
Rocky Enterprise Linux 9.2 Manual Pages on command 'org.freedesktop.resolve1.5'

$ man org.freedesktop.resolve1.5

ORG.FREEDESKTOP.RESOLVE1(5) org.freedesktop.resolve1 ORG.FREEDESKTOP.RESOLVE1(5)

NAME

 org.freedesktop.resolve1 - The D-Bus interface of systemd-resolved

INTRODUCTION

 systemd-resolved.service(8) is a system service that provides hostname resolution and

 caching using DNS, LLMNR, and mDNS. It also does DNSSEC validation. This page describes

 the resolve semantics and the D-Bus interface.

 This page contains an API reference only. If you are looking for a longer explanation how

 to use this API, please consult Writing Network Configuration Managers[1] and Writing

 Resolver Clients[2].

THE MANAGER OBJECT

 The service exposes the following interfaces on the Manager object on the bus:

 node /org/freedesktop/resolve1 {

 interface org.freedesktop.resolve1.Manager {

 methods:

 ResolveHostname(in i ifindex,

 in s name,

 in i family,

 in t flags,

 out a(iiay) addresses,

 out s canonical,

 out t flags);

 ResolveAddress(in i ifindex, Page 1/18

 in i family,

 in ay address,

 in t flags,

 out a(is) names,

 out t flags);

 ResolveRecord(in i ifindex,

 in s name,

 in q class,

 in q type,

 in t flags,

 out a(iqqay) records,

 out t flags);

 ResolveService(in i ifindex,

 in s name,

 in s type,

 in s domain,

 in i family,

 in t flags,

 out a(qqqsa(iiay)s) srv_data,

 out aay txt_data,

 out s canonical_name,

 out s canonical_type,

 out s canonical_domain,

 out t flags);

 GetLink(in i ifindex,

 out o path);

 SetLinkDNS(in i ifindex,

 in a(iay) addresses);

 SetLinkDNSEx(in i ifindex,

 in a(iayqs) addresses);

 SetLinkDomains(in i ifindex,

 in a(sb) domains);

 SetLinkDefaultRoute(in i ifindex, Page 2/18

 in b enable);

 SetLinkLLMNR(in i ifindex,

 in s mode);

 SetLinkMulticastDNS(in i ifindex,

 in s mode);

 SetLinkDNSOverTLS(in i ifindex,

 in s mode);

 SetLinkDNSSEC(in i ifindex,

 in s mode);

 SetLinkDNSSECNegativeTrustAnchors(in i ifindex,

 in as names);

 RevertLink(in i ifindex);

 RegisterService(in s name,

 in s name_template,

 in s type,

 in q service_port,

 in q service_priority,

 in q service_weight,

 in aa{say} txt_datas,

 out o service_path);

 UnregisterService(in o service_path);

 ResetStatistics();

 FlushCaches();

 ResetServerFeatures();

 properties:

 readonly s LLMNRHostname = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s LLMNR = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s MulticastDNS = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s DNSOverTLS = '...';

 readonly a(iiay) DNS = [...]; Page 3/18

 readonly a(iiayqs) DNSEx = [...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly a(iiay) FallbackDNS = [...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly a(iiayqs) FallbackDNSEx = [...];

 readonly (iiay) CurrentDNSServer = ...;

 readonly (iiayqs) CurrentDNSServerEx = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly a(isb) Domains = [...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly (tt) TransactionStatistics = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly (ttt) CacheStatistics = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s DNSSEC = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly (tttt) DNSSECStatistics = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b DNSSECSupported = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly as DNSSECNegativeTrustAnchors = ['...', ...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s DNSStubListener = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s ResolvConfMode = '...';

 };

 interface org.freedesktop.DBus.Peer { ... };

 interface org.freedesktop.DBus.Introspectable { ... };

 interface org.freedesktop.DBus.Properties { ... };

 };

 Methods

 ResolveHostname() takes a hostname and resolves it to one or more IP addresses. As

 parameters it takes the Linux network interface index to execute the query on, or 0 if it Page 4/18

 may be done on any suitable interface. The name parameter specifies the hostname to

 resolve. Note that if required, IDNA conversion is applied to this name unless it is

 resolved via LLMNR or MulticastDNS. The family parameter limits the results to a specific

 address family. It may be AF_INET, AF_INET6 or AF_UNSPEC. If AF_UNSPEC is specified

 (recommended), both kinds are retrieved, subject to local network configuration (i.e. if

 no local, routable IPv6 address is found, no IPv6 address is retrieved; and similarly for

 IPv4). A 64-bit flags field may be used to alter the behaviour of the resolver operation

 (see below). The method returns an array of address records. Each address record consists

 of the interface index the address belongs to, an address family as well as a byte array

 with the actual IP address data (which either has 4 or 16 elements, depending on the

 address family). The returned address family will be one of AF_INET or AF_INET6. For IPv6,

 the returned address interface index should be used to initialize the .sin6_scope_id field

 of a struct sockaddr_in6 instance to permit support for resolution to link-local IP

 addresses. The address array is followed by the canonical name of the host, which may or

 may not be identical to the resolved hostname. Finally, a 64-bit flags field is returned

 that is defined similarly to the flags field that was passed in, but contains information

 about the resolved data (see below). If the hostname passed in is an IPv4 or IPv6 address

 formatted as string, it is parsed, and the result is returned. In this case, no network

 communication is done.

 ResolveAddress() executes the reverse operation: it takes an IP address and acquires one

 or more hostnames for it. As parameters it takes the interface index to execute the query

 on, or 0 if all suitable interfaces are OK. The family parameter indicates the address

 family of the IP address to resolve. It may be either AF_INET or AF_INET6. The address

 parameter takes the raw IP address data (as either a 4 or 16 byte array). The flags input

 parameter may be used to alter the resolver operation (see below). The method returns an

 array of name records, each consisting of an interface index and a hostname. The flags

 output field contains additional information about the resolver operation (see below).

 ResolveRecord() takes a DNS resource record (RR) type, class and name, and retrieves the

 full resource record set (RRset), including the RDATA, for it. As parameter it takes the

 Linux network interface index to execute the query on, or 0 if it may be done on any

 suitable interface. The name parameter specifies the RR domain name to look up (no IDNA

 conversion is applied), followed by the 16-bit class and type fields (which may be ANY).

 Finally, a flags field may be passed in to alter behaviour of the look-up (see below). On Page 5/18

 completion, an array of RR items is returned. Each array entry consists of the network

 interface index the RR was discovered on, the type and class field of the RR found, and a

 byte array of the raw RR discovered. The raw RR data starts with the RR's domain name, in

 the original casing, followed by the RR type, class, TTL and RDATA, in the binary format

 documented in RFC 1035[3]. For RRs that support name compression in the payload (such as

 MX or PTR), the compression is expanded in the returned data.

 Note that currently, the class field has to be specified as IN or ANY. Specifying a

 different class will return an error indicating that look-ups of this kind are

 unsupported. Similarly, some special types are not supported either (AXFR, OPT, ...).

 While systemd-resolved parses and validates resource records of many types, it is crucial

 that clients using this API understand that the RR data originates from the network and

 should be thoroughly validated before use.

 ResolveService() may be used to resolve a DNS SRV service record, as well as the hostnames

 referenced in it, and possibly an accompanying DNS-SD TXT record containing additional

 service metadata. The primary benefit of using this method over ResolveRecord() specifying

 the SRV type is that it will resolve the SRV and TXT RRs as well as the hostnames

 referenced in the SRV in a single operation. As parameters it takes a Linux network

 interface index, a service name, a service type and a service domain. This method may be

 invoked in three different modes:

 1. To resolve a DNS-SD service, specify the service name (e.g. "Lennart's Files"), the

 service type (e.g. "_webdav._tcp") and the domain to search in (e.g. "local") as the

 three service parameters. The service name must be in UTF-8 format, and no IDNA

 conversion is applied to it in this mode (as mandated by the DNS-SD specifications).

 However, if necessary, IDNA conversion is applied to the domain parameter.

 2. To resolve a plain SRV record, set the service name parameter to the empty string and

 set the service type and domain properly. (IDNA conversion is applied to the domain,

 if necessary.)

 3. Alternatively, leave both the service name and type empty and specify the full domain

 name of the SRV record (i.e. prefixed with the service type) in the domain parameter.

 (No IDNA conversion is applied in this mode.)

 The family parameter of the ResolveService() method encodes the desired family of the

 addresses to resolve (use AF_INET, AF_INET6, or AF_UNSPEC). If this is enabled (Use the

 NO_ADDRESS flag to turn address resolution off, see below). The flags parameter takes a Page 6/18

 couple of flags that may be used to alter the resolver operation.

 On completion, ResolveService() returns an array of SRV record structures. Each items

 consisting of the priority, weight and port fields as well as the hostname to contact, as

 encoded in the SRV record. Immediately following is an array of the addresses of this

 hostname, with each item consisting of the interface index, the address family and the

 address data in a byte array. This address array is followed by the canonicalized

 hostname. After this array of SRV record structures an array of byte arrays follows that

 encodes the TXT RR strings, in case DNS-SD look-ups are enabled. The next parameters are

 the canonical service name, type and domain. This may or may not be identical to the

 parameters passed in. Finally, a flags field is returned that contains information about

 the resolver operation performed.

 The ResetStatistics() method resets the various statistics counters that systemd-resolved

 maintains to zero. (For details, see the statistics properties below.)

 The GetLink() method takes a network interface index and returns the object path to the

 org.freedesktop.resolve1.Link object corresponding to it.

 The SetLinkDNS() method sets the DNS servers to use on a specific interface. This method

 (and the following ones) may be used by network management software to configure

 per-interface DNS settings. It takes a network interface index as well as an array of DNS

 server IP address records. Each array item consists of an address family (either AF_INET

 or AF_INET6), followed by a 4-byte or 16-byte array with the raw address data. This method

 is a one-step shortcut for retrieving the Link object for a network interface using

 GetLink() (see above) and then invoking the SetDNS() method (see below) on it.

 SetLinkDNSEx() is similar to SetLinkDNS(), but allows an IP port (instead of the default

 53) and DNS name to be specified for each DNS server. The server name is used for Server

 Name Indication (SNI), which is useful when DNS-over-TLS is used. C.f. DNS= in

 resolved.conf(5).

 SetLinkDefaultRoute() specifies whether the link shall be used as the default route for

 name queries. See the description of name routing in systemd-resolved.service(8) for

 details.

 The SetLinkDomains() method sets the search and routing domains to use on a specific

 network interface for DNS look-ups. It takes a network interface index and an array of

 domains, each with a boolean parameter indicating whether the specified domain shall be

 used as a search domain (false), or just as a routing domain (true). Search domains are Page 7/18

 used for qualifying single-label names into FQDN when looking up hostnames, as well as for

 making routing decisions on which interface to send queries ending in the domain to.

 Routing domains are only used for routing decisions and not used for single-label name

 qualification. Pass the search domains in the order they should be used.

 The SetLinkLLMNR() method enables or disables LLMNR support on a specific network

 interface. It takes a network interface index as well as a string that may either be empty

 or one of "yes", "no" or "resolve". If empty, the systemd-wide default LLMNR setting is

 used. If "yes", LLMNR is used for resolution of single-label names and the local hostname

 is registered on all local LANs for LLMNR resolution by peers. If "no", LLMNR is turned

 off fully on this interface. If "resolve", LLMNR is only enabled for resolving names, but

 the local hostname is not registered for other peers to use.

 Similarly, the SetLinkMulticastDNS() method enables or disables MulticastDNS support on a

 specific interface. It takes the same parameters as SetLinkLLMNR() described above.

 The SetLinkDNSSEC() method enables or disables DNSSEC validation on a specific network

 interface. It takes a network interface index as well as a string that may either be empty

 or one of "yes", "no", or "allow-downgrade". When empty, the system-wide default DNSSEC

 setting is used. If "yes", full DNSSEC validation is done for all look-ups. If the

 selected DNS server does not support DNSSEC, look-ups will fail if this mode is used. If

 "no", DNSSEC validation is fully disabled. If "allow-downgrade", DNSSEC validation is

 enabled, but is turned off automatically if the selected server does not support it (thus

 opening up behaviour to downgrade attacks). Note that DNSSEC only applies to traditional

 DNS, not to LLMNR or MulticastDNS.

 The SetLinkDNSSECNegativeTrustAnchors() method may be used to configure DNSSEC Negative

 Trust Anchors (NTAs) for a specific network interface. It takes a network interface index

 and a list of domains as arguments.

 The SetLinkDNSOverTLS() method enables or disables DNS-over-TLS. C.f. DNSOverTLS= in

 systemd-resolved.service(8) for details.

 Network management software integrating with systemd-resolved should call SetLinkDNS() or

 SetLinkDNSEx(), SetLinkDefaultRoute(), SetLinkDomains() and others after the interface

 appeared in the kernel (and thus after a network interface index has been assigned), but

 before the network interfaces is activated (IFF_UP set) so that all settings take effect

 during the full time the network interface is up. It is safe to alter settings while the

 interface is up, however. Use RevertLink() (described below) to reset all per-interface Page 8/18

 settings.

 The RevertLink() method may be used to revert all per-link settings described above to the

 defaults.

 The Flags Parameter

 The four methods above accept and return a 64-bit flags value. In most cases passing 0

 is sufficient and recommended. However, the following flags are defined to alter the

 look-up:

 #define SD_RESOLVED_DNS (UINT64_C(1) << 0)

 #define SD_RESOLVED_LLMNR_IPV4 (UINT64_C(1) << 1)

 #define SD_RESOLVED_LLMNR_IPV6 (UINT64_C(1) << 2)

 #define SD_RESOLVED_MDNS_IPV4 (UINT64_C(1) << 3)

 #define SD_RESOLVED_MDNS_IPV6 (UINT64_C(1) << 4)

 #define SD_RESOLVED_NO_CNAME (UINT64_C(1) << 5)

 #define SD_RESOLVED_NO_TXT (UINT64_C(1) << 6)

 #define SD_RESOLVED_NO_ADDRESS (UINT64_C(1) << 7)

 #define SD_RESOLVED_NO_SEARCH (UINT64_C(1) << 8)

 #define SD_RESOLVED_AUTHENTICATED (UINT64_C(1) << 9)

 #define SD_RESOLVED_NO_VALIDATE (UINT64_C(1) << 10)

 #define SD_RESOLVED_NO_SYNTHESIZE (UINT64_C(1) << 11)

 #define SD_RESOLVED_NO_CACHE (UINT64_C(1) << 12)

 #define SD_RESOLVED_NO_ZONE (UINT64_C(1) << 13)

 #define SD_RESOLVED_NO_TRUST_ANCHOR (UINT64_C(1) << 14)

 #define SD_RESOLVED_NO_NETWORK (UINT64_C(1) << 15)

 #define SD_RESOLVED_REQUIRE_PRIMARY (UINT64_C(1) << 16)

 #define SD_RESOLVED_CLAMP_TTL (UINT64_C(1) << 17)

 #define SD_RESOLVED_CONFIDENTIAL (UINT64_C(1) << 18)

 #define SD_RESOLVED_SYNTHETIC (UINT64_C(1) << 19)

 #define SD_RESOLVED_FROM_CACHE (UINT64_C(1) << 20)

 #define SD_RESOLVED_FROM_ZONE (UINT64_C(1) << 21)

 #define SD_RESOLVED_FROM_TRUST_ANCHOR (UINT64_C(1) << 22)

 #define SD_RESOLVED_FROM_NETWORK (UINT64_C(1) << 23)

 On input, the first five flags control the protocols to use for the look-up. They

 refer to classic unicast DNS, LLMNR via IPv4/UDP and IPv6/UDP respectively, as well as Page 9/18

 MulticastDNS via IPv4/UDP and IPv6/UDP. If all of these five bits are off on input

 (which is strongly recommended) the look-up will be done via all suitable protocols

 for the specific look-up. Note that these flags operate as filter only, but cannot

 force a look-up to be done via a protocol. Specifically, systemd-resolved will only

 route look-ups within the .local TLD to MulticastDNS (plus some reverse look-up

 address domains), and single-label names to LLMNR (plus some reverse address lookup

 domains). It will route neither of these to Unicast DNS servers. Also, it will do

 LLMNR and Multicast DNS only on interfaces suitable for multicast.

 On output, these five flags indicate which protocol was used to execute the operation,

 and hence where the data was found.

 The primary use cases for these five flags are follow-up look-ups based on DNS data

 retrieved earlier. In this case it is often a good idea to limit the follow-up look-up

 to the protocol that was used to discover the first DNS result.

 The NO_CNAME flag controls whether CNAME/DNAME resource records shall be followed

 during the look-up. This flag is only available at input, none of the functions will

 return it on output. If a CNAME/DNAME RR is discovered while resolving a hostname, an

 error is returned instead. By default, when the flag is off, CNAME/DNAME RRs are

 followed.

 The NO_TXT and NO_ADDRESS flags only influence operation of the ResolveService()

 method. They are only defined for input, not output. If NO_TXT is set, the DNS-SD TXT

 RR look-up is not done in the same operation. If NO_ADDRESS is set, the discovered

 hostnames are not implicitly translated to their addresses.

 The NO_SEARCH flag turns off the search domain logic. It is only defined for input in

 ResolveHostname(). When specified, single-label hostnames are not qualified using

 defined search domains, if any are configured. Note that ResolveRecord() will never

 qualify single-label domain names using search domains. Also note that multi-label

 hostnames are never subject to search list expansion.

 The AUTHENTICATED bit is defined only in the output flags of the four functions. If

 set, the returned data has been fully authenticated. Specifically, this bit is set for

 all DNSSEC-protected data for which a full trust chain may be established to a trusted

 domain anchor. It is also set for locally synthesized data, such as "localhost" or

 data from /etc/hosts. Moreover, it is set for all LLMNR or mDNS RRs which originate

 from the local host. Applications that require authenticated RR data for operation Page 10/18

 should check this flag before trusting the data. Note that systemd-resolved will never

 return invalidated data, hence this flag simply allows to discern the cases where data

 is known to be trusted, or where there is proof that the data is "rightfully"

 unauthenticated (which includes cases where the underlying protocol or server does not

 support authenticating data).

 NO_VALIDATE can be set to disable validation via DNSSEC even if it would normally be

 used.

 The next four flags allow disabling certain sources during resolution. NO_SYNTHESIZE

 disables synthetic records, e.g. the local host name, see section SYNTHETIC RECORDS in

 systemd-resolved.service(8) for more information. NO_CACHE disables the use of the

 cache of previously resolved records. NO_ZONE disables answers using locally

 registered public LLMNR/mDNS resource records. NO_TRUST_ANCHOR disables answers using

 locally configured trust anchors. NO_NETWORK requires all answers to be provided

 without using the network, i.e. either from local sources or the cache.

 With REQUIRE_PRIMARY the request must be answered from a "primary" answer, i.e. not

 from resource records acquired as a side-effect of a previous transaction.

 With CLAMP_TTL, if reply is answered from cache, the TTLs will be adjusted by age of

 cache entry.

 The next six bits flags are used in output and provide information about the source of

 the answer. CONFIDENTIAL means the query was resolved via encrypted channels or never

 left this system. FROM_SYNTHETIC means the query was (at least partially) synthesized.

 FROM_CACHE means the query was answered (at least partially) using the cache.

 FROM_ZONE means the query was answered (at least partially) using LLMNR/mDNS.

 FROM_TRUST_ANCHOR means the query was answered (at least partially) using local trust

 anchors. FROM_NETWORK means the query was answered (at least partially) using the

 network.

 Properties

 The LLMNR and MulticastDNS properties report whether LLMNR and MulticastDNS are (globally)

 enabled. Each may be one of "yes", "no", and "resolve". See SetLinkLLMNR() and

 SetLinkMulticastDNS() above.

 LLMNRHostname contains the hostname currently exposed on the network via LLMNR. It usually

 follows the system hostname as may be queried via gethostname(3), but may differ if a

 conflict is detected on the network. Page 11/18

 DNS and DNSEx contain arrays of all DNS servers currently used by systemd-resolved. DNS

 contains information similar to the DNS server data in /run/systemd/resolve/resolv.conf.

 Each structure in the array consists of a numeric network interface index, an address

 family, and a byte array containing the DNS server address (either 4 bytes in length for

 IPv4 or 16 bytes in lengths for IPv6). DNSEx is similar, but additionally contains the IP

 port and server name (used for Server Name Indication, SNI). Both arrays contain DNS

 servers configured system-wide, including those possibly read from a foreign

 /etc/resolv.conf or the DNS= setting in /etc/systemd/resolved.conf, as well as

 per-interface DNS server information either retrieved from systemd-networkd(8), or

 configured by external software via SetLinkDNS() or SetLinkDNSEx() (see above). The

 network interface index will be 0 for the system-wide configured services and non-zero for

 the per-link servers.

 FallbackDNS and FallbackDNSEx contain arrays of all DNS servers configured as fallback

 servers, if any, using the same format as DNS and DNSEx described above. See the

 description of FallbackDNS= in resolved.conf(5) for the description of when those servers

 are used.

 CurrentDNSServer and CurrentDNSServerEx specify the server that is currently used for

 query resolution, in the same format as a single entry in the DNS and DNSEx arrays

 described above.

 Similarly, the Domains property contains an array of all search and routing domains

 currently used by systemd-resolved. Each entry consists of a network interface index

 (again, 0 encodes system-wide entries), the actual domain name, and whether the entry is

 used only for routing (true) or for both routing and searching (false).

 The TransactionStatistics property contains information about the number of transactions

 systemd-resolved has processed. It contains a pair of unsigned 64-bit counters, the first

 containing the number of currently ongoing transactions, the second the number of total

 transactions systemd-resolved is processing or has processed. The latter value may be

 reset using the ResetStatistics() method described above. Note that the number of

 transactions does not directly map to the number of issued resolver bus method calls.

 While simple look-ups usually require a single transaction only, more complex look-ups

 might result in more, for example when CNAMEs or DNSSEC are in use.

 The CacheStatistics property contains information about the executed cache operations so

 far. It exposes three 64-bit counters: the first being the total number of current cache Page 12/18

 entries (both positive and negative), the second the number of cache hits, and the third

 the number of cache misses. The latter counters may be reset using ResetStatistics() (see

 above).

 The DNSSEC property specifies current status of DNSSEC validation. It is one of "yes"

 (validation is enforced), "no" (no validation is done), "allow-downgrade" (validation is

 done if the current DNS server supports it). See the description of DNSSEC= in

 resolved.conf(5).

 The DNSSECStatistics property contains information about the DNSSEC validations executed

 so far. It contains four 64-bit counters: the number of secure, insecure, bogus, and

 indeterminate DNSSEC validations so far. The counters are increased for each validated

 RRset, and each non-existance proof. The secure counter is increased for each operation

 that successfully verified a signed reply, the insecure counter is increased for each

 operation that successfully verified that an unsigned reply is rightfully unsigned. The

 bogus counter is increased for each operation where the validation did not check out and

 the data is likely to have been tempered with. Finally the indeterminate counter is

 increased for each operation which did not complete because the necessary keys could not

 be acquired or the cryptographic algorithms were unknown.

 The DNSSECSupported boolean property reports whether DNSSEC is enabled and the selected

 DNS servers support it. It combines information about system-wide and per-link DNS

 settings (see below), and only reports true if DNSSEC is enabled and supported on every

 interface for which DNS is configured and for the system-wide settings if there are any.

 Note that systemd-resolved assumes DNSSEC is supported by DNS servers until it verifies

 that this is not the case. Thus, the reported value may initially be true, until the first

 transactions are executed.

 The DNSOverTLS boolean property reports whether DNS-over-TLS is enabled.

 The ResolvConfMode property exposes how /etc/resolv.conf is managed on the host.

 Currently, the values "uplink", "stub", "static" (these three correspond to the three

 different files systemd-resolved.service provides), "foreign" (the file is managed by

 admin or another service, systemd-resolved.service just consumes it), "missing"

 (/etc/resolv.conf is missing).

 The DNSStubListener property reports whether the stub listener on port 53 is enabled.

 Possible values are "yes" (enabled), "no" (disabled), "udp" (only the UDP listener is

 enabled), and "tcp" (only the TCP listener is enabled). Page 13/18

LINK OBJECT

 node /org/freedesktop/resolve1/link/_1 {

 interface org.freedesktop.resolve1.Link {

 methods:

 SetDNS(in a(iay) addresses);

 SetDNSEx(in a(iayqs) addresses);

 SetDomains(in a(sb) domains);

 SetDefaultRoute(in b enable);

 SetLLMNR(in s mode);

 SetMulticastDNS(in s mode);

 SetDNSOverTLS(in s mode);

 SetDNSSEC(in s mode);

 SetDNSSECNegativeTrustAnchors(in as names);

 Revert();

 properties:

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly t ScopesMask = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly a(iay) DNS = [...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly a(iayqs) DNSEx = [...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly (iay) CurrentDNSServer = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly (iayqs) CurrentDNSServerEx = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly a(sb) Domains = [...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b DefaultRoute = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s LLMNR = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s MulticastDNS = '...'; Page 14/18

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s DNSOverTLS = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s DNSSEC = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly as DNSSECNegativeTrustAnchors = ['...', ...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b DNSSECSupported = ...;

 };

 interface org.freedesktop.DBus.Peer { ... };

 interface org.freedesktop.DBus.Introspectable { ... };

 interface org.freedesktop.DBus.Properties { ... };

 };

 For each Linux network interface a "Link" object is created which exposes per-link DNS

 configuration and state. Use GetLink() on the Manager interface to retrieve the object

 path for a link object given the network interface index (see above).

 Methods

 The various methods exposed by the Link interface are equivalent to their similarly named

 counterparts on the Manager interface. e.g. SetDNS() on the Link object maps to

 SetLinkDNS() on the Manager object, the main difference being that the later expects an

 interface index to be specified. Invoking the methods on the Manager interface has the

 benefit of reducing roundtrips, as it is not necessary to first request the Link object

 path via GetLink() before invoking the methods. The same relationship holds for

 SetDNSEx(), SetDomains(), SetDefaultRoute(), SetLLMNR(), SetMulticastDNS(),

 SetDNSOverTLS(), SetDNSSEC(), SetDNSSECNegativeTrustAnchors(), and Revert(). For further

 details on these methods see the Manager documentation above.

 Properties

 ScopesMask defines which resolver scopes are currently active on this interface. This

 64-bit unsigned integer field is a bit mask consisting of a subset of the bits of the

 flags parameter describe above. Specifically, it may have the DNS, LLMNR and MDNS bits

 (the latter in IPv4 and IPv6 flavours) set. Each individual bit is set when the protocol

 applies to a specific interface and is enabled for it. It is unset otherwise.

 Specifically, a multicast-capable interface in the "UP" state with an IP address is Page 15/18

 suitable for LLMNR or MulticastDNS, and any interface that is UP and has an IP address is

 suitable for DNS. Note the relationship of the bits exposed here with the LLMNR and

 MulticastDNS properties also exposed on the Link interface. The latter expose what is

 configured to be used on the interface, the former expose what is actually used on the

 interface, taking into account the abilities of the interface.

 DNSSECSupported exposes a boolean field that indicates whether DNSSEC is currently

 configured and in use on the interface. Note that if DNSSEC is enabled on an interface, it

 is assumed available until it is detected that the configured server does not actually

 support it. Thus, this property may initially report that DNSSEC is supported on an

 interface.

 DefaultRoute exposes a boolean field that indicates whether the interface will be used as

 default route for name queries. See SetLinkDefaultRoute() above.

 The other properties reflect the state of the various configuration settings for the link

 which may be set with the various methods calls such as SetDNS() or SetLLMNR().

COMMON ERRORS

 Many bus methods systemd-resolved exposes (in particular the resolver methods such as

 ResolveHostname() on the Manager interface) may return some of the following errors:

 org.freedesktop.resolve1.NoNameServers

 No suitable DNS servers were found to resolve a request.

 org.freedesktop.resolve1.InvalidReply

 A response from the selected DNS server was not understood.

 org.freedesktop.resolve1.NoSuchRR

 The requested name exists, but there is no resource record of the requested type for

 it. (This is the DNS NODATA case).

 org.freedesktop.resolve1.CNameLoop

 The look-up failed because a CNAME or DNAME loop was detected.

 org.freedesktop.resolve1.Aborted

 The look-up was aborted because the selected protocol became unavailable while the

 operation was ongoing.

 org.freedesktop.resolve1.NoSuchService

 A service look-up was successful, but the SRV record reported that the service is not

 available.

 org.freedesktop.resolve1.DnssecFailed Page 16/18

 The acquired response did not pass DNSSEC validation.

 org.freedesktop.resolve1.NoTrustAnchor

 No chain of trust could be established for the response to a configured DNSSEC trust

 anchor.

 org.freedesktop.resolve1.ResourceRecordTypeUnsupported

 The requested resource record type is not supported on the selected DNS servers. This

 error is generated for example when an RRSIG record is requested from a DNS server

 that does not support DNSSEC.

 org.freedesktop.resolve1.NoSuchLink

 No network interface with the specified network interface index exists.

 org.freedesktop.resolve1.LinkBusy

 The requested configuration change could not be made because systemd-networkd(8),

 already took possession of the interface and supplied configuration data for it.

 org.freedesktop.resolve1.NetworkDown

 The requested look-up failed because the system is currently not connected to any

 suitable network.

 org.freedesktop.resolve1.DnsError.NXDOMAIN, org.freedesktop.resolve1.DnsError.REFUSED, ...

 The look-up failed with a DNS return code reporting a failure. The error names used as

 suffixes here are defined in by IANA in DNS RCODEs[4].

EXAMPLES

 Example 1. Introspect org.freedesktop.resolve1.Manager on the bus

 $ gdbus introspect --system \

 --dest org.freedesktop.resolve1 \

 --object-path /org/freedesktop/resolve1

 Example 2. Introspect org.freedesktop.resolve1.Link on the bus

 $ gdbus introspect --system \

 --dest org.freedesktop.resolve1 \

 --object-path /org/freedesktop/resolve1/link/_11

VERSIONING

 These D-Bus interfaces follow the usual interface versioning guidelines[5].

NOTES

 1. Writing Network Configuration Managers

 https://wiki.freedesktop.org/www/Software/systemd/writing-network-configuration-managers Page 17/18

 2. Writing Resolver Clients

 https://wiki.freedesktop.org/www/Software/systemd/writing-resolver-clients

 3. RFC 1035

 https://www.ietf.org/rfc/rfc1035.txt

 4. DNS RCODEs

 https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-6

 5. the usual interface versioning guidelines

 http://0pointer.de/blog/projects/versioning-dbus.html

systemd 249 ORG.FREEDESKTOP.RESOLVE1(5)

Page 18/18

