
Rocky Enterprise Linux 9.2 Manual Pages on command 'npm-pkg.1'

$ man npm-pkg.1

NPM-PKG(1) NPM-PKG(1)

NAME

 npm-pkg - Manages your package.json

 Synopsis

 npm pkg get [<field> [.<subfield> ...]]

 npm pkg set <field>=<value> [.<subfield>=<value> ...]

 npm pkg delete <field> [.<subfield> ...]

 Description

 A command that automates the management of package.json files. npm pkg provide 3 differ?

 ent sub commands that allow you to modify or retrieve values for given object keys in your

 package.json.

 The syntax to retrieve and set fields is a dot separated representation of the nested ob?

 ject properties to be found within your package.json, it's the same notation used in npm

 help view to retrieve information from the registry manifest, below you can find more ex?

 amples on how to use it.

 Returned values are always in json format.

 ? npm pkg get <field>

 Retrieves a value key, defined in your package.json file.

 For example, in order to retrieve the name of the current package, you

 can run:

 npm pkg get name

 It's also possible to retrieve multiple values at once:

 npm pkg get name version Page 1/5

 You can view child fields by separating them with a period. To retrieve

 the value of a test script value, you would run the following command:

 npm pkg get scripts.test

 For fields that are arrays, requesting a non-numeric field will return

 all of the values from the objects in the list. For example, to get all

 the contributor emails for a package, you would run:

 npm pkg get contributors.email

 You may also use numeric indices in square braces to specifically select

 an item in an array field. To just get the email address of the first

 contributor in the list, you can run:

 npm pkg get contributors[0].email

 ? npm pkg set <field>=<value>

 Sets a value in your package.json based on the field value. When

 saving to your package.json file the same set of rules used during

 npm install and other cli commands that touches the package.json file

 are used, making sure to respect the existing indentation and possibly

 applying some validation prior to saving values to the file.

 The same syntax used to retrieve values from your package can also be used

 to define new properties or overriding existing ones, below are some

 examples of how the dot separated syntax can be used to edit your

 package.json file.

 Defining a new bin named mynewcommand in your package.json that points

 to a file cli.js:

 npm pkg set bin.mynewcommand=cli.js

 Setting multiple fields at once is also possible:

 npm pkg set description='Awesome package' engines.node='>=10'

 It's also possible to add to array values, for example to add a new

 contributor entry:

 npm pkg set contributors[0].name='Foo' contributors[0].email='foo@bar.ca'

 You may also append items to the end of an array using the special

 empty bracket notation:

 npm pkg set contributors[].name='Foo' contributors[].name='Bar'

 It's also possible to parse values as json prior to saving them to your Page 2/5

 package.json file, for example in order to set a "private": true

 property:

 npm pkg set private=true --json

 It also enables saving values as numbers:

 npm pkg set tap.timeout=60 --json

 ? npm pkg delete <key>

 Deletes a key from your package.json

 The same syntax used to set values from your package can also be used

 to remove existing ones. For example, in order to remove a script named

 build:

 npm pkg delete scripts.build

 Workspaces support

 You can set/get/delete items across your configured workspaces by using the workspace or

 workspaces config options.

 For example, setting a funding value across all configured workspaces of a project:

 npm pkg set funding=https://example.com --ws

 When using npm pkg get to retrieve info from your configured workspaces, the returned re?

 sult will be in a json format in which top level keys are the names of each workspace, the

 values of these keys will be the result values returned from each of the configured

 workspaces, e.g:

 npm pkg get name version --ws

 {

 "a": {

 "name": "a",

 "version": "1.0.0"

 },

 "b": {

 "name": "b",

 "version": "1.0.0"

 }

 }

 Configuration

 <!-- AUTOGENERATED CONFIG DESCRIPTIONS START --> <!-- automatically generated, do not edit Page 3/5

 manually --> <!-- see lib/utils/config/definitions.js -->

 force

 ? Default: false

 ? Type: Boolean

 Removes various protections against unfortunate side effects, common mistakes, unnecessary

 performance degradation, and malicious input.

 ? Allow clobbering non-npm files in global installs.

 ? Allow the npm version command to work on an unclean git repository.

 ? Allow deleting the cache folder with npm cache clean.

 ? Allow installing packages that have an engines declaration requiring a different version

 of npm.

 ? Allow installing packages that have an engines declaration requiring a different version

 of node, even if --engine-strict is enabled.

 ? Allow npm audit fix to install modules outside your stated dependency range (including

 SemVer-major changes).

 ? Allow unpublishing all versions of a published package.

 ? Allow conflicting peerDependencies to be installed in the root project.

 ? Implicitly set --yes during npm init.

 ? Allow clobbering existing values in npm pkg

 If you don't have a clear idea of what you want to do, it is strongly recommended that you

 do not use this option! <!-- automatically generated, do not edit manually --> <!-- see

 lib/utils/config/definitions.js -->

 json

 ? Default: false

 ? Type: Boolean

 Whether or not to output JSON data, rather than the normal output.

 ? In npm pkg set it enables parsing set values with JSON.parse() before saving them to

 your package.json.

 Not supported by all npm commands. <!-- automatically generated, do not edit manually -->

 <!-- see lib/utils/config/definitions.js -->

 workspace

 ? Default:

 ? Type: String (can be set multiple times) Page 4/5

 Enable running a command in the context of the configured workspaces of the current

 project while filtering by running only the workspaces defined by this configuration op?

 tion.

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result in selecting all workspaces within

 that folder)

 When set for the npm init command, this may be set to the folder of a workspace which does

 not yet exist, to create the folder and set it up as a brand new workspace within the

 project.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 workspaces

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured workspaces.

 Explicitly setting this to false will cause commands like install to ignore workspaces al?

 together. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update, etc.) will link

 workspaces into the node_modules folder. - Commands that do other things (test, exec,

 publish, etc.) will operate on the root project, unless one or more workspaces are spec?

 ified in the workspace config.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 <!-- AUTOGENERATED CONFIG DESCRIPTIONS END -->

See Also

 ? npm help install

 ? npm help init

 ? npm help config

 ? npm help set-script

 ? npm help workspaces

 undefined NaN NPM-PKG(1) Page 5/5

