, code blocks, lists, etc.). Cells that span multiple columns

 or rows are not supported. Grid tables can be created easily using Emacs table

 mode.

 Alignments can be specified as with pipe tables, by putting colons at the bound?

 aries of the separator line after the header:

 +---------------+---------------+--------------------+ Page 54/92

 | Right | Left | Centered |

 +==============:+:==============+:==================:+

 | Bananas | $1.34 | built-in wrapper |

 +---------------+---------------+--------------------+

 For headerless tables, the colons go on the top line instead:

 +--------------:+:--------------+:------------------:+

 | Right | Left | Centered |

 +---------------+---------------+--------------------+

 Grid Table Limitations

 Pandoc does not support grid tables with row spans or column spans. This means

 that neither variable numbers of columns across rows nor variable numbers of rows

 across columns are supported by Pandoc. All grid tables must have the same number

 of columns in each row, and the same number of rows in each column. For example,

 the Docutils sample grid tables will not render as expected with Pandoc.

 Extension: pipe_tables

 Pipe tables look like this:

 | Right | Left | Default | Center |

 |------:|:-----|---------|:------:|

 | 12 | 12 | 12 | 12 |

 | 123 | 123 | 123 | 123 |

 | 1 | 1 | 1 | 1 |

 : Demonstration of pipe table syntax.

 The syntax is identical to PHP Markdown Extra tables. The beginning and ending

 pipe characters are optional, but pipes are required between all columns. The

 colons indicate column alignment as shown. The header cannot be omitted. To simu?

 late a headerless table, include a header with blank cells.

 Since the pipes indicate column boundaries, columns need not be vertically aligned,

 as they are in the above example. So, this is a perfectly legal (though ugly) pipe

 table:

 fruit| price

 -----|-----:

 apple|2.05

 pear|1.37 Page 55/92

 orange|3.09

 The cells of pipe tables cannot contain block elements like paragraphs and lists,

 and cannot span multiple lines. If a pipe table contains a row whose printable

 content is wider than the column width (see --columns), then the table will take up

 the full text width and the cell contents will wrap, with the relative cell widths

 determined by the number of dashes in the line separating the table header from the

 table body. (For example ---|- would make the first column 3/4 and the second col?

 umn 1/4 of the full text width.) On the other hand, if no lines are wider than col?

 umn width, then cell contents will not be wrapped, and the cells will be sized to

 their contents.

 Note: pandoc also recognizes pipe tables of the following form, as can be produced

 by Emacs' orgtbl-mode:

 | One | Two |

 |-----+-------|

 | my | table |

 | is | nice |

 The difference is that + is used instead of |. Other orgtbl features are not sup?

 ported. In particular, to get non-default column alignment, you'll need to add

 colons as above.

 Metadata blocks

 Extension: pandoc_title_block

 If the file begins with a title block

 % title

 % author(s) (separated by semicolons)

 % date

 it will be parsed as bibliographic information, not regular text. (It will be

 used, for example, in the title of standalone LaTeX or HTML output.) The block may

 contain just a title, a title and an author, or all three elements. If you want to

 include an author but no title, or a title and a date but no author, you need a

 blank line:

 %

 % Author

 % My title Page 56/92

 %

 % June 15, 2006

 The title may occupy multiple lines, but continuation lines must begin with leading

 space, thus:

 % My title

 on multiple lines

 If a document has multiple authors, the authors may be put on separate lines with

 leading space, or separated by semicolons, or both. So, all of the following are

 equivalent:

 % Author One

 Author Two

 % Author One; Author Two

 % Author One;

 Author Two

 The date must fit on one line.

 All three metadata fields may contain standard inline formatting (italics, links,

 footnotes, etc.).

 Title blocks will always be parsed, but they will affect the output only when the

 --standalone (-s) option is chosen. In HTML output, titles will appear twice: once

 in the document head -- this is the title that will appear at the top of the window

 in a browser -- and once at the beginning of the document body. The title in the

 document head can have an optional prefix attached (--title-prefix or -T option).

 The title in the body appears as an H1 element with class "title", so it can be

 suppressed or reformatted with CSS. If a title prefix is specified with -T and no

 title block appears in the document, the title prefix will be used by itself as the

 HTML title.

 The man page writer extracts a title, man page section number, and other header and

 footer information from the title line. The title is assumed to be the first word

 on the title line, which may optionally end with a (single-digit) section number in

 parentheses. (There should be no space between the title and the parentheses.)

 Anything after this is assumed to be additional footer and header text. A single

 pipe character (|) should be used to separate the footer text from the header text.

 Thus, Page 57/92

 % PANDOC(1)

 will yield a man page with the title PANDOC and section 1.

 % PANDOC(1) Pandoc User Manuals

 will also have "Pandoc User Manuals" in the footer.

 % PANDOC(1) Pandoc User Manuals | Version 4.0

 will also have "Version 4.0" in the header.

 Extension: yaml_metadata_block

 A YAML metadata block is a valid YAML object, delimited by a line of three hyphens

 (---) at the top and a line of three hyphens (---) or three dots (...) at the bot?

 tom. A YAML metadata block may occur anywhere in the document, but if it is not at

 the beginning, it must be preceded by a blank line. (Note that, because of the way

 pandoc concatenates input files when several are provided, you may also keep the

 metadata in a separate YAML file and pass it to pandoc as an argument, along with

 your Markdown files:

 pandoc chap1.md chap2.md chap3.md metadata.yaml -s -o book.html

 Just be sure that the YAML file begins with --- and ends with --- or) Alterna?

 tively, you can use the --metadata-file option. Using that approach however, you

 cannot reference content (like footnotes) from the main markdown input document.

 Metadata will be taken from the fields of the YAML object and added to any existing

 document metadata. Metadata can contain lists and objects (nested arbitrarily),

 but all string scalars will be interpreted as Markdown. Fields with names ending

 in an underscore will be ignored by pandoc. (They may be given a role by external

 processors.) Field names must not be interpretable as YAML numbers or boolean val?

 ues (so, for example, yes, True, and 15 cannot be used as field names).

 A document may contain multiple metadata blocks. The metadata fields will be com?

 bined through a left-biased union: if two metadata blocks attempt to set the same

 field, the value from the first block will be taken.

 When pandoc is used with -t markdown to create a Markdown document, a YAML metadata

 block will be produced only if the -s/--standalone option is used. All of the

 metadata will appear in a single block at the beginning of the document.

 Note that YAML escaping rules must be followed. Thus, for example, if a title con?

 tains a colon, it must be quoted. The pipe character (|) can be used to begin an

 indented block that will be interpreted literally, without need for escaping. This Page 58/92

 form is necessary when the field contains blank lines or block-level formatting:

 title: 'This is the title: it contains a colon'

 author:

 - Author One

 - Author Two

 keywords: [nothing, nothingness]

 abstract: |

 This is the abstract.

 It consists of two paragraphs.

 ...

 Template variables will be set automatically from the metadata. Thus, for example,

 in writing HTML, the variable abstract will be set to the HTML equivalent of the

 Markdown in the abstract field:

 <p>This is the abstract.</p>

 <p>It consists of two paragraphs.</p>

 Variables can contain arbitrary YAML structures, but the template must match this

 structure. The author variable in the default templates expects a simple list or

 string, but can be changed to support more complicated structures. The following

 combination, for example, would add an affiliation to the author if one is given:

 title: The document title

 author:

 - name: Author One

 affiliation: University of Somewhere

 - name: Author Two

 affiliation: University of Nowhere

 ...

 To use the structured authors in the example above, you would need a custom tem?

 plate:

 $for(author)$

 $if(author.name)$

 $author.name$$if(author.affiliation)$ ($author.affiliation$)$endif$ Page 59/92

 $else$

 $author$

 $endif$

 $endfor$

 Raw content to include in the document's header may be specified using header-in?

 cludes; however, it is important to mark up this content as raw code for a particu?

 lar output format, using the raw_attribute extension), or it will be interpreted as

 markdown. For example:

 header-includes:

 - |

                ```{=latex}

                \let\oldsection\section

                \renewcommand{\section}[1]{\clearpage\oldsection{#1}}

                ```

 Backslash escapes

 Extension: all_symbols_escapable

 Except inside a code block or inline code, any punctuation or space character pre?

 ceded by a backslash will be treated literally, even if it would normally indicate

 formatting. Thus, for example, if one writes

 hello

 one will get

 hello

 instead of

 hello

 This rule is easier to remember than standard Markdown's rule, which allows only

 the following characters to be backslash-escaped:

 \`*_{}[]()>#+-.!

 (However, if the markdown_strict format is used, the standard Markdown rule will be

 used.)

 A backslash-escaped space is parsed as a nonbreaking space. It will appear in TeX

 output as ~ and in HTML and XML as \ or \ .

 A backslash-escaped newline (i.e. a backslash occurring at the end of a line) is

 parsed as a hard line break. It will appear in TeX output as \\ and in HTML as <br Page 60/92

 />. This is a nice alternative to Markdown's "invisible" way of indicating hard

 line breaks using two trailing spaces on a line.

 Backslash escapes do not work in verbatim contexts.

 Inline formatting

 Emphasis

 To emphasize some text, surround it with *s or _, like this:

 This text is _emphasized with underscores_, and this

 is *emphasized with asterisks*.

 Double * or _ produces strong emphasis:

 This is **strong emphasis** and __with underscores__.

 A * or _ character surrounded by spaces, or backslash-escaped, will not trigger em?

 phasis:

 This is * not emphasized *, and *neither is this*.

 Extension: intraword_underscores

 Because _ is sometimes used inside words and identifiers, pandoc does not interpret

 a _ surrounded by alphanumeric characters as an emphasis marker. If you want to

 emphasize just part of a word, use *:

 feas*ible*, not feas*able*.

 Strikeout

 Extension: strikeout

 To strikeout a section of text with a horizontal line, begin and end it with ~~.

 Thus, for example,

 This ~~is deleted text.~~

 Superscripts and subscripts

 Extension: superscript, subscript

 Superscripts may be written by surrounding the superscripted text by ^ characters;

 subscripts may be written by surrounding the subscripted text by ~ characters.

 Thus, for example,

 H~2~O is a liquid. 2^10^ is 1024.

 If the superscripted or subscripted text contains spaces, these spaces must be es?

 caped with backslashes. (This is to prevent accidental superscripting and sub?

 scripting through the ordinary use of ~ and ^.) Thus, if you want the letter P with

 'a cat' in subscripts, use P~a\ cat~, not P~a cat~. Page 61/92

 Verbatim

 To make a short span of text verbatim, put it inside backticks:

 What is the difference between `>>=` and `>>`?

 If the verbatim text includes a backtick, use double backticks:

 Here is a literal backtick `` ` ``.

 (The spaces after the opening backticks and before the closing backticks will be

 ignored.)

 The general rule is that a verbatim span starts with a string of consecutive back?

 ticks (optionally followed by a space) and ends with a string of the same number of

 backticks (optionally preceded by a space).

 Note that backslash-escapes (and other Markdown constructs) do not work in verbatim

 contexts:

 This is a backslash followed by an asterisk: `*`.

 Extension: inline_code_attributes

 Attributes can be attached to verbatim text, just as with fenced code blocks:

 `<$>`{.haskell}

 Small caps

 To write small caps, use the smallcaps class:

 [Small caps]{.smallcaps}

 Or, without the bracketed_spans extension:

 Small caps

 For compatibility with other Markdown flavors, CSS is also supported:

 Small caps

 This will work in all output formats that support small caps.

 Math

 Extension: tex_math_dollars

 Anything between two $ characters will be treated as TeX math. The opening $ must

 have a non-space character immediately to its right, while the closing $ must have

 a non-space character immediately to its left, and must not be followed immediately

 by a digit. Thus, $20,000 and $30,000 won't parse as math. If for some reason you

 need to enclose text in literal $ characters, backslash-escape them and they won't

 be treated as math delimiters.

 TeX math will be printed in all output formats. How it is rendered depends on the Page 62/92

 output format:

 LaTeX It will appear verbatim surrounded by \(...\) (for inline math) or \[...\]

 (for display math).

 Markdown, Emacs Org mode, ConTeXt, ZimWiki

 It will appear verbatim surrounded by $...$ (for inline math) or $$...$$

 (for display math).

 reStructuredText

 It will be rendered using an interpreted text role :math:.

 AsciiDoc

 It will be rendered as latexmath:[...].

 Texinfo

 It will be rendered inside a @math command.

 roff man

 It will be rendered verbatim without $'s.

 MediaWiki, DokuWiki

 It will be rendered inside <math> tags.

 Textile

 It will be rendered inside tags.

 RTF, OpenDocument

 It will be rendered, if possible, using Unicode characters, and will other?

 wise appear verbatim.

 ODT It will be rendered, if possible, using MathML.

 DocBook

 If the --mathml flag is used, it will be rendered using MathML in an inli?

 neequation or informalequation tag. Otherwise it will be rendered, if pos?

 sible, using Unicode characters.

 Docx It will be rendered using OMML math markup.

 FictionBook2

 If the --webtex option is used, formulas are rendered as images using

 CodeCogs or other compatible web service, downloaded and embedded in the

 e-book. Otherwise, they will appear verbatim.

 HTML, Slidy, DZSlides, S5, EPUB

 The way math is rendered in HTML will depend on the command-line options se? Page 63/92

 lected. Therefore see Math rendering in HTML above.

 Raw HTML

 Extension: raw_html

 Markdown allows you to insert raw HTML (or DocBook) anywhere in a document (except

 verbatim contexts, where <, >, and & are interpreted literally). (Technically this

 is not an extension, since standard Markdown allows it, but it has been made an ex?

 tension so that it can be disabled if desired.)

 The raw HTML is passed through unchanged in HTML, S5, Slidy, Slideous, DZSlides,

 EPUB, Markdown, CommonMark, Emacs Org mode, and Textile output, and suppressed in

 other formats.

 In the CommonMark format, if raw_html is enabled, superscripts, subscripts, strike?

 outs and small capitals will be represented as HTML. Otherwise, plain-text fall?

 backs will be used. Note that even if raw_html is disabled, tables will be ren?

 dered with HTML syntax if they cannot use pipe syntax.

 Extension: markdown_in_html_blocks

 Standard Markdown allows you to include HTML "blocks": blocks of HTML between bal?

 anced tags that are separated from the surrounding text with blank lines, and start

 and end at the left margin. Within these blocks, everything is interpreted as

 HTML, not Markdown; so (for example), * does not signify emphasis.

 Pandoc behaves this way when the markdown_strict format is used; but by default,

 pandoc interprets material between HTML block tags as Markdown. Thus, for example,

 pandoc will turn

 <table>

 <tr>

 <td>*one*</td>

 <td>[a link](http://google.com)</td>

 </tr>

 </table>

 into

 <table>

 <tr>

 <td>one</td>

 <td>a link</td> Page 64/92

 </tr>

 </table>

 whereas Markdown.pl will preserve it as is.

 There is one exception to this rule: text between <script> and <style> tags is not

 interpreted as Markdown.

 This departure from standard Markdown should make it easier to mix Markdown with

 HTML block elements. For example, one can surround a block of Markdown text with

 <div> tags without preventing it from being interpreted as Markdown.

 Extension: native_divs

 Use native pandoc Div blocks for content inside <div> tags. For the most part this

 should give the same output as markdown_in_html_blocks, but it makes it easier to

 write pandoc filters to manipulate groups of blocks.

 Extension: native_spans

 Use native pandoc Span blocks for content inside tags. For the most part

 this should give the same output as raw_html, but it makes it easier to write pan?

 doc filters to manipulate groups of inlines.

 Extension: raw_tex

 In addition to raw HTML, pandoc allows raw LaTeX, TeX, and ConTeXt to be included

 in a document. Inline TeX commands will be preserved and passed unchanged to the

 LaTeX and ConTeXt writers. Thus, for example, you can use LaTeX to include BibTeX

 citations:

 This result was proved in \cite{jones.1967}.

 Note that in LaTeX environments, like

 \begin{tabular}{|l|l|}\hline

 Age & Frequency \\ \hline

 18--25 & 15 \\

 26--35 & 33 \\

 36--45 & 22 \\ \hline

 \end{tabular}

 the material between the begin and end tags will be interpreted as raw LaTeX, not

 as Markdown.

 Inline LaTeX is ignored in output formats other than Markdown, LaTeX, Emacs Org

 mode, and ConTeXt. Page 65/92

 Generic raw attribute

 Extension: raw_attribute

 Inline spans and fenced code blocks with a special kind of attribute will be parsed

 as raw content with the designated format. For example, the following produces a

 raw roff ms block:

              ```{=ms}

              .MYMACRO

              blah blah

              ```

 And the following produces a raw html inline element:

 This is `<a>html`{=html}

 This can be useful to insert raw xml into docx documents, e.g. a pagebreak:

              ```{=openxml}

              <w:p>

                <w:r>

                  <w:br w:type="page"/>

                </w:r>

              </w:p>

              ```

 The format name should match the target format name (see -t/--to, above, for a

 list, or use pandoc --list-output-formats). Use openxml for docx output, opendocu?

 ment for odt output, html5 for epub3 output, html4 for epub2 output, and latex,

 beamer, ms, or html5 for pdf output (depending on what you use for --pdf-engine).

 This extension presupposes that the relevant kind of inline code or fenced code

 block is enabled. Thus, for example, to use a raw attribute with a backtick code

 block, backtick_code_blocks must be enabled.

 The raw attribute cannot be combined with regular attributes.

 LaTeX macros

 Extension: latex_macros

 When this extension is enabled, pandoc will parse LaTeX macro definitions and apply

 the resulting macros to all LaTeX math and raw LaTeX. So, for example, the follow?

 ing will work in all output formats, not just LaTeX:

 \newcommand{\tuple}[1]{\langle #1 \rangle} Page 66/92

 $\tuple{a, b, c}$

 Note that LaTeX macros will not be applied if they occur inside inside a raw span

 or block marked with the raw_attribute extension.

 When latex_macros is disabled, the raw LaTeX and math will not have macros applied.

 This is usually a better approach when you are targeting LaTeX or PDF.

 Whether or not latex_macros is enabled, the macro definitions will still be passed

 through as raw LaTeX.

 Links

 Markdown allows links to be specified in several ways.

 Automatic links

 If you enclose a URL or email address in pointy brackets, it will become a link:

 <http://google.com>

 <sam@green.eggs.ham>

 Inline links

 An inline link consists of the link text in square brackets, followed by the URL in

 parentheses. (Optionally, the URL can be followed by a link title, in quotes.)

 This is an [inline link](/url), and here's [one with

 a title](http://fsf.org "click here for a good time!").

 There can be no space between the bracketed part and the parenthesized part. The

 link text can contain formatting (such as emphasis), but the title cannot.

 Email addresses in inline links are not autodetected, so they have to be prefixed

 with mailto:

 [Write me!](mailto:sam@green.eggs.ham)

 Reference links

 An explicit reference link has two parts, the link itself and the link definition,

 which may occur elsewhere in the document (either before or after the link).

 The link consists of link text in square brackets, followed by a label in square

 brackets. (There cannot be space between the two unless the spaced_reference_links

 extension is enabled.) The link definition consists of the bracketed label, fol?

 lowed by a colon and a space, followed by the URL, and optionally (after a space) a

 link title either in quotes or in parentheses. The label must not be parseable as

 a citation (assuming the citations extension is enabled): citations take precedence

 over link labels. Page 67/92

 Here are some examples:

 [my label 1]: /foo/bar.html "My title, optional"

 [my label 2]: /foo

 [my label 3]: http://fsf.org (The free software foundation)

 [my label 4]: /bar#special 'A title in single quotes'

 The URL may optionally be surrounded by angle brackets:

 [my label 5]: <http://foo.bar.baz>

 The title may go on the next line:

 [my label 3]: http://fsf.org

 "The free software foundation"

 Note that link labels are not case sensitive. So, this will work:

 Here is [my link][FOO]

 [Foo]: /bar/baz

 In an implicit reference link, the second pair of brackets is empty:

 See [my website][].

 [my website]: http://foo.bar.baz

 Note: In Markdown.pl and most other Markdown implementations, reference link defi?

 nitions cannot occur in nested constructions such as list items or block quotes.

 Pandoc lifts this arbitrary seeming restriction. So the following is fine in pan?

 doc, though not in most other implementations:

 > My block [quote].

 >

 > [quote]: /foo

 Extension: shortcut_reference_links

 In a shortcut reference link, the second pair of brackets may be omitted entirely:

 See [my website].

 [my website]: http://foo.bar.baz

 Internal links

 To link to another section of the same document, use the automatically generated

 identifier (see Header identifiers). For example:

 See the [Introduction](#introduction).

 or

 See the [Introduction]. Page 68/92

 [Introduction]: #introduction

 Internal links are currently supported for HTML formats (including HTML slide shows

 and EPUB), LaTeX, and ConTeXt.

 Images

 A link immediately preceded by a ! will be treated as an image. The link text will

 be used as the image's alt text:

 ![la lune](lalune.jpg "Voyage to the moon")

 ![movie reel]

 [movie reel]: movie.gif

 Extension: implicit_figures

 An image with nonempty alt text, occurring by itself in a paragraph, will be ren?

 dered as a figure with a caption. The image's alt text will be used as the cap?

 tion.

 ![This is the caption](/url/of/image.png)

 How this is rendered depends on the output format. Some output formats (e.g. RTF)

 do not yet support figures. In those formats, you'll just get an image in a para?

 graph by itself, with no caption.

 If you just want a regular inline image, just make sure it is not the only thing in

 the paragraph. One way to do this is to insert a nonbreaking space after the im?

 age:

 ![This image won't be a figure](/url/of/image.png)\

 Note that in reveal.js slide shows, an image in a paragraph by itself that has the

 stretch class will fill the screen, and the caption and figure tags will be omit?

 ted.

 Extension: link_attributes

 Attributes can be set on links and images:

 An inline ![image](foo.jpg){#id .class width=30 height=20px}

 and a reference ![image][ref] with attributes.

 [ref]: foo.jpg "optional title" {#id .class key=val key2="val 2"}

 (This syntax is compatible with PHP Markdown Extra when only #id and .class are

 used.)

 For HTML and EPUB, all attributes except width and height (but including srcset and

 sizes) are passed through as is. The other writers ignore attributes that are not Page 69/92

 supported by their output format.

 The width and height attributes on images are treated specially. When used without

 a unit, the unit is assumed to be pixels. However, any of the following unit iden?

 tifiers can be used: px, cm, mm, in, inch and %. There must not be any spaces be?

 tween the number and the unit. For example:

 { width=50% }

 ? Dimensions are converted to inches for output in page-based formats like LaTeX.

 Dimensions are converted to pixels for output in HTML-like formats. Use the

 --dpi option to specify the number of pixels per inch. The default is 96dpi.

 ? The % unit is generally relative to some available space. For example the above

 example will render to the following.

 ? HTML:

 ? LaTeX: \includegraphics[width=0.5\textwidth,height=\textheight]{file.jpg} (If

 you're using a custom template, you need to configure graphicx as in the de?

 fault template.)

 ? ConTeXt: \externalfigure[file.jpg][width=0.5\textwidth]

 ? Some output formats have a notion of a class (ConTeXt) or a unique identifier

 (LaTeX \caption), or both (HTML).

 ? When no width or height attributes are specified, the fallback is to look at the

 image resolution and the dpi metadata embedded in the image file.

 Divs and Spans

 Using the native_divs and native_spans extensions (see above), HTML syntax can be

 used as part of markdown to create native Div and Span elements in the pandoc AST

 (as opposed to raw HTML). However, there is also nicer syntax available:

 Extension: fenced_divs

 Allow special fenced syntax for native Div blocks. A Div starts with a fence con?

 taining at least three consecutive colons plus some attributes. The attributes may

 optionally be followed by another string of consecutive colons. The attribute syn?

 tax is exactly as in fenced code blocks (see Extension: fenced_code_attributes).

 As with fenced code blocks, one can use either attributes in curly braces or a sin?

 gle unbraced word, which will be treated as a class name. The Div ends with an?

 other line containing a string of at least three consecutive colons. The fenced

 Div should be separated by blank lines from preceding and following blocks. Page 70/92

 Example:

 ::::: {#special .sidebar}

 Here is a paragraph.

 And another.

 :::::

 Fenced divs can be nested. Opening fences are distinguished because they must have

 attributes:

 ::: Warning ::::::

 This is a warning.

 ::: Danger

 This is a warning within a warning.

 :::

 ::::::::::::::::::

 Fences without attributes are always closing fences. Unlike with fenced code

 blocks, the number of colons in the closing fence need not match the number in the

 opening fence. However, it can be helpful for visual clarity to use fences of dif?

 ferent lengths to distinguish nested divs from their parents.

 Extension: bracketed_spans

 A bracketed sequence of inlines, as one would use to begin a link, will be treated

 as a Span with attributes if it is followed immediately by attributes:

 [This is *some text*]{.class key="val"}

 Footnotes

 Extension: footnotes

 Pandoc's Markdown allows footnotes, using the following syntax:

 Here is a footnote reference,[^1] and another.[^longnote]

 [^1]: Here is the footnote.

 [^longnote]: Here's one with multiple blocks.

 Subsequent paragraphs are indented to show that they

 belong to the previous footnote.

 { some.code }

 The whole paragraph can be indented, or just the first

 line. In this way, multi-paragraph footnotes work like

 multi-paragraph list items. Page 71/92

 This paragraph won't be part of the note, because it

 isn't indented.

 The identifiers in footnote references may not contain spaces, tabs, or newlines.

 These identifiers are used only to correlate the footnote reference with the note

 itself; in the output, footnotes will be numbered sequentially.

 The footnotes themselves need not be placed at the end of the document. They may

 appear anywhere except inside other block elements (lists, block quotes, tables,

 etc.). Each footnote should be separated from surrounding content (including other

 footnotes) by blank lines.

 Extension: inline_notes

 Inline footnotes are also allowed (though, unlike regular notes, they cannot con?

 tain multiple paragraphs). The syntax is as follows:

 Here is an inline note.^[Inlines notes are easier to write, since

 you don't have to pick an identifier and move down to type the

 note.]

 Inline and regular footnotes may be mixed freely.

 Citations

 Extension: citations

 Using an external filter, pandoc-citeproc, pandoc can automatically generate cita?

 tions and a bibliography in a number of styles. Basic usage is

 pandoc --filter pandoc-citeproc myinput.txt

 In order to use this feature, you will need to specify a bibliography file using

 the bibliography metadata field in a YAML metadata section, or --bibliography com?

 mand line argument. You can supply multiple --bibliography arguments or set bibli?

 ography metadata field to YAML array, if you want to use multiple bibliography

 files. The bibliography may have any of these formats:

 Format File extension

 ?????????????????????????????

 BibLaTeX .bib

 BibTeX .bibtex

 Copac .copac

 CSL JSON .json

 CSL YAML .yaml Page 72/92

 EndNote .enl

 EndNote XML .xml

 ISI .wos

 MEDLINE .medline

 MODS .mods

 RIS .ris

 Note that .bib can be used with both BibTeX and BibLaTeX files; use .bibtex to

 force BibTeX.

 Note that pandoc-citeproc --bib2json and pandoc-citeproc --bib2yaml can produce

 .json and .yaml files from any of the supported formats.

 In-field markup: In BibTeX and BibLaTeX databases, pandoc-citeproc parses a subset

 of LaTeX markup; in CSL YAML databases, pandoc Markdown; and in CSL JSON databases,

 an HTML-like markup:

 <i>...</i>

 italics

 ...

 bold

 ... or <sc>...</sc>

 small capitals

 _{...}

 subscript

 ^{...}

 superscript

 ...

 prevent a phrase from being capitalized as title case

 pandoc-citeproc -j and -y interconvert the CSL JSON and CSL YAML formats as far as

 possible.

 As an alternative to specifying a bibliography file using --bibliography or the

 YAML metadata field bibliography, you can include the citation data directly in the

 references field of the document's YAML metadata. The field should contain an ar?

 ray of YAML-encoded references, for example:

 references: Page 73/92

 - type: article-journal

 id: WatsonCrick1953

 author:

 - family: Watson

 given: J. D.

 - family: Crick

 given: F. H. C.

 issued:

 date-parts:

 - - 1953

 - 4

 - 25

 title: 'Molecular structure of nucleic acids: a structure for deoxyribose

 nucleic acid'

 title-short: Molecular structure of nucleic acids

 container-title: Nature

 volume: 171

 issue: 4356

 page: 737-738

 DOI: 10.1038/171737a0

 URL: http://www.nature.com/nature/journal/v171/n4356/abs/171737a0.html

 language: en-GB

 ...

 (pandoc-citeproc --bib2yaml can produce these from a bibliography file in one of

 the supported formats.)

 Citations and references can be formatted using any style supported by the Citation

 Style Language, listed in the Zotero Style Repository. These files are specified

 using the --csl option or the csl metadata field. By default, pandoc-citeproc will

 use the Chicago Manual of Style author-date format. The CSL project provides fur?

 ther information on finding and editing styles.

 To make your citations hyperlinks to the corresponding bibliography entries, add

 link-citations: true to your YAML metadata.

 Citations go inside square brackets and are separated by semicolons. Each citation Page 74/92

 must have a key, composed of '@' + the citation identifier from the database, and

 may optionally have a prefix, a locator, and a suffix. The citation key must begin

 with a letter, digit, or _, and may contain alphanumerics, _, and internal punctua?

 tion characters (:.#$%&-+?<>~/). Here are some examples:

 Blah blah [see @doe99, pp. 33-35; also @smith04, chap. 1].

 Blah blah [@doe99, pp. 33-35, 38-39 and *passim*].

 Blah blah [@smith04; @doe99].

 pandoc-citeproc detects locator terms in the CSL locale files. Either abbreviated

 or unabbreviated forms are accepted. In the en-US locale, locator terms can be

 written in either singular or plural forms, as book, bk./bks.; chapter,

 chap./chaps.; column, col./cols.; figure, fig./figs.; folio, fol./fols.; number,

 no./nos.; line, l./ll.; note, n./nn.; opus, op./opp.; page, p./pp.; paragraph,

 para./paras.; part, pt./pts.; section, sec./secs.; sub verbo, s.v./s.vv.; verse,

 v./vv.; volume, vol./vols.; ?/??; ?/??. If no locator term is used, "page" is as?

 sumed.

 pandoc-citeproc will use heuristics to distinguish the locator from the suffix. In

 complex cases, the locator can be enclosed in curly braces (using pandoc-citeproc

 0.15 and higher only):

 [@smith{ii, A, D-Z}, with a suffix]

 [@smith, {pp. iv, vi-xi, (xv)-(xvii)} with suffix here]

 A minus sign (-) before the @ will suppress mention of the author in the citation.

 This can be useful when the author is already mentioned in the text:

 Smith says blah [-@smith04].

 You can also write an in-text citation, as follows:

 @smith04 says blah.

 @smith04 [p. 33] says blah.

 If the style calls for a list of works cited, it will be placed in a div with id

 refs, if one exists:

 ::: #refs

 :::

 Otherwise, it will be placed at the end of the document. Generation of the bibli?

 ography can be suppressed by setting suppress-bibliography: true in the YAML meta?

 data. Page 75/92

 If you wish the bibliography to have a section header, you can set reference-sec?

 tion-title in the metadata, or put the header at the beginning of the div with id

 refs (if you are using it) or at the end of your document:

 last paragraph...

 # References

 The bibliography will be inserted after this header. Note that the unnumbered

 class will be added to this header, so that the section will not be numbered.

 If you want to include items in the bibliography without actually citing them in

 the body text, you can define a dummy nocite metadata field and put the citations

 there:

 nocite: |

 @item1, @item2

 ...

 @item3

 In this example, the document will contain a citation for item3 only, but the bib?

 liography will contain entries for item1, item2, and item3.

 It is possible to create a bibliography with all the citations, whether or not they

 appear in the document, by using a wildcard:

 nocite: |

 @*

 ...

 For LaTeX output, you can also use natbib or biblatex to render the bibliography.

 In order to do so, specify bibliography files as outlined above, and add --natbib

 or --biblatex argument to pandoc invocation. Bear in mind that bibliography files

 have to be in respective format (either BibTeX or BibLaTeX).

 For more information, see the pandoc-citeproc man page.

 Non-pandoc extensions

 The following Markdown syntax extensions are not enabled by default in pandoc, but

 may be enabled by adding +EXTENSION to the format name, where EXTENSION is the name

 of the extension. Thus, for example, markdown+hard_line_breaks is Markdown with

 hard line breaks. Page 76/92

 Extension: old_dashes

 Selects the pandoc <= 1.8.2.1 behavior for parsing smart dashes: - before a numeral

 is an en-dash, and -- is an em-dash. This option only has an effect if smart is

 enabled. It is selected automatically for textile input.

 Extension: angle_brackets_escapable

 Allow < and > to be backslash-escaped, as they can be in GitHub flavored Markdown

 but not original Markdown. This is implied by pandoc's default all_symbols_es?

 capable.

 Extension: lists_without_preceding_blankline

 Allow a list to occur right after a paragraph, with no intervening blank space.

 Extension: four_space_rule

 Selects the pandoc <= 2.0 behavior for parsing lists, so that four spaces indent

 are needed for list item continuation paragraphs.

 Extension: spaced_reference_links

 Allow whitespace between the two components of a reference link, for example,

 [foo] [bar].

 Extension: hard_line_breaks

 Causes all newlines within a paragraph to be interpreted as hard line breaks in?

 stead of spaces.

 Extension: ignore_line_breaks

 Causes newlines within a paragraph to be ignored, rather than being treated as spa?

 ces or as hard line breaks. This option is intended for use with East Asian lan?

 guages where spaces are not used between words, but text is divided into lines for

 readability.

 Extension: east_asian_line_breaks

 Causes newlines within a paragraph to be ignored, rather than being treated as spa?

 ces or as hard line breaks, when they occur between two East Asian wide characters.

 This is a better choice than ignore_line_breaks for texts that include a mix of

 East Asian wide characters and other characters.

 Extension: emoji

 Parses textual emojis like :smile: as Unicode emoticons.

 Extension: tex_math_single_backslash

 Causes anything between \(and \) to be interpreted as inline TeX math, and any? Page 77/92

 thing between \[and \] to be interpreted as display TeX math. Note: a drawback of

 this extension is that it precludes escaping (and [.

 Extension: tex_math_double_backslash

 Causes anything between \\(and \\) to be interpreted as inline TeX math, and any?

 thing between \\[and \\] to be interpreted as display TeX math.

 Extension: markdown_attribute

 By default, pandoc interprets material inside block-level tags as Markdown. This

 extension changes the behavior so that Markdown is only parsed inside block-level

 tags if the tags have the attribute markdown=1.

 Extension: mmd_title_block

 Enables a MultiMarkdown style title block at the top of the document, for example:

 Title: My title

 Author: John Doe

 Date: September 1, 2008

 Comment: This is a sample mmd title block, with

 a field spanning multiple lines.

 See the MultiMarkdown documentation for details. If pandoc_title_block or

 yaml_metadata_block is enabled, it will take precedence over mmd_title_block.

 Extension: abbreviations

 Parses PHP Markdown Extra abbreviation keys, like

 *[HTML]: Hypertext Markup Language

 Note that the pandoc document model does not support abbreviations, so if this ex?

 tension is enabled, abbreviation keys are simply skipped (as opposed to being

 parsed as paragraphs).

 Extension: autolink_bare_uris

 Makes all absolute URIs into links, even when not surrounded by pointy braces

 <...>.

 Extension: mmd_link_attributes

 Parses multimarkdown style key-value attributes on link and image references. This

 extension should not be confused with the link_attributes extension.

 This is a reference ![image][ref] with multimarkdown attributes.

 [ref]: http://path.to/image "Image title" width=20px height=30px

 id=myId class="myClass1 myClass2" Page 78/92

 Extension: mmd_header_identifiers

 Parses multimarkdown style header identifiers (in square brackets, after the header

 but before any trailing #s in an ATX header).

 Extension: compact_definition_lists

 Activates the definition list syntax of pandoc 1.12.x and earlier. This syntax

 differs from the one described above under Definition lists in several respects:

 ? No blank line is required between consecutive items of the definition list.

 ? To get a "tight" or "compact" list, omit space between consecutive items; the

 space between a term and its definition does not affect anything.

 ? Lazy wrapping of paragraphs is not allowed: the entire definition must be in?

 dented four spaces.

 Markdown variants

 In addition to pandoc's extended Markdown, the following Markdown variants are sup?

 ported:

 markdown_phpextra (PHP Markdown Extra)

 footnotes, pipe_tables, raw_html, markdown_attribute, fenced_code_blocks,

 definition_lists, intraword_underscores, header_attributes, link_attributes,

 abbreviations, shortcut_reference_links, spaced_reference_links.

 markdown_github (deprecated GitHub-Flavored Markdown)

 pipe_tables, raw_html, fenced_code_blocks, auto_identifiers, gfm_auto_iden?

 tifiers, backtick_code_blocks, autolink_bare_uris, space_in_atx_header, in?

 traword_underscores, strikeout, emoji, shortcut_reference_links, an?

 gle_brackets_escapable, lists_without_preceding_blankline.

 markdown_mmd (MultiMarkdown)

 pipe_tables, raw_html, markdown_attribute, mmd_link_attributes,

 tex_math_double_backslash, intraword_underscores, mmd_title_block, foot?

 notes, definition_lists, all_symbols_escapable, implicit_header_references,

 auto_identifiers, mmd_header_identifiers, shortcut_reference_links, im?

 plicit_figures, superscript, subscript, backtick_code_blocks, spaced_refer?

 ence_links, raw_attribute.

 markdown_strict (Markdown.pl)

 raw_html, shortcut_reference_links, spaced_reference_links.

 We also support commonmark and gfm (GitHub-Flavored Markdown, which is implemented Page 79/92

 as a set of extensions on commonmark).

 Note, however, that commonmark and gfm have limited support for extensions. Only

 those listed below (and smart and raw_tex) will work. The extensions can, however,

 all be individually disabled. Also, raw_tex only affects gfm output, not input.

 gfm (GitHub-Flavored Markdown)

 pipe_tables, raw_html, fenced_code_blocks, auto_identifiers, gfm_auto_iden?

 tifiers, backtick_code_blocks, autolink_bare_uris, space_in_atx_header, in?

 traword_underscores, strikeout, emoji, shortcut_reference_links, an?

 gle_brackets_escapable, lists_without_preceding_blankline.

PRODUCING SLIDE SHOWS WITH PANDOC

 You can use pandoc to produce an HTML + JavaScript slide presentation that can be

 viewed via a web browser. There are five ways to do this, using S5, DZSlides,

 Slidy, Slideous, or reveal.js. You can also produce a PDF slide show using LaTeX

 beamer, or slides shows in Microsoft PowerPoint format.

 Here's the Markdown source for a simple slide show, habits.txt:

 % Habits

 % John Doe

 % March 22, 2005

 # In the morning

 ## Getting up

 - Turn off alarm

 - Get out of bed

 ## Breakfast

 - Eat eggs

 - Drink coffee

 # In the evening

 ## Dinner

 - Eat spaghetti

 - Drink wine

 ![picture of spaghetti](images/spaghetti.jpg)

 ## Going to sleep

 - Get in bed Page 80/92

 - Count sheep

 To produce an HTML/JavaScript slide show, simply type

 pandoc -t FORMAT -s habits.txt -o habits.html

 where FORMAT is either s5, slidy, slideous, dzslides, or revealjs.

 For Slidy, Slideous, reveal.js, and S5, the file produced by pandoc with the

 -s/--standalone option embeds a link to JavaScript and CSS files, which are assumed

 to be available at the relative path s5/default (for S5), slideous (for Slideous),

 reveal.js (for reveal.js), or at the Slidy website at w3.org (for Slidy). (These

 paths can be changed by setting the slidy-url, slideous-url, revealjs-url, or

 s5-url variables; see Variables for slides, above.) For DZSlides, the (relatively

 short) JavaScript and CSS are included in the file by default.

 With all HTML slide formats, the --self-contained option can be used to produce a

 single file that contains all of the data necessary to display the slide show, in?

 cluding linked scripts, stylesheets, images, and videos.

 To produce a PDF slide show using beamer, type

 pandoc -t beamer habits.txt -o habits.pdf

 Note that a reveal.js slide show can also be converted to a PDF by printing it to a

 file from the browser.

 To produce a Powerpoint slide show, type

 pandoc habits.txt -o habits.pptx

 Structuring the slide show

 By default, the slide level is the highest header level in the hierarchy that is

 followed immediately by content, and not another header, somewhere in the document.

 In the example above, level 1 headers are always followed by level 2 headers, which

 are followed by content, so 2 is the slide level. This default can be overridden

 using the --slide-level option.

 The document is carved up into slides according to the following rules:

 ? A horizontal rule always starts a new slide.

 ? A header at the slide level always starts a new slide.

 ? Headers below the slide level in the hierarchy create headers within a slide.

 ? Headers above the slide level in the hierarchy create "title slides," which just

 contain the section title and help to break the slide show into sections.

 ? Content above the slide level will not appear in the slide show. Page 81/92

 ? A title page is constructed automatically from the document's title block, if

 present. (In the case of beamer, this can be disabled by commenting out some

 lines in the default template.)

 These rules are designed to support many different styles of slide show. If you

 don't care about structuring your slides into sections and subsections, you can

 just use level 1 headers for all each slide. (In that case, level 1 will be the

 slide level.) But you can also structure the slide show into sections, as in the

 example above.

 Note: in reveal.js slide shows, if slide level is 2, a two-dimensional layout will

 be produced, with level 1 headers building horizontally and level 2 headers build?

 ing vertically. It is not recommended that you use deeper nesting of section lev?

 els with reveal.js.

 Incremental lists

 By default, these writers produce lists that display "all at once." If you want

 your lists to display incrementally (one item at a time), use the -i option. If

 you want a particular list to depart from the default, put it in a div block with

 class incremental or nonincremental. So, for example, using the fenced div syntax,

 the following would be incremental regardless of the document default:

 ::: incremental

 - Eat spaghetti

 - Drink wine

 :::

 or

 ::: nonincremental

 - Eat spaghetti

 - Drink wine

 :::

 While using incremental and nonincremental divs are the recommended method of set?

 ting incremental lists on a per-case basis, an older method is also supported:

 putting lists inside a blockquote will depart from the document default (that is,

 it will display incrementally without the -i option and all at once with the -i op?

 tion):

 > - Eat spaghetti Page 82/92

 > - Drink wine

 Both methods allow incremental and nonincremental lists to be mixed in a single

 document.

 Inserting pauses

 You can add "pauses" within a slide by including a paragraph containing three dots,

 separated by spaces:

 # Slide with a pause

 content before the pause

 . . .

 content after the pause

 Styling the slides

 You can change the style of HTML slides by putting customized CSS files in

 $DATADIR/s5/default (for S5), $DATADIR/slidy (for Slidy), or $DATADIR/slideous (for

 Slideous), where $DATADIR is the user data directory (see --data-dir, above). The

 originals may be found in pandoc's system data directory (generally $CABALDIR/pan?

 doc-VERSION/s5/default). Pandoc will look there for any files it does not find in

 the user data directory.

 For dzslides, the CSS is included in the HTML file itself, and may be modified

 there.

 All reveal.js configuration options can be set through variables. For example,

 themes can be used by setting the theme variable:

 -V theme=moon

 Or you can specify a custom stylesheet using the --css option.

 To style beamer slides, you can specify a theme, colortheme, fonttheme, innertheme,

 and outertheme, using the -V option:

 pandoc -t beamer habits.txt -V theme:Warsaw -o habits.pdf

 Note that header attributes will turn into slide attributes (on a <div> or <sec?

 tion>) in HTML slide formats, allowing you to style individual slides. In beamer,

 the only header attribute that affects slides is the allowframebreaks class, which

 sets the allowframebreaks option, causing multiple slides to be created if the con?

 tent overfills the frame. This is recommended especially for bibliographies:

 # References {.allowframebreaks}

 Speaker notes Page 83/92

 Speaker notes are supported in reveal.js and PowerPoint (pptx) output. You can add

 notes to your Markdown document thus:

 ::: notes

 This is my note.

 - It can contain Markdown

 - like this list

 :::

 To show the notes window in reveal.js, press s while viewing the presentation.

 Speaker notes in PowerPoint will be available, as usual, in handouts and presenter

 view.

 Notes are not yet supported for other slide formats, but the notes will not appear

 on the slides themselves.

 Columns

 To put material in side by side columns, you can use a native div container with

 class columns, containing two or more div containers with class column and a width

 attribute:

 :::::::::::::: {.columns}

 ::: {.column width="40%"}

 contents...

 :::

 ::: {.column width="60%"}

 contents...

 :::

 ::::::::::::::

 Frame attributes in beamer

 Sometimes it is necessary to add the LaTeX [fragile] option to a frame in beamer

 (for example, when using the minted environment). This can be forced by adding the

 fragile class to the header introducing the slide:

 # Fragile slide {.fragile}

 All of the other frame attributes described in Section 8.1 of the Beamer User's

 Guide may also be used: allowdisplaybreaks, allowframebreaks, b, c, t, environment,

 label, plain, shrink, standout, noframenumbering.

 Background in reveal.js and beamer Page 84/92

 Background images can be added to self-contained reveal.js slideshows and to beamer

 slideshows.

 For the same image on every slide, use the configuration option background-image

 either in the YAML metadata block or as a command-line variable. (There are no

 other options in beamer and the rest of this section concerns reveal.js

 slideshows.)

 For reveal.js, you can instead use the reveal.js-native option parallaxBack?

 groundImage. You can also set parallaxBackgroundHorizontal and parallaxBackground?

 Vertical the same way and must also set parallaxBackgroundSize to have your values

 take effect.

 To set an image for a particular reveal.js slide, add {data-background-im?

 age="/path/to/image"} to the first slide-level header on the slide (which may even

 be empty).

 In reveal.js's overview mode, the parallaxBackgroundImage will show up only on the

 first slide.

 Other reveal.js background settings also work on individual slides, including

 data-background-size, data-background-repeat, data-background-color, data-transi?

 tion, and data-transition-speed.

 See the reveal.js documentation for more details.

 For example in reveal.js:

 title: My Slideshow

 parallaxBackgroundImage: /path/to/my/background_image.png

 ## Slide One

 Slide 1 has background_image.png as its background.

 ## {data-background-image="/path/to/special_image.jpg"}

 Slide 2 has a special image for its background, even though the header has no content.

CREATING EPUBS WITH PANDOC

 EPUB Metadata

 EPUB metadata may be specified using the --epub-metadata option, but if the source

 document is Markdown, it is better to use a YAML metadata block. Here is an exam?

 ple: Page 85/92

 title:

 - type: main

 text: My Book

 - type: subtitle

 text: An investigation of metadata

 creator:

 - role: author

 text: John Smith

 - role: editor

 text: Sarah Jones

 identifier:

 - scheme: DOI

 text: doi:10.234234.234/33

 publisher: My Press

 rights: ? 2007 John Smith, CC BY-NC

 ibooks:

 version: 1.3.4

 ...

 The following fields are recognized:

 identifier

 Either a string value or an object with fields text and scheme. Valid val?

 ues for scheme are ISBN-10, GTIN-13, UPC, ISMN-10, DOI, LCCN, GTIN-14,

 ISBN-13, Legal deposit number, URN, OCLC, ISMN-13, ISBN-A, JP, OLCC.

 title Either a string value, or an object with fields file-as and type, or a list

 of such objects. Valid values for type are main, subtitle, short, collec?

 tion, edition, extended.

 creator

 Either a string value, or an object with fields role, file-as, and text, or

 a list of such objects. Valid values for role are MARC relators, but pandoc

 will attempt to translate the human-readable versions (like "author" and

 "editor") to the appropriate marc relators.

 contributor Page 86/92

 Same format as creator.

 date A string value in YYYY-MM-DD format. (Only the year is necessary.) Pandoc

 will attempt to convert other common date formats.

 lang (or legacy: language)

 A string value in BCP 47 format. Pandoc will default to the local language

 if nothing is specified.

 subject

 A string value or a list of such values.

 description

 A string value.

 type A string value.

 format A string value.

 relation

 A string value.

 coverage

 A string value.

 rights A string value.

 cover-image

 A string value (path to cover image).

 css (or legacy: stylesheet)

 A string value (path to CSS stylesheet).

 page-progression-direction

 Either ltr or rtl. Specifies the page-progression-direction attribute for

 the spine element.

 ibooks iBooks-specific metadata, with the following fields:

 ? version: (string)

 ? specified-fonts: true|false (default false)

 ? ipad-orientation-lock: portrait-only|landscape-only

 ? iphone-orientation-lock: portrait-only|landscape-only

 ? binding: true|false (default true)

 ? scroll-axis: vertical|horizontal|default

 The epub:type attribute

 For epub3 output, you can mark up the header that corresponds to an EPUB chapter Page 87/92

 using the epub:type attribute. For example, to set the attribute to the value pro?

 logue, use this markdown:

 # My chapter {epub:type=prologue}

 Which will result in:

 <body epub:type="frontmatter">

 <section epub:type="prologue">

 <h1>My chapter</h1>

 Pandoc will output <body epub:type="bodymatter">, unless you use one of the follow?

 ing values, in which case either frontmatter or backmatter will be output.

 epub:type of first section epub:type of body

 ???

 prologue frontmatter

 abstract frontmatter

 acknowledgments frontmatter

 copyright-page frontmatter

 dedication frontmatter

 foreword frontmatter

 halftitle, frontmatter

 introduction frontmatter

 preface frontmatter

 seriespage frontmatter

 titlepage frontmatter

 afterword backmatter

 appendix backmatter

 colophon backmatter

 conclusion backmatter

 epigraph backmatter

 Linked media

 By default, pandoc will download media referenced from any , <audio>, <video>

 or <source> element present in the generated EPUB, and include it in the EPUB con?

 tainer, yielding a completely self-contained EPUB. If you want to link to external

 media resources instead, use raw HTML in your source and add data-external="1" to

 the tag with the src attribute. For example: Page 88/92

 <audio controls="1">

 <source src="http://example.com/music/toccata.mp3"

 data-external="1" type="audio/mpeg">

 </source>

 </audio>

SYNTAX HIGHLIGHTING

 Pandoc will automatically highlight syntax in fenced code blocks that are marked

 with a language name. The Haskell library skylighting is used for highlighting.

 Currently highlighting is supported only for HTML, EPUB, Docx, Ms, and LaTeX/PDF

 output. To see a list of language names that pandoc will recognize, type pandoc

 --list-highlight-languages.

 The color scheme can be selected using the --highlight-style option. The default

 color scheme is pygments, which imitates the default color scheme used by the

 Python library pygments (though pygments is not actually used to do the highlight?

 ing). To see a list of highlight styles, type pandoc --list-highlight-styles.

 If you are not satisfied with the predefined styles, you can use --print-high?

 light-style to generate a JSON .theme file which can be modified and used as the

 argument to --highlight-style. To get a JSON version of the pygments style, for

 example:

 pandoc --print-highlight-style pygments > my.theme

 Then edit my.theme and use it like this:

 pandoc --highlight-style my.theme

 If you are not satisfied with the built-in highlighting, or you want highlight a

 language that isn't supported, you can use the --syntax-definition option to load a

 KDE-style XML syntax definition file. Before writing your own, have a look at

 KDE's repository of syntax definitions.

 To disable highlighting, use the --no-highlight option.

CUSTOM STYLES IN DOCX

 Input

 The docx reader, by default, only reads those styles that it can convert into pan?

 doc elements, either by direct conversion or interpreting the derivation of the in?

 put document's styles.

 By enabling the styles extension in the docx reader (-f docx+styles), you can pro? Page 89/92

 duce output that maintains the styles of the input document, using the custom-style

 class. Paragraph styles are interpreted as divs, while character styles are inter?

 preted as spans.

 For example, using the custom-style-reference.docx file in the test directory, we

 have the following different outputs:

 Without the +styles extension:

 $ pandoc test/docx/custom-style-reference.docx -f docx -t markdown

 This is some text.

 This is text with an *emphasized* text style. And this is text with a

 strengthened text style.

 > Here is a styled paragraph that inherits from Block Text.

 And with the extension:

 $ pandoc test/docx/custom-style-reference.docx -f docx+styles -t markdown

 ::: {custom-style="FirstParagraph"}

 This is some text.

 :::

 ::: {custom-style="BodyText"}

 This is text with an [emphasized]{custom-style="Emphatic"} text style.

 And this is text with a [strengthened]{custom-style="Strengthened"}

 text style.

 :::

 ::: {custom-style="MyBlockStyle"}

 > Here is a styled paragraph that inherits from Block Text.

 :::

 With these custom styles, you can use your input document as a reference-doc while

 creating docx output (see below), and maintain the same styles in your input and

 output files.

 Output

 By default, pandoc's docx output applies a predefined set of styles for blocks such

 as paragraphs and block quotes, and uses largely default formatting (italics, bold)

 for inlines. This will work for most purposes, especially alongside a refer?

 ence.docx file. However, if you need to apply your own styles to blocks, or match

 a preexisting set of styles, pandoc allows you to define custom styles for blocks Page 90/92

 and text using divs and spans, respectively.

 If you define a div or span with the attribute custom-style, pandoc will apply your

 specified style to the contained elements. So, for example using the brack?

 eted_spans syntax,

 [Get out]{custom-style="Emphatically"}, he said.

 would produce a docx file with "Get out" styled with character style Emphatically.

 Similarly, using the fenced_divs syntax,

 Dickinson starts the poem simply:

 ::: {custom-style="Poetry"}

 | A Bird came down the Walk---

 | He did not know I saw---

 :::

 would style the two contained lines with the Poetry paragraph style.

 If the styles are not yet in your reference.docx, they will be defined in the out?

 put file as inheriting from normal text. If they are already defined, pandoc will

 not alter the definition.

 This feature allows for greatest customization in conjunction with pandoc filters.

 If you want all paragraphs after block quotes to be indented, you can write a fil?

 ter to apply the styles necessary. If you want all italics to be transformed to

 the Emphasis character style (perhaps to change their color), you can write a fil?

 ter which will transform all italicized inlines to inlines within an Emphasis cus?

 tom-style span.

CUSTOM WRITERS

 Pandoc can be extended with custom writers written in lua. (Pandoc includes a lua

 interpreter, so lua need not be installed separately.)

 To use a custom writer, simply specify the path to the lua script in place of the

 output format. For example:

 pandoc -t data/sample.lua

 Creating a custom writer requires writing a lua function for each possible element

 in a pandoc document. To get a documented example which you can modify according

 to your needs, do

 pandoc --print-default-data-file sample.lua

A NOTE ON SECURITY Page 91/92

 If you use pandoc to convert user-contributed content in a web application, here

 are some things to keep in mind:

 1. Although pandoc itself will not create or modify any files other than those you

 explicitly ask it create (with the exception of temporary files used in produc?

 ing PDFs), a filter or custom writer could in principle do anything on your file

 system. Please audit filters and custom writers very carefully before using

 them.

 2. If your application uses pandoc as a Haskell library (rather than shelling out

 to the executable), it is possible to use it in a mode that fully isolates pan?

 doc from your file system, by running the pandoc operations in the PandocPure

 monad. See the document Using the pandoc API for more details.

 3. Pandoc's parsers can exhibit pathological performance on some corner cases. It

 is wise to put any pandoc operations under a timeout, to avoid DOS attacks that

 exploit these issues. If you are using the pandoc executable, you can add the

 command line options +RTS -M512M -RTS (for example) to limit the heap size to

 512MB.

 4. The HTML generated by pandoc is not guaranteed to be safe. If raw_html is en?

 abled for the Markdown input, users can inject arbitrary HTML. Even if raw_html

 is disabled, users can include dangerous content in attributes for headers,

 spans, and code blocks. To be safe, you should run all the generated HTML

 through an HTML sanitizer.

AUTHORS

 Copyright 2006-2017 John MacFarlane (jgm@berkeley.edu). Released under the GPL,

 version 2 or greater. This software carries no warranty of any kind. (See COPY?

 RIGHT for full copyright and warranty notices.) For a full list of contributors,

 see the file AUTHORS.md in the pandoc source code.

 The Pandoc source code and all documentation may be downloaded from <http://pan?

 doc.org>.

pandoc 2.5 November 25, 2018 PANDOC(1)

Page 92/92

