
Rocky Enterprise Linux 9.2 Manual Pages on command 'objcopy.1'

$ man objcopy.1

OBJCOPY(1) GNU Development Tools OBJCOPY(1)

NAME

 objcopy - copy and translate object files

SYNOPSIS

 objcopy [-F bfdname|--target=bfdname]

 [-I bfdname|--input-target=bfdname]

 [-O bfdname|--output-target=bfdname]

 [-B bfdarch|--binary-architecture=bfdarch]

 [-S|--strip-all]

 [-g|--strip-debug]

 [--strip-unneeded]

 [-K symbolname|--keep-symbol=symbolname]

 [--keep-file-symbols]

 [--keep-section-symbols]

 [-N symbolname|--strip-symbol=symbolname]

 [--strip-unneeded-symbol=symbolname]

 [-G symbolname|--keep-global-symbol=symbolname]

 [--localize-hidden]

 [-L symbolname|--localize-symbol=symbolname]

 [--globalize-symbol=symbolname]

 [--globalize-symbols=filename]

 [-W symbolname|--weaken-symbol=symbolname]

 [-w|--wildcard] Page 1/21

 [-x|--discard-all]

 [-X|--discard-locals]

 [-b byte|--byte=byte]

 [-i [breadth]|--interleave[=breadth]]

 [--interleave-width=width]

 [-j sectionpattern|--only-section=sectionpattern]

 [-R sectionpattern|--remove-section=sectionpattern]

 [--keep-section=sectionpattern]

 [--remove-relocations=sectionpattern]

 [-p|--preserve-dates]

 [-D|--enable-deterministic-archives]

 [-U|--disable-deterministic-archives]

 [--debugging]

 [--gap-fill=val]

 [--pad-to=address]

 [--set-start=val]

 [--adjust-start=incr]

 [--change-addresses=incr]

 [--change-section-address sectionpattern{=,+,-}val]

 [--change-section-lma sectionpattern{=,+,-}val]

 [--change-section-vma sectionpattern{=,+,-}val]

 [--change-warnings] [--no-change-warnings]

 [--set-section-flags sectionpattern=flags]

 [--set-section-alignment sectionpattern=align]

 [--add-section sectionname=filename]

 [--dump-section sectionname=filename]

 [--update-section sectionname=filename]

 [--rename-section oldname=newname[,flags]]

 [--long-section-names {enable,disable,keep}]

 [--change-leading-char] [--remove-leading-char]

 [--reverse-bytes=num]

 [--srec-len=ival] [--srec-forceS3]

 [--redefine-sym old=new] Page 2/21

 [--redefine-syms=filename]

 [--weaken]

 [--keep-symbols=filename]

 [--strip-symbols=filename]

 [--strip-unneeded-symbols=filename]

 [--keep-global-symbols=filename]

 [--localize-symbols=filename]

 [--weaken-symbols=filename]

 [--add-symbol name=[section:]value[,flags]]

 [--alt-machine-code=index]

 [--prefix-symbols=string]

 [--prefix-sections=string]

 [--prefix-alloc-sections=string]

 [--add-gnu-debuglink=path-to-file]

 [--only-keep-debug]

 [--strip-dwo]

 [--extract-dwo]

 [--extract-symbol]

 [--writable-text]

 [--readonly-text]

 [--pure]

 [--impure]

 [--file-alignment=num]

 [--heap=size]

 [--image-base=address]

 [--section-alignment=num]

 [--stack=size]

 [--subsystem=which:major.minor]

 [--compress-debug-sections]

 [--decompress-debug-sections]

 [--elf-stt-common=val]

 [--merge-notes]

 [--no-merge-notes] Page 3/21

 [--verilog-data-width=val]

 [-v|--verbose]

 [-V|--version]

 [--help] [--info]

 infile [outfile]

DESCRIPTION

 The GNU objcopy utility copies the contents of an object file to another. objcopy uses

 the GNU BFD Library to read and write the object files. It can write the destination

 object file in a format different from that of the source object file. The exact behavior

 of objcopy is controlled by command-line options. Note that objcopy should be able to

 copy a fully linked file between any two formats. However, copying a relocatable object

 file between any two formats may not work as expected.

 objcopy creates temporary files to do its translations and deletes them afterward.

 objcopy uses BFD to do all its translation work; it has access to all the formats

 described in BFD and thus is able to recognize most formats without being told explicitly.

 objcopy can be used to generate S-records by using an output target of srec (e.g., use -O

 srec).

 objcopy can be used to generate a raw binary file by using an output target of binary

 (e.g., use -O binary). When objcopy generates a raw binary file, it will essentially

 produce a memory dump of the contents of the input object file. All symbols and

 relocation information will be discarded. The memory dump will start at the load address

 of the lowest section copied into the output file.

 When generating an S-record or a raw binary file, it may be helpful to use -S to remove

 sections containing debugging information. In some cases -R will be useful to remove

 sections which contain information that is not needed by the binary file.

 Note---objcopy is not able to change the endianness of its input files. If the input

 format has an endianness (some formats do not), objcopy can only copy the inputs into file

 formats that have the same endianness or which have no endianness (e.g., srec). (However,

 see the --reverse-bytes option.)

OPTIONS

 infile

 outfile

 The input and output files, respectively. If you do not specify outfile, objcopy Page 4/21

 creates a temporary file and destructively renames the result with the name of infile.

 -I bfdname

 --input-target=bfdname

 Consider the source file's object format to be bfdname, rather than attempting to

 deduce it.

 -O bfdname

 --output-target=bfdname

 Write the output file using the object format bfdname.

 -F bfdname

 --target=bfdname

 Use bfdname as the object format for both the input and the output file; i.e., simply

 transfer data from source to destination with no translation.

 -B bfdarch

 --binary-architecture=bfdarch

 Useful when transforming a architecture-less input file into an object file. In this

 case the output architecture can be set to bfdarch. This option will be ignored if

 the input file has a known bfdarch. You can access this binary data inside a program

 by referencing the special symbols that are created by the conversion process. These

 symbols are called _binary_objfile_start, _binary_objfile_end and

 _binary_objfile_size. e.g. you can transform a picture file into an object file and

 then access it in your code using these symbols.

 -j sectionpattern

 --only-section=sectionpattern

 Copy only the indicated sections from the input file to the output file. This option

 may be given more than once. Note that using this option inappropriately may make the

 output file unusable. Wildcard characters are accepted in sectionpattern.

 If the first character of sectionpattern is the exclamation point (!) then matching

 sections will not be copied, even if earlier use of --only-section on the same command

 line would otherwise copy it. For example:

 --only-section=.text.* --only-section=!.text.foo

 will copy all sectinos matching '.text.*' but not the section '.text.foo'.

 -R sectionpattern

 --remove-section=sectionpattern Page 5/21

 Remove any section matching sectionpattern from the output file. This option may be

 given more than once. Note that using this option inappropriately may make the output

 file unusable. Wildcard characters are accepted in sectionpattern. Using both the -j

 and -R options together results in undefined behaviour.

 If the first character of sectionpattern is the exclamation point (!) then matching

 sections will not be removed even if an earlier use of --remove-section on the same

 command line would otherwise remove it. For example:

 --remove-section=.text.* --remove-section=!.text.foo

 will remove all sections matching the pattern '.text.*', but will not remove the

 section '.text.foo'.

 --keep-section=sectionpattern

 When removing sections from the output file, keep sections that match sectionpattern.

 --remove-relocations=sectionpattern

 Remove non-dynamic relocations from the output file for any section matching

 sectionpattern. This option may be given more than once. Note that using this option

 inappropriately may make the output file unusable, and attempting to remove a dynamic

 relocation section such as .rela.plt from an executable or shared library with

 --remove-relocations=.plt will not work. Wildcard characters are accepted in

 sectionpattern. For example:

 --remove-relocations=.text.*

 will remove the relocations for all sections matching the pattern '.text.*'.

 If the first character of sectionpattern is the exclamation point (!) then matching

 sections will not have their relocation removed even if an earlier use of

 --remove-relocations on the same command line would otherwise cause the relocations to

 be removed. For example:

 --remove-relocations=.text.* --remove-relocations=!.text.foo

 will remove all relocations for sections matching the pattern '.text.*', but will not

 remove relocations for the section '.text.foo'.

 -S

 --strip-all

 Do not copy relocation and symbol information from the source file. Also deletes

 debug sections.

 -g Page 6/21

 --strip-debug

 Do not copy debugging symbols or sections from the source file.

 --strip-unneeded

 Remove all symbols that are not needed for relocation processing in addition to

 debugging symbols and sections stripped by --strip-debug.

 -K symbolname

 --keep-symbol=symbolname

 When stripping symbols, keep symbol symbolname even if it would normally be stripped.

 This option may be given more than once.

 -N symbolname

 --strip-symbol=symbolname

 Do not copy symbol symbolname from the source file. This option may be given more

 than once.

 --strip-unneeded-symbol=symbolname

 Do not copy symbol symbolname from the source file unless it is needed by a

 relocation. This option may be given more than once.

 -G symbolname

 --keep-global-symbol=symbolname

 Keep only symbol symbolname global. Make all other symbols local to the file, so that

 they are not visible externally. This option may be given more than once. Note: this

 option cannot be used in conjunction with the --globalize-symbol or

 --globalize-symbols options.

 --localize-hidden

 In an ELF object, mark all symbols that have hidden or internal visibility as local.

 This option applies on top of symbol-specific localization options such as -L.

 -L symbolname

 --localize-symbol=symbolname

 Convert a global or weak symbol called symbolname into a local symbol, so that it is

 not visible externally. This option may be given more than once. Note - unique

 symbols are not converted.

 -W symbolname

 --weaken-symbol=symbolname

 Make symbol symbolname weak. This option may be given more than once. Page 7/21

 --globalize-symbol=symbolname

 Give symbol symbolname global scoping so that it is visible outside of the file in

 which it is defined. This option may be given more than once. Note: this option

 cannot be used in conjunction with the -G or --keep-global-symbol options.

 -w

 --wildcard

 Permit regular expressions in symbolnames used in other command line options. The

 question mark (?), asterisk (*), backslash (\) and square brackets ([]) operators can

 be used anywhere in the symbol name. If the first character of the symbol name is the

 exclamation point (!) then the sense of the switch is reversed for that symbol. For

 example:

 -w -W !foo -W fo*

 would cause objcopy to weaken all symbols that start with "fo" except for the symbol

 "foo".

 -x

 --discard-all

 Do not copy non-global symbols from the source file.

 -X

 --discard-locals

 Do not copy compiler-generated local symbols. (These usually start with L or ..)

 -b byte

 --byte=byte

 If interleaving has been enabled via the --interleave option then start the range of

 bytes to keep at the byteth byte. byte can be in the range from 0 to breadth-1, where

 breadth is the value given by the --interleave option.

 -i [breadth]

 --interleave[=breadth]

 Only copy a range out of every breadth bytes. (Header data is not affected). Select

 which byte in the range begins the copy with the --byte option. Select the width of

 the range with the --interleave-width option.

 This option is useful for creating files to program ROM. It is typically used with an

 "srec" output target. Note that objcopy will complain if you do not specify the

 --byte option as well. Page 8/21

 The default interleave breadth is 4, so with --byte set to 0, objcopy would copy the

 first byte out of every four bytes from the input to the output.

 --interleave-width=width

 When used with the --interleave option, copy width bytes at a time. The start of the

 range of bytes to be copied is set by the --byte option, and the extent of the range

 is set with the --interleave option.

 The default value for this option is 1. The value of width plus the byte value set by

 the --byte option must not exceed the interleave breadth set by the --interleave

 option.

 This option can be used to create images for two 16-bit flashes interleaved in a

 32-bit bus by passing -b 0 -i 4 --interleave-width=2 and -b 2 -i 4

 --interleave-width=2 to two objcopy commands. If the input was '12345678' then the

 outputs would be '1256' and '3478' respectively.

 -p

 --preserve-dates

 Set the access and modification dates of the output file to be the same as those of

 the input file.

 -D

 --enable-deterministic-archives

 Operate in deterministic mode. When copying archive members and writing the archive

 index, use zero for UIDs, GIDs, timestamps, and use consistent file modes for all

 files.

 If binutils was configured with --enable-deterministic-archives, then this mode is on

 by default. It can be disabled with the -U option, below.

 -U

 --disable-deterministic-archives

 Do not operate in deterministic mode. This is the inverse of the -D option, above:

 when copying archive members and writing the archive index, use their actual UID, GID,

 timestamp, and file mode values.

 This is the default unless binutils was configured with

 --enable-deterministic-archives.

 --debugging

 Convert debugging information, if possible. This is not the default because only Page 9/21

 certain debugging formats are supported, and the conversion process can be time

 consuming.

 --gap-fill val

 Fill gaps between sections with val. This operation applies to the load address (LMA)

 of the sections. It is done by increasing the size of the section with the lower

 address, and filling in the extra space created with val.

 --pad-to address

 Pad the output file up to the load address address. This is done by increasing the

 size of the last section. The extra space is filled in with the value specified by

 --gap-fill (default zero).

 --set-start val

 Set the start address (also known as the entry address) of the new file to val. Not

 all object file formats support setting the start address.

 --change-start incr

 --adjust-start incr

 Change the start address (also known as the entry address) by adding incr. Not all

 object file formats support setting the start address.

 --change-addresses incr

 --adjust-vma incr

 Change the VMA and LMA addresses of all sections, as well as the start address, by

 adding incr. Some object file formats do not permit section addresses to be changed

 arbitrarily. Note that this does not relocate the sections; if the program expects

 sections to be loaded at a certain address, and this option is used to change the

 sections such that they are loaded at a different address, the program may fail.

 --change-section-address sectionpattern{=,+,-}val

 --adjust-section-vma sectionpattern{=,+,-}val

 Set or change both the VMA address and the LMA address of any section matching

 sectionpattern. If = is used, the section address is set to val. Otherwise, val is

 added to or subtracted from the section address. See the comments under

 --change-addresses, above. If sectionpattern does not match any sections in the input

 file, a warning will be issued, unless --no-change-warnings is used.

 --change-section-lma sectionpattern{=,+,-}val

 Set or change the LMA address of any sections matching sectionpattern. The LMA Page 10/21

 address is the address where the section will be loaded into memory at program load

 time. Normally this is the same as the VMA address, which is the address of the

 section at program run time, but on some systems, especially those where a program is

 held in ROM, the two can be different. If = is used, the section address is set to

 val. Otherwise, val is added to or subtracted from the section address. See the

 comments under --change-addresses, above. If sectionpattern does not match any

 sections in the input file, a warning will be issued, unless --no-change-warnings is

 used.

 --change-section-vma sectionpattern{=,+,-}val

 Set or change the VMA address of any section matching sectionpattern. The VMA address

 is the address where the section will be located once the program has started

 executing. Normally this is the same as the LMA address, which is the address where

 the section will be loaded into memory, but on some systems, especially those where a

 program is held in ROM, the two can be different. If = is used, the section address

 is set to val. Otherwise, val is added to or subtracted from the section address.

 See the comments under --change-addresses, above. If sectionpattern does not match

 any sections in the input file, a warning will be issued, unless --no-change-warnings

 is used.

 --change-warnings

 --adjust-warnings

 If --change-section-address or --change-section-lma or --change-section-vma is used,

 and the section pattern does not match any sections, issue a warning. This is the

 default.

 --no-change-warnings

 --no-adjust-warnings

 Do not issue a warning if --change-section-address or --adjust-section-lma or

 --adjust-section-vma is used, even if the section pattern does not match any sections.

 --set-section-flags sectionpattern=flags

 Set the flags for any sections matching sectionpattern. The flags argument is a comma

 separated string of flag names. The recognized names are alloc, contents, load,

 noload, readonly, code, data, rom, exclude, share, and debug. You can set the

 contents flag for a section which does not have contents, but it is not meaningful to

 clear the contents flag of a section which does have contents--just remove the section Page 11/21

 instead. Not all flags are meaningful for all object file formats. In particular the

 share flag is only meaningful for COFF format files and not for ELF format files.

 --set-section-alignment sectionpattern=align

 Set the alignment for any sections matching sectionpattern. align specifies the

 alignment in bytes and must be a power of two, i.e. 1, 2, 4, 8....

 --add-section sectionname=filename

 Add a new section named sectionname while copying the file. The contents of the new

 section are taken from the file filename. The size of the section will be the size of

 the file. This option only works on file formats which can support sections with

 arbitrary names. Note - it may be necessary to use the --set-section-flags option to

 set the attributes of the newly created section.

 --dump-section sectionname=filename

 Place the contents of section named sectionname into the file filename, overwriting

 any contents that may have been there previously. This option is the inverse of

 --add-section. This option is similar to the --only-section option except that it

 does not create a formatted file, it just dumps the contents as raw binary data,

 without applying any relocations. The option can be specified more than once.

 --update-section sectionname=filename

 Replace the existing contents of a section named sectionname with the contents of file

 filename. The size of the section will be adjusted to the size of the file. The

 section flags for sectionname will be unchanged. For ELF format files the section to

 segment mapping will also remain unchanged, something which is not possible using

 --remove-section followed by --add-section. The option can be specified more than

 once.

 Note - it is possible to use --rename-section and --update-section to both update and

 rename a section from one command line. In this case, pass the original section name

 to --update-section, and the original and new section names to --rename-section.

 --add-symbol name=[section:]value[,flags]

 Add a new symbol named name while copying the file. This option may be specified

 multiple times. If the section is given, the symbol will be associated with and

 relative to that section, otherwise it will be an ABS symbol. Specifying an undefined

 section will result in a fatal error. There is no check for the value, it will be

 taken as specified. Symbol flags can be specified and not all flags will be Page 12/21

 meaningful for all object file formats. By default, the symbol will be global. The

 special flag 'before=othersym' will insert the new symbol in front of the specified

 othersym, otherwise the symbol(s) will be added at the end of the symbol table in the

 order they appear.

 --rename-section oldname=newname[,flags]

 Rename a section from oldname to newname, optionally changing the section's flags to

 flags in the process. This has the advantage over using a linker script to perform

 the rename in that the output stays as an object file and does not become a linked

 executable. This option accepts the same set of flags as the --sect-section-flags

 option.

 This option is particularly helpful when the input format is binary, since this will

 always create a section called .data. If for example, you wanted instead to create a

 section called .rodata containing binary data you could use the following command line

 to achieve it:

 objcopy -I binary -O <output_format> -B <architecture> \

 --rename-section .data=.rodata,alloc,load,readonly,data,contents \

 <input_binary_file> <output_object_file>

 --long-section-names {enable,disable,keep}

 Controls the handling of long section names when processing "COFF" and "PE-COFF"

 object formats. The default behaviour, keep, is to preserve long section names if any

 are present in the input file. The enable and disable options forcibly enable or

 disable the use of long section names in the output object; when disable is in effect,

 any long section names in the input object will be truncated. The enable option will

 only emit long section names if any are present in the inputs; this is mostly the same

 as keep, but it is left undefined whether the enable option might force the creation

 of an empty string table in the output file.

 --change-leading-char

 Some object file formats use special characters at the start of symbols. The most

 common such character is underscore, which compilers often add before every symbol.

 This option tells objcopy to change the leading character of every symbol when it

 converts between object file formats. If the object file formats use the same leading

 character, this option has no effect. Otherwise, it will add a character, or remove a

 character, or change a character, as appropriate. Page 13/21

 --remove-leading-char

 If the first character of a global symbol is a special symbol leading character used

 by the object file format, remove the character. The most common symbol leading

 character is underscore. This option will remove a leading underscore from all global

 symbols. This can be useful if you want to link together objects of different file

 formats with different conventions for symbol names. This is different from

 --change-leading-char because it always changes the symbol name when appropriate,

 regardless of the object file format of the output file.

 --reverse-bytes=num

 Reverse the bytes in a section with output contents. A section length must be evenly

 divisible by the value given in order for the swap to be able to take place. Reversing

 takes place before the interleaving is performed.

 This option is used typically in generating ROM images for problematic target systems.

 For example, on some target boards, the 32-bit words fetched from 8-bit ROMs are re-

 assembled in little-endian byte order regardless of the CPU byte order. Depending on

 the programming model, the endianness of the ROM may need to be modified.

 Consider a simple file with a section containing the following eight bytes: 12345678.

 Using --reverse-bytes=2 for the above example, the bytes in the output file would be

 ordered 21436587.

 Using --reverse-bytes=4 for the above example, the bytes in the output file would be

 ordered 43218765.

 By using --reverse-bytes=2 for the above example, followed by --reverse-bytes=4 on the

 output file, the bytes in the second output file would be ordered 34127856.

 --srec-len=ival

 Meaningful only for srec output. Set the maximum length of the Srecords being

 produced to ival. This length covers both address, data and crc fields.

 --srec-forceS3

 Meaningful only for srec output. Avoid generation of S1/S2 records, creating S3-only

 record format.

 --redefine-sym old=new

 Change the name of a symbol old, to new. This can be useful when one is trying link

 two things together for which you have no source, and there are name collisions.

 --redefine-syms=filename Page 14/21

 Apply --redefine-sym to each symbol pair "old new" listed in the file filename.

 filename is simply a flat file, with one symbol pair per line. Line comments may be

 introduced by the hash character. This option may be given more than once.

 --weaken

 Change all global symbols in the file to be weak. This can be useful when building an

 object which will be linked against other objects using the -R option to the linker.

 This option is only effective when using an object file format which supports weak

 symbols.

 --keep-symbols=filename

 Apply --keep-symbol option to each symbol listed in the file filename. filename is

 simply a flat file, with one symbol name per line. Line comments may be introduced by

 the hash character. This option may be given more than once.

 --strip-symbols=filename

 Apply --strip-symbol option to each symbol listed in the file filename. filename is

 simply a flat file, with one symbol name per line. Line comments may be introduced by

 the hash character. This option may be given more than once.

 --strip-unneeded-symbols=filename

 Apply --strip-unneeded-symbol option to each symbol listed in the file filename.

 filename is simply a flat file, with one symbol name per line. Line comments may be

 introduced by the hash character. This option may be given more than once.

 --keep-global-symbols=filename

 Apply --keep-global-symbol option to each symbol listed in the file filename.

 filename is simply a flat file, with one symbol name per line. Line comments may be

 introduced by the hash character. This option may be given more than once.

 --localize-symbols=filename

 Apply --localize-symbol option to each symbol listed in the file filename. filename

 is simply a flat file, with one symbol name per line. Line comments may be introduced

 by the hash character. This option may be given more than once.

 --globalize-symbols=filename

 Apply --globalize-symbol option to each symbol listed in the file filename. filename

 is simply a flat file, with one symbol name per line. Line comments may be introduced

 by the hash character. This option may be given more than once. Note: this option

 cannot be used in conjunction with the -G or --keep-global-symbol options. Page 15/21

 --weaken-symbols=filename

 Apply --weaken-symbol option to each symbol listed in the file filename. filename is

 simply a flat file, with one symbol name per line. Line comments may be introduced by

 the hash character. This option may be given more than once.

 --alt-machine-code=index

 If the output architecture has alternate machine codes, use the indexth code instead

 of the default one. This is useful in case a machine is assigned an official code and

 the tool-chain adopts the new code, but other applications still depend on the

 original code being used. For ELF based architectures if the index alternative does

 not exist then the value is treated as an absolute number to be stored in the

 e_machine field of the ELF header.

 --writable-text

 Mark the output text as writable. This option isn't meaningful for all object file

 formats.

 --readonly-text

 Make the output text write protected. This option isn't meaningful for all object

 file formats.

 --pure

 Mark the output file as demand paged. This option isn't meaningful for all object

 file formats.

 --impure

 Mark the output file as impure. This option isn't meaningful for all object file

 formats.

 --prefix-symbols=string

 Prefix all symbols in the output file with string.

 --prefix-sections=string

 Prefix all section names in the output file with string.

 --prefix-alloc-sections=string

 Prefix all the names of all allocated sections in the output file with string.

 --add-gnu-debuglink=path-to-file

 Creates a .gnu_debuglink section which contains a reference to path-to-file and adds

 it to the output file. Note: the file at path-to-file must exist. Part of the

 process of adding the .gnu_debuglink section involves embedding a checksum of the Page 16/21

 contents of the debug info file into the section.

 If the debug info file is built in one location but it is going to be installed at a

 later time into a different location then do not use the path to the installed

 location. The --add-gnu-debuglink option will fail because the installed file does

 not exist yet. Instead put the debug info file in the current directory and use the

 --add-gnu-debuglink option without any directory components, like this:

 objcopy --add-gnu-debuglink=foo.debug

 At debug time the debugger will attempt to look for the separate debug info file in a

 set of known locations. The exact set of these locations varies depending upon the

 distribution being used, but it typically includes:

 "* The same directory as the executable."

 "* A sub-directory of the directory containing the executable"

 called .debug

 "* A global debug directory such as /usr/lib/debug."

 As long as the debug info file has been installed into one of these locations before

 the debugger is run everything should work correctly.

 --keep-section-symbils

 When stripping a file, perhaps with --strip-debug or --strip-unneeded, retain any

 symbols specifying section names, which would otherwise get stripped.

 --keep-file-symbols

 When stripping a file, perhaps with --strip-debug or --strip-unneeded, retain any

 symbols specifying source file names, which would otherwise get stripped.

 --only-keep-debug

 Strip a file, removing contents of any sections that would not be stripped by

 --strip-debug and leaving the debugging sections intact. In ELF files, this preserves

 all note sections in the output.

 Note - the section headers of the stripped sections are preserved, including their

 sizes, but the contents of the section are discarded. The section headers are

 preserved so that other tools can match up the debuginfo file with the real

 executable, even if that executable has been relocated to a different address space.

 The intention is that this option will be used in conjunction with --add-gnu-debuglink

 to create a two part executable. One a stripped binary which will occupy less space

 in RAM and in a distribution and the second a debugging information file which is only Page 17/21

 needed if debugging abilities are required. The suggested procedure to create these

 files is as follows:

 1.<Link the executable as normal. Assuming that it is called>

 "foo" then...

 1.<Run "objcopy --only-keep-debug foo foo.dbg" to>

 create a file containing the debugging info.

 1.<Run "objcopy --strip-debug foo" to create a>

 stripped executable.

 1.<Run "objcopy --add-gnu-debuglink=foo.dbg foo">

 to add a link to the debugging info into the stripped executable.

 Note---the choice of ".dbg" as an extension for the debug info file is arbitrary.

 Also the "--only-keep-debug" step is optional. You could instead do this:

 1.<Link the executable as normal.>

 1.<Copy "foo" to "foo.full">

 1.<Run "objcopy --strip-debug foo">

 1.<Run "objcopy --add-gnu-debuglink=foo.full foo">

 i.e., the file pointed to by the --add-gnu-debuglink can be the full executable. It

 does not have to be a file created by the --only-keep-debug switch.

 Note---this switch is only intended for use on fully linked files. It does not make

 sense to use it on object files where the debugging information may be incomplete.

 Besides the gnu_debuglink feature currently only supports the presence of one filename

 containing debugging information, not multiple filenames on a one-per-object-file

 basis.

 --strip-dwo

 Remove the contents of all DWARF .dwo sections, leaving the remaining debugging

 sections and all symbols intact. This option is intended for use by the compiler as

 part of the -gsplit-dwarf option, which splits debug information between the .o file

 and a separate .dwo file. The compiler generates all debug information in the same

 file, then uses the --extract-dwo option to copy the .dwo sections to the .dwo file,

 then the --strip-dwo option to remove those sections from the original .o file.

 --extract-dwo

 Extract the contents of all DWARF .dwo sections. See the --strip-dwo option for more

 information. Page 18/21

 --file-alignment num

 Specify the file alignment. Sections in the file will always begin at file offsets

 which are multiples of this number. This defaults to 512. [This option is specific

 to PE targets.]

 --heap reserve

 --heap reserve,commit

 Specify the number of bytes of memory to reserve (and optionally commit) to be used as

 heap for this program. [This option is specific to PE targets.]

 --image-base value

 Use value as the base address of your program or dll. This is the lowest memory

 location that will be used when your program or dll is loaded. To reduce the need to

 relocate and improve performance of your dlls, each should have a unique base address

 and not overlap any other dlls. The default is 0x400000 for executables, and

 0x10000000 for dlls. [This option is specific to PE targets.]

 --section-alignment num

 Sets the section alignment field in the PE header. Sections in memory will always

 begin at addresses which are a multiple of this number. Defaults to 0x1000. [This

 option is specific to PE targets.]

 --stack reserve

 --stack reserve,commit

 Specify the number of bytes of memory to reserve (and optionally commit) to be used as

 stack for this program. [This option is specific to PE targets.]

 --subsystem which

 --subsystem which:major

 --subsystem which:major.minor

 Specifies the subsystem under which your program will execute. The legal values for

 which are "native", "windows", "console", "posix", "efi-app", "efi-bsd", "efi-rtd",

 "sal-rtd", and "xbox". You may optionally set the subsystem version also. Numeric

 values are also accepted for which. [This option is specific to PE targets.]

 --extract-symbol

 Keep the file's section flags and symbols but remove all section data. Specifically,

 the option:

 *<removes the contents of all sections;> Page 19/21

 *<sets the size of every section to zero; and>

 *<sets the file's start address to zero.>

 This option is used to build a .sym file for a VxWorks kernel. It can also be a

 useful way of reducing the size of a --just-symbols linker input file.

 --compress-debug-sections

 Compress DWARF debug sections using zlib with SHF_COMPRESSED from the ELF ABI. Note -

 if compression would actually make a section larger, then it is not compressed.

 --compress-debug-sections=none

 --compress-debug-sections=zlib

 --compress-debug-sections=zlib-gnu

 --compress-debug-sections=zlib-gabi

 For ELF files, these options control how DWARF debug sections are compressed.

 --compress-debug-sections=none is equivalent to --decompress-debug-sections.

 --compress-debug-sections=zlib and --compress-debug-sections=zlib-gabi are equivalent

 to --compress-debug-sections. --compress-debug-sections=zlib-gnu compresses DWARF

 debug sections using zlib. The debug sections are renamed to begin with .zdebug

 instead of .debug. Note - if compression would actually make a section larger, then

 it is not compressed nor renamed.

 --decompress-debug-sections

 Decompress DWARF debug sections using zlib. The original section names of the

 compressed sections are restored.

 --elf-stt-common=yes

 --elf-stt-common=no

 For ELF files, these options control whether common symbols should be converted to the

 "STT_COMMON" or "STT_OBJECT" type. --elf-stt-common=yes converts common symbol type

 to "STT_COMMON". --elf-stt-common=no converts common symbol type to "STT_OBJECT".

 --merge-notes

 --no-merge-notes

 For ELF files, attempt (or do not attempt) to reduce the size of any SHT_NOTE type

 sections by removing duplicate notes.

 -V

 --version

 Show the version number of objcopy. Page 20/21

 --verilog-data-width=bytes

 For Verilog output, this options controls the number of bytes converted for each

 output data element. The input target controls the endianness of the conversion.

 -v

 --verbose

 Verbose output: list all object files modified. In the case of archives, objcopy -V

 lists all members of the archive.

 --help

 Show a summary of the options to objcopy.

 --info

 Display a list showing all architectures and object formats available.

 @file

 Read command-line options from file. The options read are inserted in place of the

 original @file option. If file does not exist, or cannot be read, then the option

 will be treated literally, and not removed.

 Options in file are separated by whitespace. A whitespace character may be included

 in an option by surrounding the entire option in either single or double quotes. Any

 character (including a backslash) may be included by prefixing the character to be

 included with a backslash. The file may itself contain additional @file options; any

 such options will be processed recursively.

SEE ALSO

 ld(1), objdump(1), and the Info entries for binutils.

COPYRIGHT

 Copyright (c) 1991-2022 Free Software Foundation, Inc.

 Permission is granted to copy, distribute and/or modify this document under the terms of

 the GNU Free Documentation License, Version 1.3 or any later version published by the Free

 Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no

 Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free

 Documentation License".

binutils-2.38 2024-01-23 OBJCOPY(1)

Page 21/21

