
Rocky Enterprise Linux 9.2 Manual Pages on command 'open.2'

$ man open.2

OPEN(2) Linux Programmer's Manual OPEN(2)

NAME

 open, openat, creat - open and possibly create a file

SYNOPSIS

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <fcntl.h>

 int open(const char *pathname, int flags);

 int open(const char *pathname, int flags, mode_t mode);

 int creat(const char *pathname, mode_t mode);

 int openat(int dirfd, const char *pathname, int flags);

 int openat(int dirfd, const char *pathname, int flags, mode_t mode);

 /* Documented separately, in openat2(2): */

 int openat2(int dirfd, const char *pathname,

 const struct open_how *how, size_t size);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 openat():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _ATFILE_SOURCE

DESCRIPTION

 The open() system call opens the file specified by pathname. If the specified file does Page 1/19

 not exist, it may optionally (if O_CREAT is specified in flags) be created by open().

 The return value of open() is a file descriptor, a small, nonnegative integer that is used

 in subsequent system calls (read(2), write(2), lseek(2), fcntl(2), etc.) to refer to the

 open file. The file descriptor returned by a successful call will be the lowest-numbered

 file descriptor not currently open for the process.

 By default, the new file descriptor is set to remain open across an execve(2) (i.e., the

 FD_CLOEXEC file descriptor flag described in fcntl(2) is initially disabled); the

 O_CLOEXEC flag, described below, can be used to change this default. The file offset is

 set to the beginning of the file (see lseek(2)).

 A call to open() creates a new open file description, an entry in the system-wide table of

 open files. The open file description records the file offset and the file status flags

 (see below). A file descriptor is a reference to an open file description; this reference

 is unaffected if pathname is subsequently removed or modified to refer to a different

 file. For further details on open file descriptions, see NOTES.

 The argument flags must include one of the following access modes: O_RDONLY, O_WRONLY, or

 O_RDWR. These request opening the file read-only, write-only, or read/write, respec?

 tively.

 In addition, zero or more file creation flags and file status flags can be bitwise-or'd in

 flags. The file creation flags are O_CLOEXEC, O_CREAT, O_DIRECTORY, O_EXCL, O_NOCTTY,

 O_NOFOLLOW, O_TMPFILE, and O_TRUNC. The file status flags are all of the remaining flags

 listed below. The distinction between these two groups of flags is that the file creation

 flags affect the semantics of the open operation itself, while the file status flags af?

 fect the semantics of subsequent I/O operations. The file status flags can be retrieved

 and (in some cases) modified; see fcntl(2) for details.

 The full list of file creation flags and file status flags is as follows:

 O_APPEND

 The file is opened in append mode. Before each write(2), the file offset is posi?

 tioned at the end of the file, as if with lseek(2). The modification of the file

 offset and the write operation are performed as a single atomic step.

 O_APPEND may lead to corrupted files on NFS filesystems if more than one process

 appends data to a file at once. This is because NFS does not support appending to

 a file, so the client kernel has to simulate it, which can't be done without a race

 condition. Page 2/19

 O_ASYNC

 Enable signal-driven I/O: generate a signal (SIGIO by default, but this can be

 changed via fcntl(2)) when input or output becomes possible on this file descrip?

 tor. This feature is available only for terminals, pseudoterminals, sockets, and

 (since Linux 2.6) pipes and FIFOs. See fcntl(2) for further details. See also

 BUGS, below.

 O_CLOEXEC (since Linux 2.6.23)

 Enable the close-on-exec flag for the new file descriptor. Specifying this flag

 permits a program to avoid additional fcntl(2) F_SETFD operations to set the

 FD_CLOEXEC flag.

 Note that the use of this flag is essential in some multithreaded programs, because

 using a separate fcntl(2) F_SETFD operation to set the FD_CLOEXEC flag does not

 suffice to avoid race conditions where one thread opens a file descriptor and at?

 tempts to set its close-on-exec flag using fcntl(2) at the same time as another

 thread does a fork(2) plus execve(2). Depending on the order of execution, the

 race may lead to the file descriptor returned by open() being unintentionally

 leaked to the program executed by the child process created by fork(2). (This kind

 of race is in principle possible for any system call that creates a file descriptor

 whose close-on-exec flag should be set, and various other Linux system calls pro?

 vide an equivalent of the O_CLOEXEC flag to deal with this problem.)

 O_CREAT

 If pathname does not exist, create it as a regular file.

 The owner (user ID) of the new file is set to the effective user ID of the process.

 The group ownership (group ID) of the new file is set either to the effective group

 ID of the process (System V semantics) or to the group ID of the parent directory

 (BSD semantics). On Linux, the behavior depends on whether the set-group-ID mode

 bit is set on the parent directory: if that bit is set, then BSD semantics apply;

 otherwise, System V semantics apply. For some filesystems, the behavior also de?

 pends on the bsdgroups and sysvgroups mount options described in mount(8).

 The mode argument specifies the file mode bits to be applied when a new file is

 created. If neither O_CREAT nor O_TMPFILE is specified in flags, then mode is ig?

 nored (and can thus be specified as 0, or simply omitted). The mode argument must

 be supplied if O_CREAT or O_TMPFILE is specified in flags; if it is not supplied, Page 3/19

 some arbitrary bytes from the stack will be applied as the file mode.

 The effective mode is modified by the process's umask in the usual way: in the ab?

 sence of a default ACL, the mode of the created file is (mode & ~umask).

 Note that mode applies only to future accesses of the newly created file; the

 open() call that creates a read-only file may well return a read/write file de?

 scriptor.

 The following symbolic constants are provided for mode:

 S_IRWXU 00700 user (file owner) has read, write, and execute permission

 S_IRUSR 00400 user has read permission

 S_IWUSR 00200 user has write permission

 S_IXUSR 00100 user has execute permission

 S_IRWXG 00070 group has read, write, and execute permission

 S_IRGRP 00040 group has read permission

 S_IWGRP 00020 group has write permission

 S_IXGRP 00010 group has execute permission

 S_IRWXO 00007 others have read, write, and execute permission

 S_IROTH 00004 others have read permission

 S_IWOTH 00002 others have write permission

 S_IXOTH 00001 others have execute permission

 According to POSIX, the effect when other bits are set in mode is unspecified. On

 Linux, the following bits are also honored in mode:

 S_ISUID 0004000 set-user-ID bit

 S_ISGID 0002000 set-group-ID bit (see inode(7)).

 S_ISVTX 0001000 sticky bit (see inode(7)).

 O_DIRECT (since Linux 2.4.10)

 Try to minimize cache effects of the I/O to and from this file. In general this

 will degrade performance, but it is useful in special situations, such as when ap?

 plications do their own caching. File I/O is done directly to/from user-space buf?

 fers. The O_DIRECT flag on its own makes an effort to transfer data synchronously,

 but does not give the guarantees of the O_SYNC flag that data and necessary meta?

 data are transferred. To guarantee synchronous I/O, O_SYNC must be used in addi?

 tion to O_DIRECT. See NOTES below for further discussion.

 A semantically similar (but deprecated) interface for block devices is described in Page 4/19

 raw(8).

 O_DIRECTORY

 If pathname is not a directory, cause the open to fail. This flag was added in

 kernel version 2.1.126, to avoid denial-of-service problems if opendir(3) is called

 on a FIFO or tape device.

 O_DSYNC

 Write operations on the file will complete according to the requirements of syn?

 chronized I/O data integrity completion.

 By the time write(2) (and similar) return, the output data has been transferred to

 the underlying hardware, along with any file metadata that would be required to re?

 trieve that data (i.e., as though each write(2) was followed by a call to fdata?

 sync(2)). See NOTES below.

 O_EXCL Ensure that this call creates the file: if this flag is specified in conjunction

 with O_CREAT, and pathname already exists, then open() fails with the error EEXIST.

 When these two flags are specified, symbolic links are not followed: if pathname is

 a symbolic link, then open() fails regardless of where the symbolic link points.

 In general, the behavior of O_EXCL is undefined if it is used without O_CREAT.

 There is one exception: on Linux 2.6 and later, O_EXCL can be used without O_CREAT

 if pathname refers to a block device. If the block device is in use by the system

 (e.g., mounted), open() fails with the error EBUSY.

 On NFS, O_EXCL is supported only when using NFSv3 or later on kernel 2.6 or later.

 In NFS environments where O_EXCL support is not provided, programs that rely on it

 for performing locking tasks will contain a race condition. Portable programs that

 want to perform atomic file locking using a lockfile, and need to avoid reliance on

 NFS support for O_EXCL, can create a unique file on the same filesystem (e.g., in?

 corporating hostname and PID), and use link(2) to make a link to the lockfile. If

 link(2) returns 0, the lock is successful. Otherwise, use stat(2) on the unique

 file to check if its link count has increased to 2, in which case the lock is also

 successful.

 O_LARGEFILE

 (LFS) Allow files whose sizes cannot be represented in an off_t (but can be repre?

 sented in an off64_t) to be opened. The _LARGEFILE64_SOURCE macro must be defined

 (before including any header files) in order to obtain this definition. Setting Page 5/19

 the _FILE_OFFSET_BITS feature test macro to 64 (rather than using O_LARGEFILE) is

 the preferred method of accessing large files on 32-bit systems (see fea?

 ture_test_macros(7)).

 O_NOATIME (since Linux 2.6.8)

 Do not update the file last access time (st_atime in the inode) when the file is

 read(2).

 This flag can be employed only if one of the following conditions is true:

 * The effective UID of the process matches the owner UID of the file.

 * The calling process has the CAP_FOWNER capability in its user namespace and the

 owner UID of the file has a mapping in the namespace.

 This flag is intended for use by indexing or backup programs, where its use can

 significantly reduce the amount of disk activity. This flag may not be effective

 on all filesystems. One example is NFS, where the server maintains the access

 time.

 O_NOCTTY

 If pathname refers to a terminal device?see tty(4)?it will not become the process's

 controlling terminal even if the process does not have one.

 O_NOFOLLOW

 If the trailing component (i.e., basename) of pathname is a symbolic link, then the

 open fails, with the error ELOOP. Symbolic links in earlier components of the

 pathname will still be followed. (Note that the ELOOP error that can occur in this

 case is indistinguishable from the case where an open fails because there are too

 many symbolic links found while resolving components in the prefix part of the

 pathname.)

 This flag is a FreeBSD extension, which was added to Linux in version 2.1.126, and

 has subsequently been standardized in POSIX.1-2008.

 See also O_PATH below.

 O_NONBLOCK or O_NDELAY

 When possible, the file is opened in nonblocking mode. Neither the open() nor any

 subsequent I/O operations on the file descriptor which is returned will cause the

 calling process to wait.

 Note that the setting of this flag has no effect on the operation of poll(2), se?

 lect(2), epoll(7), and similar, since those interfaces merely inform the caller Page 6/19

 about whether a file descriptor is "ready", meaning that an I/O operation performed

 on the file descriptor with the O_NONBLOCK flag clear would not block.

 Note that this flag has no effect for regular files and block devices; that is, I/O

 operations will (briefly) block when device activity is required, regardless of

 whether O_NONBLOCK is set. Since O_NONBLOCK semantics might eventually be imple?

 mented, applications should not depend upon blocking behavior when specifying this

 flag for regular files and block devices.

 For the handling of FIFOs (named pipes), see also fifo(7). For a discussion of the

 effect of O_NONBLOCK in conjunction with mandatory file locks and with file leases,

 see fcntl(2).

 O_PATH (since Linux 2.6.39)

 Obtain a file descriptor that can be used for two purposes: to indicate a location

 in the filesystem tree and to perform operations that act purely at the file de?

 scriptor level. The file itself is not opened, and other file operations (e.g.,

 read(2), write(2), fchmod(2), fchown(2), fgetxattr(2), ioctl(2), mmap(2)) fail with

 the error EBADF.

 The following operations can be performed on the resulting file descriptor:

 * close(2).

 * fchdir(2), if the file descriptor refers to a directory (since Linux 3.5).

 * fstat(2) (since Linux 3.6).

 * fstatfs(2) (since Linux 3.12).

 * Duplicating the file descriptor (dup(2), fcntl(2) F_DUPFD, etc.).

 * Getting and setting file descriptor flags (fcntl(2) F_GETFD and F_SETFD).

 * Retrieving open file status flags using the fcntl(2) F_GETFL operation: the re?

 turned flags will include the bit O_PATH.

 * Passing the file descriptor as the dirfd argument of openat() and the other

 "*at()" system calls. This includes linkat(2) with AT_EMPTY_PATH (or via procfs

 using AT_SYMLINK_FOLLOW) even if the file is not a directory.

 * Passing the file descriptor to another process via a UNIX domain socket (see

 SCM_RIGHTS in unix(7)).

 When O_PATH is specified in flags, flag bits other than O_CLOEXEC, O_DIRECTORY, and

 O_NOFOLLOW are ignored.

 Opening a file or directory with the O_PATH flag requires no permissions on the ob? Page 7/19

 ject itself (but does require execute permission on the directories in the path

 prefix). Depending on the subsequent operation, a check for suitable file permis?

 sions may be performed (e.g., fchdir(2) requires execute permission on the direc?

 tory referred to by its file descriptor argument). By contrast, obtaining a refer?

 ence to a filesystem object by opening it with the O_RDONLY flag requires that the

 caller have read permission on the object, even when the subsequent operation

 (e.g., fchdir(2), fstat(2)) does not require read permission on the object.

 If pathname is a symbolic link and the O_NOFOLLOW flag is also specified, then the

 call returns a file descriptor referring to the symbolic link. This file descrip?

 tor can be used as the dirfd argument in calls to fchownat(2), fstatat(2),

 linkat(2), and readlinkat(2) with an empty pathname to have the calls operate on

 the symbolic link.

 If pathname refers to an automount point that has not yet been triggered, so no

 other filesystem is mounted on it, then the call returns a file descriptor refer?

 ring to the automount directory without triggering a mount. fstatfs(2) can then be

 used to determine if it is, in fact, an untriggered automount point (.f_type ==

 AUTOFS_SUPER_MAGIC).

 One use of O_PATH for regular files is to provide the equivalent of POSIX.1's

 O_EXEC functionality. This permits us to open a file for which we have execute

 permission but not read permission, and then execute that file, with steps some?

 thing like the following:

 char buf[PATH_MAX];

 fd = open("some_prog", O_PATH);

 snprintf(buf, PATH_MAX, "/proc/self/fd/%d", fd);

 execl(buf, "some_prog", (char *) NULL);

 An O_PATH file descriptor can also be passed as the argument of fexecve(3).

 O_SYNC Write operations on the file will complete according to the requirements of syn?

 chronized I/O file integrity completion (by contrast with the synchronized I/O data

 integrity completion provided by O_DSYNC.)

 By the time write(2) (or similar) returns, the output data and associated file

 metadata have been transferred to the underlying hardware (i.e., as though each

 write(2) was followed by a call to fsync(2)). See NOTES below.

 O_TMPFILE (since Linux 3.11) Page 8/19

 Create an unnamed temporary regular file. The pathname argument specifies a direc?

 tory; an unnamed inode will be created in that directory's filesystem. Anything

 written to the resulting file will be lost when the last file descriptor is closed,

 unless the file is given a name.

 O_TMPFILE must be specified with one of O_RDWR or O_WRONLY and, optionally, O_EXCL.

 If O_EXCL is not specified, then linkat(2) can be used to link the temporary file

 into the filesystem, making it permanent, using code like the following:

 char path[PATH_MAX];

 fd = open("/path/to/dir", O_TMPFILE | O_RDWR,

 S_IRUSR | S_IWUSR);

 /* File I/O on 'fd'... */

 linkat(fd, NULL, AT_FDCWD, "/path/for/file", AT_EMPTY_PATH);

 /* If the caller doesn't have the CAP_DAC_READ_SEARCH

 capability (needed to use AT_EMPTY_PATH with linkat(2)),

 and there is a proc(5) filesystem mounted, then the

 linkat(2) call above can be replaced with:

 snprintf(path, PATH_MAX, "/proc/self/fd/%d", fd);

 linkat(AT_FDCWD, path, AT_FDCWD, "/path/for/file",

 AT_SYMLINK_FOLLOW);

 */

 In this case, the open() mode argument determines the file permission mode, as with

 O_CREAT.

 Specifying O_EXCL in conjunction with O_TMPFILE prevents a temporary file from be?

 ing linked into the filesystem in the above manner. (Note that the meaning of

 O_EXCL in this case is different from the meaning of O_EXCL otherwise.)

 There are two main use cases for O_TMPFILE:

 * Improved tmpfile(3) functionality: race-free creation of temporary files that

 (1) are automatically deleted when closed; (2) can never be reached via any

 pathname; (3) are not subject to symlink attacks; and (4) do not require the

 caller to devise unique names.

 * Creating a file that is initially invisible, which is then populated with data

 and adjusted to have appropriate filesystem attributes (fchown(2), fchmod(2),

 fsetxattr(2), etc.) before being atomically linked into the filesystem in a Page 9/19

 fully formed state (using linkat(2) as described above).

 O_TMPFILE requires support by the underlying filesystem; only a subset of Linux

 filesystems provide that support. In the initial implementation, support was pro?

 vided in the ext2, ext3, ext4, UDF, Minix, and shmem filesystems. Support for

 other filesystems has subsequently been added as follows: XFS (Linux 3.15); Btrfs

 (Linux 3.16); F2FS (Linux 3.16); and ubifs (Linux 4.9)

 O_TRUNC

 If the file already exists and is a regular file and the access mode allows writing

 (i.e., is O_RDWR or O_WRONLY) it will be truncated to length 0. If the file is a

 FIFO or terminal device file, the O_TRUNC flag is ignored. Otherwise, the effect

 of O_TRUNC is unspecified.

 creat()

 A call to creat() is equivalent to calling open() with flags equal to

 O_CREAT|O_WRONLY|O_TRUNC.

 openat()

 The openat() system call operates in exactly the same way as open(), except for the dif?

 ferences described here.

 If the pathname given in pathname is relative, then it is interpreted relative to the di?

 rectory referred to by the file descriptor dirfd (rather than relative to the current

 working directory of the calling process, as is done by open() for a relative pathname).

 If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is inter?

 preted relative to the current working directory of the calling process (like open()).

 If pathname is absolute, then dirfd is ignored.

 openat2(2)

 The openat2(2) system call is an extension of openat(), and provides a superset of the

 features of openat(). It is documented separately, in openat2(2).

RETURN VALUE

 open(), openat(), and creat() return the new file descriptor (a nonnegative integer), or

 -1 if an error occurred (in which case, errno is set appropriately).

ERRORS

 open(), openat(), and creat() can fail with the following errors:

 EACCES The requested access to the file is not allowed, or search permission is denied for

 one of the directories in the path prefix of pathname, or the file did not exist Page 10/19

 yet and write access to the parent directory is not allowed. (See also path_reso?

 lution(7).)

 EACCES Where O_CREAT is specified, the protected_fifos or protected_regular sysctl is en?

 abled, the file already exists and is a FIFO or regular file, the owner of the file

 is neither the current user nor the owner of the containing directory, and the con?

 taining directory is both world- or group-writable and sticky. For details, see

 the descriptions of /proc/sys/fs/protected_fifos and /proc/sys/fs/protected_regular

 in proc(5).

 EBUSY O_EXCL was specified in flags and pathname refers to a block device that is in use

 by the system (e.g., it is mounted).

 EDQUOT Where O_CREAT is specified, the file does not exist, and the user's quota of disk

 blocks or inodes on the filesystem has been exhausted.

 EEXIST pathname already exists and O_CREAT and O_EXCL were used.

 EFAULT pathname points outside your accessible address space.

 EFBIG See EOVERFLOW.

 EINTR While blocked waiting to complete an open of a slow device (e.g., a FIFO; see

 fifo(7)), the call was interrupted by a signal handler; see signal(7).

 EINVAL The filesystem does not support the O_DIRECT flag. See NOTES for more information.

 EINVAL Invalid value in flags.

 EINVAL O_TMPFILE was specified in flags, but neither O_WRONLY nor O_RDWR was specified.

 EINVAL O_CREAT was specified in flags and the final component ("basename") of the new

 file's pathname is invalid (e.g., it contains characters not permitted by the un?

 derlying filesystem).

 EINVAL The final component ("basename") of pathname is invalid (e.g., it contains charac?

 ters not permitted by the underlying filesystem).

 EISDIR pathname refers to a directory and the access requested involved writing (that is,

 O_WRONLY or O_RDWR is set).

 EISDIR pathname refers to an existing directory, O_TMPFILE and one of O_WRONLY or O_RDWR

 were specified in flags, but this kernel version does not provide the O_TMPFILE

 functionality.

 ELOOP Too many symbolic links were encountered in resolving pathname.

 ELOOP pathname was a symbolic link, and flags specified O_NOFOLLOW but not O_PATH.

 EMFILE The per-process limit on the number of open file descriptors has been reached (see Page 11/19

 the description of RLIMIT_NOFILE in getrlimit(2)).

 ENAMETOOLONG

 pathname was too long.

 ENFILE The system-wide limit on the total number of open files has been reached.

 ENODEV pathname refers to a device special file and no corresponding device exists. (This

 is a Linux kernel bug; in this situation ENXIO must be returned.)

 ENOENT O_CREAT is not set and the named file does not exist.

 ENOENT A directory component in pathname does not exist or is a dangling symbolic link.

 ENOENT pathname refers to a nonexistent directory, O_TMPFILE and one of O_WRONLY or O_RDWR

 were specified in flags, but this kernel version does not provide the O_TMPFILE

 functionality.

 ENOMEM The named file is a FIFO, but memory for the FIFO buffer can't be allocated because

 the per-user hard limit on memory allocation for pipes has been reached and the

 caller is not privileged; see pipe(7).

 ENOMEM Insufficient kernel memory was available.

 ENOSPC pathname was to be created but the device containing pathname has no room for the

 new file.

 ENOTDIR

 A component used as a directory in pathname is not, in fact, a directory, or O_DI?

 RECTORY was specified and pathname was not a directory.

 ENXIO O_NONBLOCK | O_WRONLY is set, the named file is a FIFO, and no process has the FIFO

 open for reading.

 ENXIO The file is a device special file and no corresponding device exists.

 ENXIO The file is a UNIX domain socket.

 EOPNOTSUPP

 The filesystem containing pathname does not support O_TMPFILE.

 EOVERFLOW

 pathname refers to a regular file that is too large to be opened. The usual sce?

 nario here is that an application compiled on a 32-bit platform without

 -D_FILE_OFFSET_BITS=64 tried to open a file whose size exceeds (1<<31)-1 bytes; see

 also O_LARGEFILE above. This is the error specified by POSIX.1; in kernels before

 2.6.24, Linux gave the error EFBIG for this case.

 EPERM The O_NOATIME flag was specified, but the effective user ID of the caller did not Page 12/19

 match the owner of the file and the caller was not privileged.

 EPERM The operation was prevented by a file seal; see fcntl(2).

 EROFS pathname refers to a file on a read-only filesystem and write access was requested.

 ETXTBSY

 pathname refers to an executable image which is currently being executed and write

 access was requested.

 ETXTBSY

 pathname refers to a file that is currently in use as a swap file, and the O_TRUNC

 flag was specified.

 ETXTBSY

 pathname refers to a file that is currently being read by the kernel (e.g., for

 module/firmware loading), and write access was requested.

 EWOULDBLOCK

 The O_NONBLOCK flag was specified, and an incompatible lease was held on the file

 (see fcntl(2)).

 The following additional errors can occur for openat():

 EBADF dirfd is not a valid file descriptor.

 ENOTDIR

 pathname is a relative pathname and dirfd is a file descriptor referring to a file

 other than a directory.

VERSIONS

 openat() was added to Linux in kernel 2.6.16; library support was added to glibc in ver?

 sion 2.4.

CONFORMING TO

 open(), creat() SVr4, 4.3BSD, POSIX.1-2001, POSIX.1-2008.

 openat(): POSIX.1-2008.

 openat2(2) is Linux-specific.

 The O_DIRECT, O_NOATIME, O_PATH, and O_TMPFILE flags are Linux-specific. One must define

 _GNU_SOURCE to obtain their definitions.

 The O_CLOEXEC, O_DIRECTORY, and O_NOFOLLOW flags are not specified in POSIX.1-2001, but

 are specified in POSIX.1-2008. Since glibc 2.12, one can obtain their definitions by

 defining either _POSIX_C_SOURCE with a value greater than or equal to 200809L or

 _XOPEN_SOURCE with a value greater than or equal to 700. In glibc 2.11 and earlier, one Page 13/19

 obtains the definitions by defining _GNU_SOURCE.

 As noted in feature_test_macros(7), feature test macros such as _POSIX_C_SOURCE,

 _XOPEN_SOURCE, and _GNU_SOURCE must be defined before including any header files.

NOTES

 Under Linux, the O_NONBLOCK flag is sometimes used in cases where one wants to open but

 does not necessarily have the intention to read or write. For example, this may be used

 to open a device in order to get a file descriptor for use with ioctl(2).

 The (undefined) effect of O_RDONLY | O_TRUNC varies among implementations. On many sys?

 tems the file is actually truncated.

 Note that open() can open device special files, but creat() cannot create them; use

 mknod(2) instead.

 If the file is newly created, its st_atime, st_ctime, st_mtime fields (respectively, time

 of last access, time of last status change, and time of last modification; see stat(2))

 are set to the current time, and so are the st_ctime and st_mtime fields of the parent di?

 rectory. Otherwise, if the file is modified because of the O_TRUNC flag, its st_ctime and

 st_mtime fields are set to the current time.

 The files in the /proc/[pid]/fd directory show the open file descriptors of the process

 with the PID pid. The files in the /proc/[pid]/fdinfo directory show even more informa?

 tion about these file descriptors. See proc(5) for further details of both of these di?

 rectories.

 The Linux header file <asm/fcntl.h> doesn't define O_ASYNC; the (BSD-derived) FASYNC syn?

 onym is defined instead.

 Open file descriptions

 The term open file description is the one used by POSIX to refer to the entries in the

 system-wide table of open files. In other contexts, this object is variously also called

 an "open file object", a "file handle", an "open file table entry", or?in kernel-developer

 parlance?a struct file.

 When a file descriptor is duplicated (using dup(2) or similar), the duplicate refers to

 the same open file description as the original file descriptor, and the two file descrip?

 tors consequently share the file offset and file status flags. Such sharing can also oc?

 cur between processes: a child process created via fork(2) inherits duplicates of its par?

 ent's file descriptors, and those duplicates refer to the same open file descriptions.

 Each open() of a file creates a new open file description; thus, there may be multiple Page 14/19

 open file descriptions corresponding to a file inode.

 On Linux, one can use the kcmp(2) KCMP_FILE operation to test whether two file descriptors

 (in the same process or in two different processes) refer to the same open file descrip?

 tion.

 Synchronized I/O

 The POSIX.1-2008 "synchronized I/O" option specifies different variants of synchronized

 I/O, and specifies the open() flags O_SYNC, O_DSYNC, and O_RSYNC for controlling the be?

 havior. Regardless of whether an implementation supports this option, it must at least

 support the use of O_SYNC for regular files.

 Linux implements O_SYNC and O_DSYNC, but not O_RSYNC. Somewhat incorrectly, glibc defines

 O_RSYNC to have the same value as O_SYNC. (O_RSYNC is defined in the Linux header file

 <asm/fcntl.h> on HP PA-RISC, but it is not used.)

 O_SYNC provides synchronized I/O file integrity completion, meaning write operations will

 flush data and all associated metadata to the underlying hardware. O_DSYNC provides syn?

 chronized I/O data integrity completion, meaning write operations will flush data to the

 underlying hardware, but will only flush metadata updates that are required to allow a

 subsequent read operation to complete successfully. Data integrity completion can reduce

 the number of disk operations that are required for applications that don't need the guar?

 antees of file integrity completion.

 To understand the difference between the two types of completion, consider two pieces of

 file metadata: the file last modification timestamp (st_mtime) and the file length. All

 write operations will update the last file modification timestamp, but only writes that

 add data to the end of the file will change the file length. The last modification time?

 stamp is not needed to ensure that a read completes successfully, but the file length is.

 Thus, O_DSYNC would only guarantee to flush updates to the file length metadata (whereas

 O_SYNC would also always flush the last modification timestamp metadata).

 Before Linux 2.6.33, Linux implemented only the O_SYNC flag for open(). However, when

 that flag was specified, most filesystems actually provided the equivalent of synchronized

 I/O data integrity completion (i.e., O_SYNC was actually implemented as the equivalent of

 O_DSYNC).

 Since Linux 2.6.33, proper O_SYNC support is provided. However, to ensure backward binary

 compatibility, O_DSYNC was defined with the same value as the historical O_SYNC, and

 O_SYNC was defined as a new (two-bit) flag value that includes the O_DSYNC flag value. Page 15/19

 This ensures that applications compiled against new headers get at least O_DSYNC semantics

 on pre-2.6.33 kernels.

 C library/kernel differences

 Since version 2.26, the glibc wrapper function for open() employs the openat() system

 call, rather than the kernel's open() system call. For certain architectures, this is

 also true in glibc versions before 2.26.

 NFS

 There are many infelicities in the protocol underlying NFS, affecting amongst others

 O_SYNC and O_NDELAY.

 On NFS filesystems with UID mapping enabled, open() may return a file descriptor but, for

 example, read(2) requests are denied with EACCES. This is because the client performs

 open() by checking the permissions, but UID mapping is performed by the server upon read

 and write requests.

 FIFOs

 Opening the read or write end of a FIFO blocks until the other end is also opened (by an?

 other process or thread). See fifo(7) for further details.

 File access mode

 Unlike the other values that can be specified in flags, the access mode values O_RDONLY,

 O_WRONLY, and O_RDWR do not specify individual bits. Rather, they define the low order

 two bits of flags, and are defined respectively as 0, 1, and 2. In other words, the com?

 bination O_RDONLY | O_WRONLY is a logical error, and certainly does not have the same

 meaning as O_RDWR.

 Linux reserves the special, nonstandard access mode 3 (binary 11) in flags to mean: check

 for read and write permission on the file and return a file descriptor that can't be used

 for reading or writing. This nonstandard access mode is used by some Linux drivers to re?

 turn a file descriptor that is to be used only for device-specific ioctl(2) operations.

 Rationale for openat() and other directory file descriptor APIs

 openat() and the other system calls and library functions that take a directory file de?

 scriptor argument (i.e., execveat(2), faccessat(2), fanotify_mark(2), fchmodat(2), fchow?

 nat(2), fspick(2), fstatat(2), futimesat(2), linkat(2), mkdirat(2), move_mount(2), mkno?

 dat(2), name_to_handle_at(2), open_tree(2), openat2(2), readlinkat(2), renameat(2),

 statx(2), symlinkat(2), unlinkat(2), utimensat(2), mkfifoat(3), and scandirat(3)) address

 two problems with the older interfaces that preceded them. Here, the explanation is in Page 16/19

 terms of the openat() call, but the rationale is analogous for the other interfaces.

 First, openat() allows an application to avoid race conditions that could occur when using

 open() to open files in directories other than the current working directory. These race

 conditions result from the fact that some component of the directory prefix given to

 open() could be changed in parallel with the call to open(). Suppose, for example, that

 we wish to create the file dir1/dir2/xxx.dep if the file dir1/dir2/xxx exists. The prob?

 lem is that between the existence check and the file-creation step, dir1 or dir2 (which

 might be symbolic links) could be modified to point to a different location. Such races

 can be avoided by opening a file descriptor for the target directory, and then specifying

 that file descriptor as the dirfd argument of (say) fstatat(2) and openat(). The use of

 the dirfd file descriptor also has other benefits:

 * the file descriptor is a stable reference to the directory, even if the directory is

 renamed; and

 * the open file descriptor prevents the underlying filesystem from being dismounted, just

 as when a process has a current working directory on a filesystem.

 Second, openat() allows the implementation of a per-thread "current working directory",

 via file descriptor(s) maintained by the application. (This functionality can also be ob?

 tained by tricks based on the use of /proc/self/fd/dirfd, but less efficiently.)

 The dirfd argument for these APIs can be obtained by using open() or openat() to open a

 directory (with either the O_RDONLY or the O_PATH flag). Alternatively, such a file de?

 scriptor can be obtained by applying dirfd(3) to a directory stream created using

 opendir(3).

 When these APIs are given a dirfd argument of AT_FDCWD or the specified pathname is abso?

 lute, then they handle their pathname argument in the same way as the corresponding con?

 ventional APIs. However, in this case, several of the APIs have a flags argument that

 provides access to functionality that is not available with the corresponding conventional

 APIs.

 O_DIRECT

 The O_DIRECT flag may impose alignment restrictions on the length and address of user-

 space buffers and the file offset of I/Os. In Linux alignment restrictions vary by

 filesystem and kernel version and might be absent entirely. However there is currently no

 filesystem-independent interface for an application to discover these restrictions for a

 given file or filesystem. Some filesystems provide their own interfaces for doing so, for Page 17/19

 example the XFS_IOC_DIOINFO operation in xfsctl(3).

 Under Linux 2.4, transfer sizes, and the alignment of the user buffer and the file offset

 must all be multiples of the logical block size of the filesystem. Since Linux 2.6.0,

 alignment to the logical block size of the underlying storage (typically 512 bytes) suf?

 fices. The logical block size can be determined using the ioctl(2) BLKSSZGET operation or

 from the shell using the command:

 blockdev --getss

 O_DIRECT I/Os should never be run concurrently with the fork(2) system call, if the memory

 buffer is a private mapping (i.e., any mapping created with the mmap(2) MAP_PRIVATE flag;

 this includes memory allocated on the heap and statically allocated buffers). Any such

 I/Os, whether submitted via an asynchronous I/O interface or from another thread in the

 process, should be completed before fork(2) is called. Failure to do so can result in

 data corruption and undefined behavior in parent and child processes. This restriction

 does not apply when the memory buffer for the O_DIRECT I/Os was created using shmat(2) or

 mmap(2) with the MAP_SHARED flag. Nor does this restriction apply when the memory buffer

 has been advised as MADV_DONTFORK with madvise(2), ensuring that it will not be available

 to the child after fork(2).

 The O_DIRECT flag was introduced in SGI IRIX, where it has alignment restrictions similar

 to those of Linux 2.4. IRIX has also a fcntl(2) call to query appropriate alignments, and

 sizes. FreeBSD 4.x introduced a flag of the same name, but without alignment restric?

 tions.

 O_DIRECT support was added under Linux in kernel version 2.4.10. Older Linux kernels sim?

 ply ignore this flag. Some filesystems may not implement the flag, in which case open()

 fails with the error EINVAL if it is used.

 Applications should avoid mixing O_DIRECT and normal I/O to the same file, and especially

 to overlapping byte regions in the same file. Even when the filesystem correctly handles

 the coherency issues in this situation, overall I/O throughput is likely to be slower than

 using either mode alone. Likewise, applications should avoid mixing mmap(2) of files with

 direct I/O to the same files.

 The behavior of O_DIRECT with NFS will differ from local filesystems. Older kernels, or

 kernels configured in certain ways, may not support this combination. The NFS protocol

 does not support passing the flag to the server, so O_DIRECT I/O will bypass the page

 cache only on the client; the server may still cache the I/O. The client asks the server Page 18/19

 to make the I/O synchronous to preserve the synchronous semantics of O_DIRECT. Some

 servers will perform poorly under these circumstances, especially if the I/O size is

 small. Some servers may also be configured to lie to clients about the I/O having reached

 stable storage; this will avoid the performance penalty at some risk to data integrity in

 the event of server power failure. The Linux NFS client places no alignment restrictions

 on O_DIRECT I/O.

 In summary, O_DIRECT is a potentially powerful tool that should be used with caution. It

 is recommended that applications treat use of O_DIRECT as a performance option which is

 disabled by default.

BUGS

 Currently, it is not possible to enable signal-driven I/O by specifying O_ASYNC when call?

 ing open(); use fcntl(2) to enable this flag.

 One must check for two different error codes, EISDIR and ENOENT, when trying to determine

 whether the kernel supports O_TMPFILE functionality.

 When both O_CREAT and O_DIRECTORY are specified in flags and the file specified by path?

 name does not exist, open() will create a regular file (i.e., O_DIRECTORY is ignored).

SEE ALSO

 chmod(2), chown(2), close(2), dup(2), fcntl(2), link(2), lseek(2), mknod(2), mmap(2),

 mount(2), open_by_handle_at(2), openat2(2), read(2), socket(2), stat(2), umask(2), un?

 link(2), write(2), fopen(3), acl(5), fifo(7), inode(7), path_resolution(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 OPEN(2)

Page 19/19

