
Rocky Enterprise Linux 9.2 Manual Pages on command 'org.freedesktop.login1.5'

$ man org.freedesktop.login1.5

ORG.FREEDESKTOP.LOGIN1(5) org.freedesktop.login1 ORG.FREEDESKTOP.LOGIN1(5)

NAME

 org.freedesktop.login1 - The D-Bus interface of systemd-logind

INTRODUCTION

 systemd-logind.service(8) is a system service that keeps track of user logins and seats.

 The daemon provides both a C library interface as well as a D-Bus interface. The library

 interface may be used to introspect and watch the state of user logins and seats. The bus

 interface provides the same functionality but in addition may also be used to make changes

 to the system state. For more information please consult sd-login(3).

THE MANAGER OBJECT

 The service exposes the following interfaces on the Manager object on the bus:

 node /org/freedesktop/login1 {

 interface org.freedesktop.login1.Manager {

 methods:

 GetSession(in s session_id,

 out o object_path);

 GetSessionByPID(in u pid,

 out o object_path);

 GetUser(in u uid,

 out o object_path);

 GetUserByPID(in u pid,

 out o object_path);

 GetSeat(in s seat_id, Page 1/23

 out o object_path);

 ListSessions(out a(susso) sessions);

 ListUsers(out a(uso) users);

 ListSeats(out a(so) seats);

 ListInhibitors(out a(ssssuu) inhibitors);

 CreateSession(in u uid,

 in u pid,

 in s service,

 in s type,

 in s class,

 in s desktop,

 in s seat_id,

 in u vtnr,

 in s tty,

 in s display,

 in b remote,

 in s remote_user,

 in s remote_host,

 in a(sv) properties,

 out s session_id,

 out o object_path,

 out s runtime_path,

 out h fifo_fd,

 out u uid,

 out s seat_id,

 out u vtnr,

 out b existing);

 ReleaseSession(in s session_id);

 ActivateSession(in s session_id);

 ActivateSessionOnSeat(in s session_id,

 in s seat_id);

 LockSession(in s session_id);

 UnlockSession(in s session_id); Page 2/23

 LockSessions();

 UnlockSessions();

 KillSession(in s session_id,

 in s who,

 in i signal_number);

 KillUser(in u uid,

 in i signal_number);

 TerminateSession(in s session_id);

 TerminateUser(in u uid);

 TerminateSeat(in s seat_id);

 SetUserLinger(in u uid,

 in b enable,

 in b interactive);

 AttachDevice(in s seat_id,

 in s sysfs_path,

 in b interactive);

 FlushDevices(in b interactive);

 PowerOff(in b interactive);

 PowerOffWithFlags(in t flags);

 Reboot(in b interactive);

 RebootWithFlags(in t flags);

 Halt(in b interactive);

 HaltWithFlags(in t flags);

 Suspend(in b interactive);

 SuspendWithFlags(in t flags);

 Hibernate(in b interactive);

 HibernateWithFlags(in t flags);

 HybridSleep(in b interactive);

 HybridSleepWithFlags(in t flags);

 SuspendThenHibernate(in b interactive);

 SuspendThenHibernateWithFlags(in t flags);

 CanPowerOff(out s result);

 CanReboot(out s result); Page 3/23

 CanHalt(out s result);

 CanSuspend(out s result);

 CanHibernate(out s result);

 CanHybridSleep(out s result);

 CanSuspendThenHibernate(out s result);

 ScheduleShutdown(in s type,

 in t usec);

 CancelScheduledShutdown(out b cancelled);

 Inhibit(in s what,

 in s who,

 in s why,

 in s mode,

 out h pipe_fd);

 CanRebootParameter(out s result);

 SetRebootParameter(in s parameter);

 CanRebootToFirmwareSetup(out s result);

 SetRebootToFirmwareSetup(in b enable);

 CanRebootToBootLoaderMenu(out s result);

 SetRebootToBootLoaderMenu(in t timeout);

 CanRebootToBootLoaderEntry(out s result);

 SetRebootToBootLoaderEntry(in s boot_loader_entry);

 SetWallMessage(in s wall_message,

 in b enable);

 signals:

 SessionNew(s session_id,

 o object_path);

 SessionRemoved(s session_id,

 o object_path);

 UserNew(u uid,

 o object_path);

 UserRemoved(u uid,

 o object_path);

 SeatNew(s seat_id, Page 4/23

 o object_path);

 SeatRemoved(s seat_id,

 o object_path);

 PrepareForShutdown(b start);

 PrepareForSleep(b start);

 properties:

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 @org.freedesktop.systemd1.Privileged("true")

 readwrite b EnableWallMessages = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 @org.freedesktop.systemd1.Privileged("true")

 readwrite s WallMessage = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly u NAutoVTs = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly as KillOnlyUsers = ['...', ...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly as KillExcludeUsers = ['...', ...];

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly b KillUserProcesses = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s RebootParameter = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b RebootToFirmwareSetup = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly t RebootToBootLoaderMenu = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s RebootToBootLoaderEntry = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly as BootLoaderEntries = ['...', ...];

 readonly b IdleHint = ...;

 readonly t IdleSinceHint = ...;

 readonly t IdleSinceHintMonotonic = ...; Page 5/23

 readonly s BlockInhibited = '...';

 readonly s DelayInhibited = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t InhibitDelayMaxUSec = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t UserStopDelayUSec = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandlePowerKey = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleSuspendKey = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleHibernateKey = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleLidSwitch = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleLidSwitchExternalPower = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s HandleLidSwitchDocked = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t HoldoffTimeoutUSec = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s IdleAction = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t IdleActionUSec = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b PreparingForShutdown = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b PreparingForSleep = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly (st) ScheduledShutdown = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b Docked = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false") Page 6/23

 readonly b LidClosed = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b OnExternalPower = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly b RemoveIPC = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t RuntimeDirectorySize = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t RuntimeDirectoryInodesMax = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t InhibitorsMax = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly t NCurrentInhibitors = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t SessionsMax = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly t NCurrentSessions = ...;

 };

 interface org.freedesktop.DBus.Peer { ... };

 interface org.freedesktop.DBus.Introspectable { ... };

 interface org.freedesktop.DBus.Properties { ... };

 };

 Methods

 GetSession() may be used to get the session object path for the session with the specified

 ID. Similarly, GetUser() and GetSeat() get the user and seat objects, respectively.

 GetSessionByPID() and GetUserByPID() get the session/user object the specified PID belongs

 to if there is any.

 ListSessions() returns an array of all current sessions. The structures in the array

 consist of the following fields: session id, user id, user name, seat id, session object

 path. If a session does not have a seat attached, the seat id field will be an empty

 string.

 ListUsers() returns an array of all currently logged in users. The structures in the array

 consist of the following fields: user id, user name, user object path. Page 7/23

 ListSeats() returns an array of all currently available seats. The structure in the array

 consists of the following fields: seat id, seat object path.

 ListInhibitors() lists all currently active inhibitors. It returns an array of structures

 consisting of what, who, why, mode, uid (user ID), and pid (process ID).

 CreateSession() and ReleaseSession() may be used to open or close login sessions. These

 calls should never be invoked directly by clients. Creating/closing sessions is

 exclusively the job of PAM and its pam_systemd(8) module.

 ActivateSession() brings the session with the specified ID into the foreground.

 ActivateSessionOnSeat() does the same, but only if the seat id matches.

 LockSession() asks the session with the specified ID to activate the screen lock.

 UnlockSession() asks the session with the specified ID to remove an active screen lock, if

 there is any. This is implemented by sending out the Lock() and Unlock() signals from the

 respective session object which session managers are supposed to listen on.

 LockSessions() asks all sessions to activate their screen locks. This may be used to lock

 access to the entire machine in one action. Similarly, UnlockSessions() asks all sessions

 to deactivate their screen locks.

 KillSession() may be used to send a Unix signal to one or all processes of a session. As

 arguments it takes the session id, either the string "leader" or "all" and a signal

 number. If "leader" is passed only the session "leader" is killed. If "all" is passed all

 processes of the session are killed.

 KillUser() may be used to send a Unix signal to all processes of a user. As arguments it

 takes the user id and a signal number.

 TerminateSession(), TerminateUser(), TerminateSeat() may be used to forcibly terminate one

 specific session, all processes of a user, and all sessions attached to a specific seat,

 respectively. The session, user, and seat are identified by their respective IDs.

 SetUserLinger() enables or disables user lingering. If enabled, the runtime directory of a

 user is kept around and they may continue to run processes while logged out. If disabled,

 the runtime directory goes away as soon as they log out. SetUserLinger() expects three

 arguments: the UID, a boolean whether to enable/disable and a boolean controlling the

 polkit[1] authorization interactivity (see below). Note that the user linger state is

 persistently stored on disk.

 AttachDevice() may be used to assign a specific device to a specific seat. The device is

 identified by its /sys/ path and must be eligible for seat assignments. AttachDevice() Page 8/23

 takes three arguments: the seat id, the sysfs path, and a boolean for controlling polkit

 interactivity (see below). Device assignments are persistently stored on disk. To create a

 new seat, simply specify a previously unused seat id. For more information about the seat

 assignment logic see sd-login(3).

 FlushDevices() removes all explicit seat assignments for devices, resetting all

 assignments to the automatic defaults. The only argument it takes is the polkit

 interactivity boolean (see below).

 PowerOff(), Reboot(), Halt(), Suspend(), and Hibernate() result in the system being

 powered off, rebooted, halted (shut down without turning off power), suspended (the system

 state is saved to RAM and the CPU is turned off), or hibernated (the system state is saved

 to disk and the machine is powered down). HybridSleep() results in the system entering a

 hybrid-sleep mode, i.e. the system is both hibernated and suspended.

 SuspendThenHibernate() results in the system being suspended, then later woken using an

 RTC timer and hibernated. The only argument is the polkit interactivity boolean

 interactive (see below). The main purpose of these calls is that they enforce polkit

 policy and hence allow powering off/rebooting/suspending/hibernating even by unprivileged

 users. They also enforce inhibition locks for non-privileged users. UIs should expose

 these calls as the primary mechanism to poweroff/reboot/suspend/hibernate the machine.

 Methods PowerOffWithFlags(), RebootWithFlags(), HaltWithFlags(), SuspendWithFlags(),

 HibernateWithFlags(), HybridSleepWithFlags() and SuspendThenHibernateWithFlags() add flags

 to allow for extendability, defined as follows:

 #define SD_LOGIND_ROOT_CHECK_INHIBITORS (UINT64_C(1) << 0)

 #define SD_LOGIND_KEXEC_REBOOT (UINT64_C(1) << 1)

 When the flags is 0 then these methods behave just like the versions without flags. When

 SD_LOGIND_ROOT_CHECK_INHIBITORS (0x01) is set, active inhibitors are honoured for

 privileged users too. When SD_LOGIND_KEXEC_REBOOT (0x02) is set, then RebootWithFlags()

 perform kexec reboot if kexec kernel is loaded.

 SetRebootParameter() sets a parameter for a subsequent reboot operation. See the

 description of reboot in systemctl(1) and reboot(2) for more information.

 SetRebootToFirmwareSetup(), SetRebootToBootLoaderMenu(), and SetRebootToBootLoaderEntry()

 configure the action to be taken from the boot loader after a reboot: respectively

 entering firmware setup mode, the boot loader menu, or a specific boot loader entry. See

 systemctl(1) for the corresponding command line interface. Page 9/23

 CanPowerOff(), CanReboot(), CanHalt(), CanSuspend(), CanHibernate(), CanHybridSleep(),

 CanSuspendThenHibernate(), CanRebootParameter(), CanRebootToFirmwareSetup(),

 CanRebootToBootLoaderMenu(), and CanRebootToBootLoaderEntry() test whether the system

 supports the respective operation and whether the calling user is allowed to execute it.

 Returns one of "na", "yes", "no", and "challenge". If "na" is returned, the operation is

 not available because hardware, kernel, or drivers do not support it. If "yes" is

 returned, the operation is supported and the user may execute the operation without

 further authentication. If "no" is returned, the operation is available but the user is

 not allowed to execute the operation. If "challenge" is returned, the operation is

 available but only after authorization.

 ScheduleShutdown() schedules a shutdown operation type at time usec in microseconds since

 the UNIX epoch. type can be one of "poweroff", "dry-poweroff", "reboot", "dry-reboot",

 "halt", and "dry-halt". (The "dry-" variants do not actually execute the shutdown action.)

 CancelScheduledShutdown() cancels a scheduled shutdown. The output parameter cancelled is

 true if a shutdown operation was scheduled.

 SetWallMessage() sets the wall message (the message that will be sent out to all terminals

 and stored in a utmp(5) record) for a subsequent scheduled shutdown operation. The

 parameter wall_message specifies the shutdown reason (and may be empty) which will be

 included in the shutdown message. The parameter enable specifies whether to print a wall

 message on shutdown.

 Inhibit() creates an inhibition lock. It takes four parameters: what, who, why, and mode.

 what is one or more of "shutdown", "sleep", "idle", "handle-power-key",

 "handle-suspend-key", "handle-hibernate-key", "handle-lid-switch", separated by colons,

 for inhibiting poweroff/reboot, suspend/hibernate, the automatic idle logic, or hardware

 key handling. who should be a short human readable string identifying the application

 taking the lock. why should be a short human readable string identifying the reason why

 the lock is taken. Finally, mode is either "block" or "delay" which encodes whether the

 inhibit shall be consider mandatory or whether it should just delay the operation to a

 certain maximum time. The method returns a file descriptor. The lock is released the

 moment this file descriptor and all its duplicates are closed. For more information on the

 inhibition logic see Inhibitor Locks[2].

 Signals

 Whenever the inhibition state or idle hint changes, PropertyChanged signals are sent out Page 10/23

 to which clients can subscribe.

 The SessionNew, SessionRemoved, UserNew, UserRemoved, SeatNew, and SeatRemoved signals are

 sent each time a session is created or removed, a user logs in or out, or a seat is added

 or removed. They each contain the ID of the object plus the object path.

 The PrepareForShutdown() and PrepareForSleep() signals are sent right before (with the

 argument "true") or after (with the argument "false") the system goes down for

 reboot/poweroff and suspend/hibernate, respectively. This may be used by applications to

 save data on disk, release memory, or do other jobs that should be done shortly before

 shutdown/sleep, in conjunction with delay inhibitor locks. After completion of this work

 they should release their inhibition locks in order to not delay the operation any

 further. For more information see Inhibitor Locks[2].

 Properties

 Most properties simply reflect the configuration, see logind.conf(5). This includes:

 NAutoVTs, KillOnlyUsers, KillExcludeUsers, KillUserProcesses, IdleAction,

 InhibitDelayMaxUSec, InhibitorsMax, UserStopDelayUSec, HandlePowerKey, HandleSuspendKey,

 HandleHibernateKey, HandleLidSwitch, HandleLidSwitchExternalPower, HandleLidSwitchDocked,

 IdleActionUSec, HoldoffTimeoutUSec, RemoveIPC, RuntimeDirectorySize,

 RuntimeDirectoryInodesMax, InhibitorsMax, and SessionsMax.

 The IdleHint property reflects the idle hint state of the system. If the system is idle it

 might get into automatic suspend or shutdown depending on the configuration.

 IdleSinceHint and IdleSinceHintMonotonic encode the timestamps of the last change of the

 idle hint boolean, in CLOCK_REALTIME and CLOCK_MONOTONIC timestamps, respectively, in

 microseconds since the epoch.

 The BlockInhibited and DelayInhibited properties encode the currently active locks of the

 respective modes. They are colon separated lists of "shutdown", "sleep", and "idle" (see

 above).

 NCurrentSessions and NCurrentInhibitors contain the number of currently registered

 sessions and inhibitors.

 The BootLoaderEntries property contains a list of boot loader entries. This includes boot

 loader entries defined in configuration and any additional loader entries reported by the

 boot loader. See systemd-boot(7) for more information.

 The PreparingForShutdown and PreparingForSleep boolean properties are true during the

 interval between the two PrepareForShutdown and PrepareForSleep signals respectively. Note Page 11/23

 that these properties do not send out PropertyChanged signals.

 The RebootParameter property shows the value set with the SetRebootParameter() method

 described above.

 ScheduledShutdown shows the value pair set with the ScheduleShutdown() method described

 above.

 RebootToFirmwareSetup, RebootToBootLoaderMenu, and RebootToBootLoaderEntry are true when

 the resprective post-reboot operation was selected with SetRebootToFirmwareSetup,

 SetRebootToBootLoaderMenu, or SetRebootToBootLoaderEntry.

 The WallMessage and EnableWallMessages properties reflect the shutdown reason and wall

 message enablement switch which can be set with the SetWallMessage() method described

 above.

 Docked is true if the machine is connected to a dock. LidClosed is true when the lid (of

 a laptop) is closed. OnExternalPower is true when the machine is connected to an external

 power supply.

 Security

 A number of operations are protected via the polkit privilege system. SetUserLinger()

 requires the org.freedesktop.login1.set-user-linger privilege. AttachDevice() requires

 org.freedesktop.login1.attach-device and FlushDevices() requires

 org.freedesktop.login1.flush-devices. PowerOff(), Reboot(), Halt(), Suspend(),

 Hibernate() require org.freedesktop.login1.power-off,

 org.freedesktop.login1.power-off-multiple-sessions,

 org.freedesktop.login1.power-off-ignore-inhibit, org.freedesktop.login1.reboot,

 org.freedesktop.login1.reboot-multiple-sessions,

 org.freedesktop.login1.reboot-ignore-inhibit, org.freedesktop.login1.halt,

 org.freedesktop.login1.halt-multiple-sessions, org.freedesktop.login1.halt-ignore-inhibit,

 org.freedesktop.login1.suspend, org.freedesktop.login1.suspend-multiple-sessions,

 org.freedesktop.login1.suspend-ignore-inhibit, org.freedesktop.login1.hibernate,

 org.freedesktop.login1.hibernate-multiple-sessions,

 org.freedesktop.login1.hibernate-ignore-inhibit, respectively depending on whether there

 are other sessions around or active inhibits are present. HybridSleep() and

 SuspendThenHibernate() use the same privileges as Hibernate(). SetRebootParameter()

 requires org.freedesktop.login1.set-reboot-parameter.

 SetRebootToFirmwareSetup requires org.freedesktop.login1.set-reboot-to-firmware-setup. Page 12/23

 SetRebootToBootLoaderMenu requires org.freedesktop.login1.set-reboot-to-boot-loader-menu.

 SetRebootToBootLoaderEntry requires

 org.freedesktop.login1.set-reboot-to-boot-loader-entry.

 ScheduleShutdown and CancelScheduledShutdown require the same privileges (listed above) as

 the immediate poweroff/reboot/halt operations.

 Inhibit() is protected via one of org.freedesktop.login1.inhibit-block-shutdown,

 org.freedesktop.login1.inhibit-delay-shutdown, org.freedesktop.login1.inhibit-block-sleep,

 org.freedesktop.login1.inhibit-delay-sleep, org.freedesktop.login1.inhibit-block-idle,

 org.freedesktop.login1.inhibit-handle-power-key,

 org.freedesktop.login1.inhibit-handle-suspend-key,

 org.freedesktop.login1.inhibit-handle-hibernate-key,

 org.freedesktop.login1.inhibit-handle-lid-switch depending on the lock type and mode

 taken.

 The interactive boolean parameters can be used to control whether polkit should

 interactively ask the user for authentication credentials if required.

SEAT OBJECTS

 node /org/freedesktop/login1/seat/seat0 {

 interface org.freedesktop.login1.Seat {

 methods:

 Terminate();

 ActivateSession(in s session_id);

 SwitchTo(in u vtnr);

 SwitchToNext();

 SwitchToPrevious();

 properties:

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Id = '...';

 readonly (so) ActiveSession = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly b CanTTY = ...;

 readonly b CanGraphical = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly a(so) Sessions = [...]; Page 13/23

 readonly b IdleHint = ...;

 readonly t IdleSinceHint = ...;

 readonly t IdleSinceHintMonotonic = ...;

 };

 interface org.freedesktop.DBus.Peer { ... };

 interface org.freedesktop.DBus.Introspectable { ... };

 interface org.freedesktop.DBus.Properties { ... };

 };

 Methods

 Terminate() and ActivateSession() work similar to TerminateSeat(),

 ActivationSessionOnSeat() on the Manager object.

 SwitchTo() switches to the session on the virtual terminal vtnr. SwitchToNext() and

 SwitchToPrevious() switch to, respectively, the next and previous sessions on the seat in

 the order of virtual terminals. If there is no active session, they switch to,

 respectively, the first and last session on the seat.

 Signals

 Whenever ActiveSession, Sessions, CanGraphical, CanTTY, or the idle state changes,

 PropertyChanged signals are sent out to which clients can subscribe.

 Properties

 The Id property encodes the ID of the seat.

 ActiveSession encodes the currently active session if there is one. It is a structure

 consisting of the session id and the object path.

 CanTTY encodes whether the session is suitable for text logins, and CanGraphical whether

 it is suitable for graphical sessions.

 The Sessions property is an array of all current sessions of this seat, each encoded in a

 structure consisting of the ID and the object path.

 The IdleHint, IdleSinceHint, and IdleSinceHintMonotonic properties encode the idle state,

 similar to the ones exposed on the Manager object, but specific for this seat.

USER OBJECTS

 node /org/freedesktop/login1/user/_1000 {

 interface org.freedesktop.login1.User {

 methods:

 Terminate(); Page 14/23

 Kill(in i signal_number);

 properties:

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly u UID = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly u GID = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Name = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t Timestamp = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t TimestampMonotonic = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s RuntimePath = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Service = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Slice = '...';

 readonly (so) Display = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly s State = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly a(so) Sessions = [...];

 readonly b IdleHint = ...;

 readonly t IdleSinceHint = ...;

 readonly t IdleSinceHintMonotonic = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("false")

 readonly b Linger = ...;

 };

 interface org.freedesktop.DBus.Peer { ... };

 interface org.freedesktop.DBus.Introspectable { ... };

 interface org.freedesktop.DBus.Properties { ... };

 }; Page 15/23

 Methods

 Terminate() and Kill() work similar to the TerminateUser() and KillUser() methods on the

 manager object.

 Signals

 Whenever Sessions or the idle state changes, PropertyChanged signals are sent out to which

 clients can subscribe.

 Properties

 The UID and GID properties encode the Unix UID and primary GID of the user.

 The Name property encodes the user name.

 Timestamp and TimestampMonotonic encode the login time of the user in microseconds since

 the epoch, in the CLOCK_REALTIME and CLOCK_MONOTONIC clocks, respectively.

 RuntimePath encodes the runtime path of the user, i.e. $XDG_RUNTIME_DIR. For details see

 the XDG Basedir Specification[3].

 Service contains the unit name of the user systemd service of this user. Each logged in

 user is assigned a user service that runs a user systemd instance. This is usually an

 instance of user@.service.

 Slice contains the unit name of the user systemd slice of this user. Each logged in user

 gets a private slice.

 Display encodes which graphical session should be used as the primary UI display for the

 user. It is a structure encoding the session ID and the object path of the session to use.

 State encodes the user state and is one of "offline", "lingering", "online", "active", or

 "closing". See sd_uid_get_state(3) for more information about the states.

 Sessions is an array of structures encoding all current sessions of the user. Each

 structure consists of the ID and object path.

 The IdleHint, IdleSinceHint, and IdleSinceHintMonotonic properties encode the idle hint

 state of the user, similar to the Manager's properties, but specific for this user.

 The Linger property shows whether lingering is enabled for this user.

SESSION OBJECTS

 node /org/freedesktop/login1/session/1 {

 interface org.freedesktop.login1.Session {

 methods:

 Terminate();

 Activate(); Page 16/23

 Lock();

 Unlock();

 SetIdleHint(in b idle);

 SetLockedHint(in b locked);

 Kill(in s who,

 in i signal_number);

 TakeControl(in b force);

 ReleaseControl();

 SetType(in s type);

 TakeDevice(in u major,

 in u minor,

 out h fd,

 out b inactive);

 ReleaseDevice(in u major,

 in u minor);

 PauseDeviceComplete(in u major,

 in u minor);

 SetBrightness(in s subsystem,

 in s name,

 in u brightness);

 signals:

 PauseDevice(u major,

 u minor,

 s type);

 ResumeDevice(u major,

 u minor,

 h fd);

 Lock();

 Unlock();

 properties:

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Id = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const") Page 17/23

 readonly (uo) User = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Name = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t Timestamp = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly t TimestampMonotonic = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly u VTNr = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly (so) Seat = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s TTY = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Display = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly b Remote = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s RemoteHost = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s RemoteUser = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Service = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Desktop = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly s Scope = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly u Leader = ...;

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const")

 readonly u Audit = ...;

 readonly s Type = '...';

 @org.freedesktop.DBus.Property.EmitsChangedSignal("const") Page 18/23

 readonly s Class = '...';

 readonly b Active = ...;

 readonly s State = '...';

 readonly b IdleHint = ...;

 readonly t IdleSinceHint = ...;

 readonly t IdleSinceHintMonotonic = ...;

 readonly b LockedHint = ...;

 };

 interface org.freedesktop.DBus.Peer { ... };

 interface org.freedesktop.DBus.Introspectable { ... };

 interface org.freedesktop.DBus.Properties { ... };

 };

 Methods

 Terminate(), Activate(), Lock(), Unlock(), and Kill() work similarly to the respective

 calls on the Manager object.

 SetIdleHint() is called by the session object to update the idle state of the session

 whenever it changes.

 TakeControl() allows a process to take exclusive managed device access-control for that

 session. Only one D-Bus connection can be a controller for a given session at any time. If

 the force argument is set (root only), an existing controller is kicked out and replaced.

 Otherwise, this method fails if there is already a controller. Note that this method is

 limited to D-Bus users with the effective UID set to the user of the session or root.

 ReleaseControl() drops control of a given session. Closing the D-Bus connection implicitly

 releases control as well. See TakeControl() for more information. This method also

 releases all devices for which the controller requested ownership via TakeDevice().

 SetType() allows the type of the session to be changed dynamically. It can only be called

 by session's current controller. If TakeControl() has not been called, this method will

 fail. In addition, the session type will be reset to its original value once control is

 released, either by calling ReleaseControl() or closing the D-Bus connection. This should

 help prevent a session from entering an inconsistent state, for example if the controller

 crashes. The only argument type is the new session type.

 TakeDevice() allows a session controller to get a file descriptor for a specific device.

 Pass in the major and minor numbers of the character device and systemd-logind will return Page 19/23

 a file descriptor for the device. Only a limited set of device-types is currently

 supported (but may be extended). systemd-logind automatically mutes the file descriptor

 if the session is inactive and resumes it once the session is activated again. This

 guarantees that a session can only access session devices if the session is active. Note

 that this revoke/resume mechanism is asynchronous and may happen at any given time. This

 only works on devices that are attached to the seat of the given session. A process is not

 required to have direct access to the device node. systemd-logind only requires you to be

 the active session controller (see TakeControl()). Also note that any device can only be

 requested once. As long as you don't release it, further TakeDevice() calls will fail.

 ReleaseDevice() releases a device again (see TakeDevice()). This is also implicitly done

 by ReleaseControl() or when closing the D-Bus connection.

 PauseDeviceComplete() allows a session controller to synchronously pause a device after

 receiving a PauseDevice("pause") signal. Forced signals (or after an internal timeout) are

 automatically completed by systemd-logind asynchronously.

 SetLockedHint() may be used to set the "locked hint" to locked, i.e. information whether

 the session is locked. This is intended to be used by the desktop environment to tell

 systemd-logind when the session is locked and unlocked.

 SetBrightness() may be used to set the display brightness. This is intended to be used by

 the desktop environment and allows unprivileged programs to access hardware settings in a

 controlled way. The subsystem parameter specifies a kernel subsystem, either "backlight"

 or "leds". The name parameter specifies a device name under the specified subsystem. The

 brightness parameter specifies the brightness. The range is defined by individual drivers,

 see /sys/class/subsystem/name/max_brightness.

 Signals

 The active session controller exclusively gets PauseDevice and ResumeDevice events for any

 device it requested via TakeDevice(). They notify the controller whenever a device is

 paused or resumed. A device is never resumed if its session is inactive. Also note that

 PauseDevice signals are sent before the PropertyChanged signal for the Active state. The

 inverse is true for ResumeDevice. A device may remain paused for unknown reasons even

 though the Session is active.

 A PauseDevice signal carries the major and minor numbers and a string describing the type

 as arguments. force means the device was already paused by systemd-logind and the signal

 is only an asynchronous notification. pause means systemd-logind grants you a limited Page 20/23

 amount of time to pause the device. You must respond to this via PauseDeviceComplete().

 This synchronous pausing mechanism is used for backwards-compatibility to VTs and

 systemd-logind is free to not make use of it. It is also free to send a forced PauseDevice

 if you don't respond in a timely manner (or for any other reason). gone means the device

 was unplugged from the system and you will no longer get any notifications about it. There

 is no need to call ReleaseDevice(). You may call TakeDevice() again if a new device is

 assigned the major+minor combination.

 ResumeDevice is sent whenever a session is active and a device is resumed. It carries the

 major/minor numbers as arguments and provides a new open file descriptor. You should

 switch to the new descriptor and close the old one. They are not guaranteed to have the

 same underlying open file descriptor in the kernel (except for a limited set of device

 types).

 Whenever Active or the idle state changes, PropertyChanged signals are sent out to which

 clients can subscribe.

 Lock/Unlock is sent when the session is asked to be screen-locked/unlocked. A session

 manager of the session should listen to this signal and act accordingly. This signal is

 sent out as a result of the Lock() and Unlock() methods, respectively.

 Properties

 Id encodes the session ID.

 User encodes the user ID of the user this session belongs to. This is a structure

 consisting of the Unix UID and the object path.

 Name encodes the user name.

 Timestamp and TimestampMonotonic encode the microseconds since the epoch when the session

 was created, in CLOCK_REALTIME or CLOCK_MONOTONIC, respectively.

 VTNr encodes the virtual terminal number of the session if there is any, 0 otherwise.

 Seat encodes the seat this session belongs to if there is any. This is a structure

 consisting of the ID and the seat object path.

 TTY encodes the kernel TTY path of the session if this is a text login. If not this is an

 empty string.

 Display encodes the X11 display name if this is a graphical login. If not, this is an

 empty string.

 Remote encodes whether the session is local or remote.

 RemoteHost and RemoteUser encode the remote host and user if this is a remote session, or Page 21/23

 an empty string otherwise.

 Service encodes the PAM service name that registered the session.

 Desktop describes the desktop environment running in the session (if known).

 Scope contains the systemd scope unit name of this session.

 Leader encodes the PID of the process that registered the session.

 Audit encodes the Kernel Audit session ID of the session if auditing is available.

 Type encodes the session type. It's one of "unspecified" (for cron PAM sessions and

 suchlike), "tty" (for text logins) or "x11"/"mir"/"wayland" (for graphical logins).

 Class encodes the session class. It's one of "user" (for normal user sessions), "greeter"

 (for display manager pseudo-sessions), or "lock-screen" (for display lock screens).

 Active is a boolean that is true if the session is active, i.e. currently in the

 foreground. This field is semi-redundant due to State.

 State encodes the session state and one of "online", "active", or "closing". See

 sd_session_get_state(3) for more information about the states.

 IdleHint, IdleSinceHint, and IdleSinceHintMonotonic encapsulate the idle hint state of

 this session, similarly to how the respective properties on the manager object do it for

 the whole system.

 LockedHint shows the locked hint state of this session, as set by the SetLockedHint()

 method described above.

EXAMPLES

 Example 1. Introspect org.freedesktop.login1.Manager on the bus

 $ gdbus introspect --system --dest org.freedesktop.login1 \

 --object-path /org/freedesktop/login1

 Example 2. Introspect org.freedesktop.login1.Seat on the bus

 $ gdbus introspect --system --dest org.freedesktop.login1 \

 --object-path /org/freedesktop/login1/seat/seat0

 Example 3. Introspect org.freedesktop.login1.User on the bus

 $ gdbus introspect --system --dest org.freedesktop.login1 \

 --object-path /org/freedesktop/login1/user/_1000

 Example 4. Introspect org.freedesktop.login1.Session on the bus

 $ gdbus introspect --system --dest org.freedesktop.login1 \

 --object-path /org/freedesktop/login1/session/45

VERSIONING Page 22/23

 These D-Bus interfaces follow the usual interface versioning guidelines[4].

NOTES

 1. polkit

 https://www.freedesktop.org/software/polkit/docs/latest/

 2. Inhibitor Locks

 https://www.freedesktop.org/wiki/Software/systemd/inhibit

 3. XDG Basedir Specification

 https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html

 4. the usual interface versioning guidelines

 http://0pointer.de/blog/projects/versioning-dbus.html

systemd 249 ORG.FREEDESKTOP.LOGIN1(5)

Page 23/23

