
Rocky Enterprise Linux 9.2 Manual Pages on command 'package-json.5'

$ man package-json.5

PACKAGE.JSON(5) PACKAGE.JSON(5)

NAME

 package.json - Specifics of npm's package.json handling

 Description

 This document is all you need to know about what's required in your package.json file. It

 must be actual JSON, not just a JavaScript object literal.

 A lot of the behavior described in this document is affected by the config settings de?

 scribed in npm help config.

 name

 If you plan to publish your package, the most important things in your package.json are

 the name and version fields as they will be required. The name and version together form

 an identifier that is assumed to be completely unique. Changes to the package should come

 along with changes to the version. If you don't plan to publish your package, the name and

 version fields are optional.

 The name is what your thing is called.

 Some rules:

 ? The name must be less than or equal to 214 characters. This includes the scope for

 scoped packages.

 ? The names of scoped packages can begin with a dot or an underscore. This is not permit?

 ted without a scope.

 ? New packages must not have uppercase letters in the name.

 ? The name ends up being part of a URL, an argument on the command line, and a folder

 name. Therefore, the name can't contain any non-URL-safe characters. Page 1/23

 Some tips:

 ? Don't use the same name as a core Node module.

 ? Don't put "js" or "node" in the name. It's assumed that it's js, since you're writing a

 package.json file, and you can specify the engine using the "engines" field. (See be?

 low.)

 ? The name will probably be passed as an argument to require(), so it should be something

 short, but also reasonably descriptive.

 ? You may want to check the npm registry to see if there's something by that name already,

 before you get too attached to it. https://www.npmjs.com/

 A name can be optionally prefixed by a scope, e.g. @myorg/mypackage. See npm help scope

 for more detail.

 version

 If you plan to publish your package, the most important things in your package.json are

 the name and version fields as they will be required. The name and version together form

 an identifier that is assumed to be completely unique. Changes to the package should come

 along with changes to the version. If you don't plan to publish your package, the name and

 version fields are optional.

 Version must be parseable by node-semver https://github.com/npm/node-semver, which is bun?

 dled with npm as a dependency. (npm install semver to use it yourself.)

 description

 Put a description in it. It's a string. This helps people discover your package, as it's

 listed in npm search.

 keywords

 Put keywords in it. It's an array of strings. This helps people discover your package as

 it's listed in npm search.

 homepage

 The url to the project homepage.

 Example:

 "homepage": "https://github.com/owner/project#readme"

 bugs

 The url to your project's issue tracker and / or the email address to which issues should

 be reported. These are helpful for people who encounter issues with your package.

 It should look like this: Page 2/23

 {

 "url" : "https://github.com/owner/project/issues",

 "email" : "project@hostname.com"

 }

 You can specify either one or both values. If you want to provide only a url, you can

 specify the value for "bugs" as a simple string instead of an object.

 If a url is provided, it will be used by the npm bugs command.

 license

 You should specify a license for your package so that people know how they are permitted

 to use it, and any restrictions you're placing on it.

 If you're using a common license such as BSD-2-Clause or MIT, add a current SPDX license

 identifier for the license you're using, like this:

 {

 "license" : "BSD-3-Clause"

 }

 You can check the full list of SPDX license IDs https://spdx.org/licenses/. Ideally you

 should pick one that is OSI https://opensource.org/licenses/alphabetical approved.

 If your package is licensed under multiple common licenses, use an SPDX license expression

 syntax version 2.0 string https://www.npmjs.com/package/spdx, like this:

 {

 "license" : "(ISC OR GPL-3.0)"

 }

 If you are using a license that hasn't been assigned an SPDX identifier, or if you are us?

 ing a custom license, use a string value like this one:

 {

 "license" : "SEE LICENSE IN <filename>"

 }

 Then include a file named <filename> at the top level of the package.

 Some old packages used license objects or a "licenses" property containing an array of li?

 cense objects:

 // Not valid metadata

 {

 "license" : { Page 3/23

 "type" : "ISC",

 "url" : "https://opensource.org/licenses/ISC"

 }

 }

 // Not valid metadata

 {

 "licenses" : [

 {

 "type": "MIT",

 "url": "https://www.opensource.org/licenses/mit-license.php"

 },

 {

 "type": "Apache-2.0",

 "url": "https://opensource.org/licenses/apache2.0.php"

 }

]

 }

 Those styles are now deprecated. Instead, use SPDX expressions, like this:

 {

 "license": "ISC"

 }

 {

 "license": "(MIT OR Apache-2.0)"

 }

 Finally, if you do not wish to grant others the right to use a private or unpublished

 package under any terms:

 {

 "license": "UNLICENSED"

 }

 Consider also setting "private": true to prevent accidental publication.

 people fields: author, contributors

 The "author" is one person. "contributors" is an array of people. A "person" is an ob?

 ject with a "name" field and optionally "url" and "email", like this: Page 4/23

 {

 "name" : "Barney Rubble",

 "email" : "b@rubble.com",

 "url" : "http://barnyrubble.tumblr.com/"

 }

 Or you can shorten that all into a single string, and npm will parse it for you:

 {

 "author": "Barney Rubble <b@rubble.com> (http://barnyrubble.tumblr.com/)"

 }

 Both email and url are optional either way.

 npm also sets a top-level "maintainers" field with your npm user info.

 funding

 You can specify an object containing an URL that provides up-to-date information about

 ways to help fund development of your package, or a string URL, or an array of these:

 {

 "funding": {

 "type" : "individual",

 "url" : "http://example.com/donate"

 },

 "funding": {

 "type" : "patreon",

 "url" : "https://www.patreon.com/my-account"

 },

 "funding": "http://example.com/donate",

 "funding": [

 {

 "type" : "individual",

 "url" : "http://example.com/donate"

 },

 "http://example.com/donateAlso",

 {

 "type" : "patreon",

 "url" : "https://www.patreon.com/my-account" Page 5/23

 }

]

 }

 Users can use the npm fund subcommand to list the funding URLs of all dependencies of

 their project, direct and indirect. A shortcut to visit each funding url is also available

 when providing the project name such as: npm fund <projectname> (when there are multiple

 URLs, the first one will be visited)

 files

 The optional files field is an array of file patterns that describes the entries to be in?

 cluded when your package is installed as a dependency. File patterns follow a similar syn?

 tax to .gitignore, but reversed: including a file, directory, or glob pattern (*, **/*,

 and such) will make it so that file is included in the tarball when it's packed. Omitting

 the field will make it default to ["*"], which means it will include all files.

 Some special files and directories are also included or excluded regardless of whether

 they exist in the files array (see below).

 You can also provide a .npmignore file in the root of your package or in subdirectories,

 which will keep files from being included. At the root of your package it will not over?

 ride the "files" field, but in subdirectories it will. The .npmignore file works just like

 a .gitignore. If there is a .gitignore file, and .npmignore is missing, .gitignore's con?

 tents will be used instead.

 Files included with the "package.json#files" field cannot be excluded through .npmignore

 or .gitignore.

 Certain files are always included, regardless of settings:

 ? package.json

 ? README

 ? LICENSE / LICENCE

 ? The file in the "main" field

 README & LICENSE can have any case and extension.

 Conversely, some files are always ignored:

 ? .git

 ? CVS

 ? .svn

 ? .hg Page 6/23

 ? .lock-wscript

 ? .wafpickle-N

 ? .*.swp

 ? .DS_Store

 ? ._*

 ? npm-debug.log

 ? .npmrc

 ? node_modules

 ? config.gypi

 ? *.orig

 ? package-lock.json (use npm help npm-shrinkwrap.json if you wish it to be published)

 main

 The main field is a module ID that is the primary entry point to your program. That is,

 if your package is named foo, and a user installs it, and then does require("foo"), then

 your main module's exports object will be returned.

 This should be a module relative to the root of your package folder.

 For most modules, it makes the most sense to have a main script and often not much else.

 If main is not set it defaults to index.js in the packages root folder.

 browser

 If your module is meant to be used client-side the browser field should be used instead of

 the main field. This is helpful to hint users that it might rely on primitives that aren't

 available in Node.js modules. (e.g. window)

 bin

 A lot of packages have one or more executable files that they'd like to install into the

 PATH. npm makes this pretty easy (in fact, it uses this feature to install the "npm" exe?

 cutable.)

 To use this, supply a bin field in your package.json which is a map of command name to lo?

 cal file name. When this package is installed globally, that file will be linked where

 global bins go so it is available to run by name. When this package is installed as a de?

 pendency in another package, the file will be linked where it will be available to that

 package either directly by npm exec or by name in other scripts when invoking them via npm

 run-script.

 For example, myapp could have this: Page 7/23

 {

 "bin": {

 "myapp": "./cli.js"

 }

 }

 So, when you install myapp, it'll create a symlink from the cli.js script to /usr/lo?

 cal/bin/myapp.

 If you have a single executable, and its name should be the name of the package, then you

 can just supply it as a string. For example:

 {

 "name": "my-program",

 "version": "1.2.5",

 "bin": "./path/to/program"

 }

 would be the same as this:

 {

 "name": "my-program",

 "version": "1.2.5",

 "bin": {

 "my-program": "./path/to/program"

 }

 }

 Please make sure that your file(s) referenced in bin starts with #!/usr/bin/env node, oth?

 erwise the scripts are started without the node executable!

 Note that you can also set the executable files using directories.bin #directoriesbin.

 See npm help folders for more info on executables.

 man

 Specify either a single file or an array of filenames to put in place for the man program

 to find.

 If only a single file is provided, then it's installed such that it is the result from man

 <pkgname>, regardless of its actual filename. For example:

 {

 "name": "foo", Page 8/23

 "version": "1.2.3",

 "description": "A packaged foo fooer for fooing foos",

 "main": "foo.js",

 "man": "./man/doc.1"

 }

 would link the ./man/doc.1 file in such that it is the target for man foo

 If the filename doesn't start with the package name, then it's prefixed. So, this:

 {

 "name": "foo",

 "version": "1.2.3",

 "description": "A packaged foo fooer for fooing foos",

 "main": "foo.js",

 "man": [

 "./man/foo.1",

 "./man/bar.1"

]

 }

 will create files to do man foo and man foo-bar.

 Man files must end with a number, and optionally a .gz suffix if they are compressed. The

 number dictates which man section the file is installed into.

 {

 "name": "foo",

 "version": "1.2.3",

 "description": "A packaged foo fooer for fooing foos",

 "main": "foo.js",

 "man": [

 "./man/foo.1",

 "./man/foo.2"

]

 }

 will create entries for man foo and man 2 foo

 directories

 The CommonJS Packages http://wiki.commonjs.org/wiki/Packages/1.0 spec details a few ways Page 9/23

 that you can indicate the structure of your package using a directories object. If you

 look at npm's package.json https://registry.npmjs.org/npm/latest, you'll see that it has

 directories for doc, lib, and man.

 In the future, this information may be used in other creative ways.

 directories.bin

 If you specify a bin directory in directories.bin, all the files in that folder will be

 added.

 Because of the way the bin directive works, specifying both a bin path and setting direc?

 tories.bin is an error. If you want to specify individual files, use bin, and for all the

 files in an existing bin directory, use directories.bin.

 directories.man

 A folder that is full of man pages. Sugar to generate a "man" array by walking the

 folder.

 repository

 Specify the place where your code lives. This is helpful for people who want to contrib?

 ute. If the git repo is on GitHub, then the npm docs command will be able to find you.

 Do it like this:

 {

 "repository": {

 "type": "git",

 "url": "https://github.com/npm/cli.git"

 }

 }

 The URL should be a publicly available (perhaps read-only) url that can be handed directly

 to a VCS program without any modification. It should not be a url to an html project page

 that you put in your browser. It's for computers.

 For GitHub, GitHub gist, Bitbucket, or GitLab repositories you can use the same shortcut

 syntax you use for npm install:

 {

 "repository": "npm/npm",

 "repository": "github:user/repo",

 "repository": "gist:11081aaa281",

 "repository": "bitbucket:user/repo", Page 10/23

 "repository": "gitlab:user/repo"

 }

 If the package.json for your package is not in the root directory (for example if it is

 part of a monorepo), you can specify the directory in which it lives:

 {

 "repository": {

 "type": "git",

 "url": "https://github.com/facebook/react.git",

 "directory": "packages/react-dom"

 }

 }

 scripts

 The "scripts" property is a dictionary containing script commands that are run at various

 times in the lifecycle of your package. The key is the lifecycle event, and the value is

 the command to run at that point.

 See npm help scripts to find out more about writing package scripts.

 config

 A "config" object can be used to set configuration parameters used in package scripts that

 persist across upgrades. For instance, if a package had the following:

 {

 "name": "foo",

 "config": {

 "port": "8080"

 }

 }

 It could also have a "start" command that referenced the npm_package_config_port environ?

 ment variable.

 dependencies

 Dependencies are specified in a simple object that maps a package name to a version range.

 The version range is a string which has one or more space-separated descriptors. Depen?

 dencies can also be identified with a tarball or git URL.

 Please do not put test harnesses or transpilers or other "development" time tools in your

 dependencies object. See devDependencies, below. Page 11/23

 See semver https://github.com/npm/node-semver#versions for more details about specifying

 version ranges.

 ? version Must match version exactly

 ? >version Must be greater than version

 ? >=version etc

 ? <version

 ? <=version

 ? ~version "Approximately equivalent to version" See semver

 https://github.com/npm/node-semver#versions

 ? ^version "Compatible with version" See semver https://github.com/npm/node-semver#ver?

 sions

 ? 1.2.x 1.2.0, 1.2.1, etc., but not 1.3.0

 ? http://... See 'URLs as Dependencies' below

 ? * Matches any version

 ? "" (just an empty string) Same as *

 ? version1 - version2 Same as >=version1 <=version2.

 ? range1 || range2 Passes if either range1 or range2 are satisfied.

 ? git... See 'Git URLs as Dependencies' below

 ? user/repo See 'GitHub URLs' below

 ? tag A specific version tagged and published as tag See npm help npm dist-tag

 ? path/path/path See Local Paths #local-paths below

 For example, these are all valid:

 {

 "dependencies": {

 "foo": "1.0.0 - 2.9999.9999",

 "bar": ">=1.0.2 <2.1.2",

 "baz": ">1.0.2 <=2.3.4",

 "boo": "2.0.1",

 "qux": "<1.0.0 || >=2.3.1 <2.4.5 || >=2.5.2 <3.0.0",

 "asd": "http://asdf.com/asdf.tar.gz",

 "til": "~1.2",

 "elf": "~1.2.3",

 "two": "2.x", Page 12/23

 "thr": "3.3.x",

 "lat": "latest",

 "dyl": "file:../dyl"

 }

 }

 URLs as Dependencies

 You may specify a tarball URL in place of a version range.

 This tarball will be downloaded and installed locally to your package at install time.

 Git URLs as Dependencies

 Git urls are of the form:

 <protocol>://[<user>[:<password>]@]<hostname>[:<port>][:][/]<path>[#<commit-ish> | #semver:<semver>]

 <protocol> is one of git, git+ssh, git+http, git+https, or git+file.

 If #<commit-ish> is provided, it will be used to clone exactly that commit. If the com?

 mit-ish has the format #semver:<semver>, <semver> can be any valid semver range or exact

 version, and npm will look for any tags or refs matching that range in the remote reposi?

 tory, much as it would for a registry dependency. If neither #<commit-ish> or

 #semver:<semver> is specified, then master is used.

 Examples:

 git+ssh://git@github.com:npm/cli.git#v1.0.27

 git+ssh://git@github.com:npm/cli#semver:^5.0

 git+https://isaacs@github.com/npm/cli.git

 git://github.com/npm/cli.git#v1.0.27

 GitHub URLs

 As of version 1.1.65, you can refer to GitHub urls as just "foo": "user/foo-project".

 Just as with git URLs, a commit-ish suffix can be included. For example:

 {

 "name": "foo",

 "version": "0.0.0",

 "dependencies": {

 "express": "expressjs/express",

 "mocha": "mochajs/mocha#4727d357ea",

 "module": "user/repo#feature\/branch"

 } Page 13/23

 }

 Local Paths

 As of version 2.0.0 you can provide a path to a local directory that contains a package.

 Local paths can be saved using npm install -S or npm install --save, using any of these

 forms:

 ../foo/bar

 ~/foo/bar

 ./foo/bar

 /foo/bar

 in which case they will be normalized to a relative path and added to your package.json.

 For example:

 {

 "name": "baz",

 "dependencies": {

 "bar": "file:../foo/bar"

 }

 }

 This feature is helpful for local offline development and creating tests that require npm

 installing where you don't want to hit an external server, but should not be used when

 publishing packages to the public registry.

 devDependencies

 If someone is planning on downloading and using your module in their program, then they

 probably don't want or need to download and build the external test or documentation

 framework that you use.

 In this case, it's best to map these additional items in a devDependencies object.

 These things will be installed when doing npm link or npm install from the root of a pack?

 age, and can be managed like any other npm configuration param. See npm help config for

 more on the topic.

 For build steps that are not platform-specific, such as compiling CoffeeScript or other

 languages to JavaScript, use the prepare script to do this, and make the required package

 a devDependency.

 For example:

 { Page 14/23

 "name": "ethopia-waza",

 "description": "a delightfully fruity coffee varietal",

 "version": "1.2.3",

 "devDependencies": {

 "coffee-script": "~1.6.3"

 },

 "scripts": {

 "prepare": "coffee -o lib/ -c src/waza.coffee"

 },

 "main": "lib/waza.js"

 }

 The prepare script will be run before publishing, so that users can consume the function?

 ality without requiring them to compile it themselves. In dev mode (ie, locally running

 npm install), it'll run this script as well, so that you can test it easily.

 peerDependencies

 In some cases, you want to express the compatibility of your package with a host tool or

 library, while not necessarily doing a require of this host. This is usually referred to

 as a plugin. Notably, your module may be exposing a specific interface, expected and spec?

 ified by the host documentation.

 For example:

 {

 "name": "tea-latte",

 "version": "1.3.5",

 "peerDependencies": {

 "tea": "2.x"

 }

 }

 This ensures your package tea-latte can be installed along with the second major version

 of the host package tea only. npm install tea-latte could possibly yield the following de?

 pendency graph:

 ??? tea-latte@1.3.5

 ??? tea@2.2.0

 In npm versions 3 through 6, peerDependencies were not automatically installed, and would Page 15/23

 raise a warning if an invalid version of the peer dependency was found in the tree. As of

 npm v7, peerDependencies are installed by default.

 Trying to install another plugin with a conflicting requirement may cause an error if the

 tree cannot be resolved correctly. For this reason, make sure your plugin requirement is

 as broad as possible, and not to lock it down to specific patch versions.

 Assuming the host complies with semver https://semver.org/, only changes in the host pack?

 age's major version will break your plugin. Thus, if you've worked with every 1.x version

 of the host package, use "^1.0" or "1.x" to express this. If you depend on features intro?

 duced in 1.5.2, use "^1.5.2".

 peerDependenciesMeta

 When a user installs your package, npm will emit warnings if packages specified in peerDe?

 pendencies are not already installed. The peerDependenciesMeta field serves to provide npm

 more information on how your peer dependencies are to be used. Specifically, it allows

 peer dependencies to be marked as optional.

 For example:

 {

 "name": "tea-latte",

 "version": "1.3.5",

 "peerDependencies": {

 "tea": "2.x",

 "soy-milk": "1.2"

 },

 "peerDependenciesMeta": {

 "soy-milk": {

 "optional": true

 }

 }

 }

 Marking a peer dependency as optional ensures npm will not emit a warning if the soy-milk

 package is not installed on the host. This allows you to integrate and interact with a va?

 riety of host packages without requiring all of them to be installed.

 bundledDependencies

 This defines an array of package names that will be bundled when publishing the package. Page 16/23

 In cases where you need to preserve npm packages locally or have them available through a

 single file download, you can bundle the packages in a tarball file by specifying the

 package names in the bundledDependencies array and executing npm pack.

 For example:

 If we define a package.json like this:

 {

 "name": "awesome-web-framework",

 "version": "1.0.0",

 "bundledDependencies": [

 "renderized",

 "super-streams"

]

 }

 we can obtain awesome-web-framework-1.0.0.tgz file by running npm pack. This file con?

 tains the dependencies renderized and super-streams which can be installed in a new

 project by executing npm install awesome-web-framework-1.0.0.tgz. Note that the package

 names do not include any versions, as that information is specified in dependencies.

 If this is spelled "bundleDependencies", then that is also honored.

 Alternatively, "bundledDependencies" can be defined as a boolean value. A value of true

 will bundle all dependencies, a value of false will bundle none.

 optionalDependencies

 If a dependency can be used, but you would like npm to proceed if it cannot be found or

 fails to install, then you may put it in the optionalDependencies object. This is a map

 of package name to version or url, just like the dependencies object. The difference is

 that build failures do not cause installation to fail. Running npm install --no-optional

 will prevent these dependencies from being installed.

 It is still your program's responsibility to handle the lack of the dependency. For exam?

 ple, something like this:

 try {

 var foo = require('foo')

 var fooVersion = require('foo/package.json').version

 } catch (er) {

 foo = null Page 17/23

 }

 if (notGoodFooVersion(fooVersion)) {

 foo = null

 }

 // .. then later in your program ..

 if (foo) {

 foo.doFooThings()

 }

 Entries in optionalDependencies will override entries of the same name in dependencies, so

 it's usually best to only put in one place.

 overrides

 If you need to make specific changes to dependencies of your dependencies, for example re?

 placing the version of a dependency with a known security issue, replacing an existing de?

 pendency with a fork, or making sure that the same version of a package is used every?

 where, then you may add an override.

 Overrides provide a way to replace a package in your dependency tree with another version,

 or another package entirely. These changes can be scoped as specific or as vague as de?

 sired.

 To make sure the package foo is always installed as version 1.0.0 no matter what version

 your dependencies rely on:

 {

 "overrides": {

 "foo": "1.0.0"

 }

 }

 The above is a short hand notation, the full object form can be used to allow overriding a

 package itself as well as a child of the package. This will cause foo to always be 1.0.0

 while also making bar at any depth beyond foo also 1.0.0:

 {

 "overrides": {

 "foo": {

 ".": "1.0.0",

 "bar": "1.0.0" Page 18/23

 }

 }

 }

 To only override foo to be 1.0.0 when it's a child (or grandchild, or great grandchild,

 etc) of the package bar:

 {

 "overrides": {

 "bar": {

 "foo": "1.0.0"

 }

 }

 }

 Keys can be nested to any arbitrary length. To override foo only when it's a child of bar

 and only when bar is a child of baz:

 {

 "overrides": {

 "baz": {

 "bar": {

 "foo": "1.0.0"

 }

 }

 }

 }

 The key of an override can also include a version, or range of versions. To override foo

 to 1.0.0, but only when it's a child of bar@2.0.0:

 {

 "overrides": {

 "bar@2.0.0": {

 "foo": "1.0.0"

 }

 }

 }

 You may not set an override for a package that you directly depend on unless both the de? Page 19/23

 pendency and the override itself share the exact same spec. To make this limitation easier

 to deal with, overrides may also be defined as a reference to a spec for a direct depen?

 dency by prefixing the name of the package you wish the version to match with a $.

 {

 "dependencies": {

 "foo": "^1.0.0"

 },

 "overrides": {

 // BAD, will throw an EOVERRIDE error

 // "foo": "^2.0.0"

 // GOOD, specs match so override is allowed

 // "foo": "^1.0.0"

 // BEST, the override is defined as a reference to the dependency

 "foo": "$foo",

 // the referenced package does not need to match the overridden one

 "bar": "$foo"

 }

 }

 engines

 You can specify the version of node that your stuff works on:

 {

 "engines": {

 "node": ">=0.10.3 <15"

 }

 }

 And, like with dependencies, if you don't specify the version (or if you specify "*" as

 the version), then any version of node will do.

 You can also use the "engines" field to specify which versions of npm are capable of prop?

 erly installing your program. For example:

 {

 "engines": {

 "npm": "~1.0.20"

 } Page 20/23

 }

 Unless the user has set the engine-strict config flag, this field is advisory only and

 will only produce warnings when your package is installed as a dependency.

 os

 You can specify which operating systems your module will run on:

 {

 "os": [

 "darwin",

 "linux"

]

 }

 You can also block instead of allowing operating systems, just prepend the blocked os with

 a '!':

 {

 "os": [

 "!win32"

]

 }

 The host operating system is determined by process.platform

 It is allowed to both block and allow an item, although there isn't any good reason to do

 this.

 cpu

 If your code only runs on certain cpu architectures, you can specify which ones.

 {

 "cpu": [

 "x64",

 "ia32"

]

 }

 Like the os option, you can also block architectures:

 {

 "cpu": [

 "!arm", Page 21/23

 "!mips"

]

 }

 The host architecture is determined by process.arch

 private

 If you set "private": true in your package.json, then npm will refuse to publish it.

 This is a way to prevent accidental publication of private repositories. If you would

 like to ensure that a given package is only ever published to a specific registry (for ex?

 ample, an internal registry), then use the publishConfig dictionary described below to

 override the registry config param at publish-time.

 publishConfig

 This is a set of config values that will be used at publish-time. It's especially handy if

 you want to set the tag, registry or access, so that you can ensure that a given package

 is not tagged with "latest", published to the global public registry or that a scoped mod?

 ule is private by default.

 See npm help config to see the list of config options that can be overridden.

 workspaces

 The optional workspaces field is an array of file patterns that describes locations within

 the local file system that the install client should look up to find each npm help

 workspace that needs to be symlinked to the top level node_modules folder.

 It can describe either the direct paths of the folders to be used as workspaces or it can

 define globs that will resolve to these same folders.

 In the following example, all folders located inside the folder ./packages will be treated

 as workspaces as long as they have valid package.json files inside them:

 {

 "name": "workspace-example",

 "workspaces": [

 "./packages/*"

]

 }

 See npm help workspaces for more examples.

 DEFAULT VALUES

 npm will default some values based on package contents. Page 22/23

 ? "scripts": {"start": "node server.js"} If there is a server.js file in the root of your

 package, then npm will default the start command to node server.js.

 ? "scripts":{"install": "node-gyp rebuild"} If there is a binding.gyp file in the root of

 your package and you have not defined an install or preinstall script, npm will default

 the install command to compile using node-gyp.

 ? "contributors": [...] If there is an AUTHORS file in the root of your package, npm will

 treat each line as a Name <email> (url) format, where email and url are optional. Lines

 which start with a # or are blank, will be ignored.

 SEE ALSO

 ? semver https://github.com/npm/node-semver#versions

 ? npm help workspaces

 ? npm help init

 ? npm help version

 ? npm help config

 ? npm help help

 ? npm help install

 ? npm help publish

 ? npm help uninstall

 undefined NaN PACKAGE.JSON(5)

Page 23/23

