
Rocky Enterprise Linux 9.2 Manual Pages on command 'npm-link.1'

$ man npm-link.1

NPM-LINK(1) NPM-LINK(1)

NAME

 npm-link - Symlink a package folder

 Synopsis

 npm link (in package dir)

 npm link [<@scope>/]<pkg>[@<version>]

 alias: npm ln

 Description

 This is handy for installing your own stuff, so that you can work on it and test itera?

 tively without having to continually rebuild.

 Package linking is a two-step process.

 First, npm link in a package folder will create a symlink in the global folder {pre?

 fix}/lib/node_modules/<package> that links to the package where the npm link command was

 executed. It will also link any bins in the package to {prefix}/bin/{name}. Note that npm

 link uses the global prefix (see npm prefix -g for its value).

 Next, in some other location, npm link package-name will create a symbolic link from glob?

 ally-installed package-name to node_modules/ of the current folder.

 Note that package-name is taken from package.json, not from the directory name.

 The package name can be optionally prefixed with a scope. See npm help scope. The scope

 must be preceded by an @-symbol and followed by a slash.

 When creating tarballs for npm publish, the linked packages are "snapshotted" to their

 current state by resolving the symbolic links, if they are included in bundleDependencies.

 For example: Page 1/7

 cd ~/projects/node-redis # go into the package directory

 npm link # creates global link

 cd ~/projects/node-bloggy # go into some other package directory.

 npm link redis # link-install the package

 Now, any changes to ~/projects/node-redis will be reflected in

 ~/projects/node-bloggy/node_modules/node-redis/. Note that the link should be to the pack?

 age name, not the directory name for that package.

 You may also shortcut the two steps in one. For example, to do the above use-case in a

 shorter way:

 cd ~/projects/node-bloggy # go into the dir of your main project

 npm link ../node-redis # link the dir of your dependency

 The second line is the equivalent of doing:

 (cd ../node-redis; npm link)

 npm link redis

 That is, it first creates a global link, and then links the global installation target

 into your project's node_modules folder.

 Note that in this case, you are referring to the directory name, node-redis, rather than

 the package name redis.

 If your linked package is scoped (see npm help scope) your link command must include that

 scope, e.g.

 npm link @myorg/privatepackage

 Caveat

 Note that package dependencies linked in this way are not saved to package.json by de?

 fault, on the assumption that the intention is to have a link stand in for a regular

 non-link dependency. Otherwise, for example, if you depend on redis@^3.0.1, and ran npm

 link redis, it would replace the ^3.0.1 dependency with file:../path/to/node-redis, which

 you probably don't want! Additionally, other users or developers on your project would

 run into issues if they do not have their folders set up exactly the same as yours.

 If you are adding a new dependency as a link, you should add it to the relevant metadata

 by running npm install <dep> --package-lock-only.

 If you want to save the file: reference in your package.json and package-lock.json files,

 you can use npm link <dep> --save to do so.

 Workspace Usage Page 2/7

 npm link <pkg> --workspace <name> will link the relevant package as a dependency of the

 specified workspace(s). Note that It may actually be linked into the parent project's

 node_modules folder, if there are no conflicting dependencies.

 npm link --workspace <name> will create a global link to the specified workspace(s).

 Configuration

 <!-- AUTOGENERATED CONFIG DESCRIPTIONS START --> <!-- automatically generated, do not edit

 manually --> <!-- see lib/utils/config/definitions.js -->

 save

 ? Default: true

 ? Type: Boolean

 Save installed packages to a package.json file as dependencies.

 When used with the npm rm command, removes the dependency from package.json. <!-- auto?

 matically generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 save-exact

 ? Default: false

 ? Type: Boolean

 Dependencies saved to package.json will be configured with an exact version rather than

 using npm's default semver range operator. <!-- automatically generated, do not edit man?

 ually --> <!-- see lib/utils/config/definitions.js -->

 global

 ? Default: false

 ? Type: Boolean

 Operates in "global" mode, so that packages are installed into the prefix folder instead

 of the current working directory. See npm help folders for more on the differences in be?

 havior.

 ? packages are installed into the {prefix}/lib/node_modules folder, instead of the current

 working directory.

 ? bin files are linked to {prefix}/bin

 ? man pages are linked to {prefix}/share/man

 <!-- automatically generated, do not edit manually --> <!-- see lib/utils/config/defini?

 tions.js -->

 global-style

 ? Default: false Page 3/7

 ? Type: Boolean

 Causes npm to install the package into your local node_modules folder with the same layout

 it uses with the global node_modules folder. Only your direct dependencies will show in

 node_modules and everything they depend on will be flattened in their node_modules fold?

 ers. This obviously will eliminate some deduping. If used with legacy-bundling,

 legacy-bundling will be preferred. <!-- automatically generated, do not edit manually -->

 <!-- see lib/utils/config/definitions.js -->

 legacy-bundling

 ? Default: false

 ? Type: Boolean

 Causes npm to install the package such that versions of npm prior to 1.4, such as the one

 included with node 0.8, can install the package. This eliminates all automatic deduping.

 If used with global-style this option will be preferred. <!-- automatically generated, do

 not edit manually --> <!-- see lib/utils/config/definitions.js -->

 strict-peer-deps

 ? Default: false

 ? Type: Boolean

 If set to true, and --legacy-peer-deps is not set, then any conflicting peerDependencies

 will be treated as an install failure, even if npm could reasonably guess the appropriate

 resolution based on non-peer dependency relationships.

 By default, conflicting peerDependencies deep in the dependency graph will be resolved us?

 ing the nearest non-peer dependency specification, even if doing so will result in some

 packages receiving a peer dependency outside the range set in their package's peerDepen?

 dencies object.

 When such and override is performed, a warning is printed, explaining the conflict and the

 packages involved. If --strict-peer-deps is set, then this warning is treated as a fail?

 ure. <!-- automatically generated, do not edit manually --> <!-- see lib/utils/con?

 fig/definitions.js -->

 package-lock

 ? Default: true

 ? Type: Boolean

 If set to false, then ignore package-lock.json files when installing. This will also pre?

 vent writing package-lock.json if save is true. Page 4/7

 When package package-locks are disabled, automatic pruning of extraneous modules will also

 be disabled. To remove extraneous modules with package-locks disabled use npm prune. <!--

 automatically generated, do not edit manually --> <!-- see lib/utils/config/definitions.js

 -->

 omit

 ? Default: 'dev' if the NODE_ENV environment variable is set to 'production', otherwise

 empty.

 ? Type: "dev", "optional", or "peer" (can be set multiple times)

 Dependency types to omit from the installation tree on disk.

 Note that these dependencies are still resolved and added to the package-lock.json or

 npm-shrinkwrap.json file. They are just not physically installed on disk.

 If a package type appears in both the --include and --omit lists, then it will be in?

 cluded.

 If the resulting omit list includes 'dev', then the NODE_ENV environment variable will be

 set to 'production' for all lifecycle scripts. <!-- automatically generated, do not edit

 manually --> <!-- see lib/utils/config/definitions.js -->

 ignore-scripts

 ? Default: false

 ? Type: Boolean

 If true, npm does not run scripts specified in package.json files.

 Note that commands explicitly intended to run a particular script, such as npm start, npm

 stop, npm restart, npm test, and npm run-script will still run their intended script if

 ignore-scripts is set, but they will not run any pre- or post-scripts. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 audit

 ? Default: true

 ? Type: Boolean

 When "true" submit audit reports alongside the current npm command to the default registry

 and all registries configured for scopes. See the documentation for npm help audit for de?

 tails on what is submitted. <!-- automatically generated, do not edit manually --> <!--

 see lib/utils/config/definitions.js -->

 bin-links

 ? Default: true Page 5/7

 ? Type: Boolean

 Tells npm to create symlinks (or .cmd shims on Windows) for package executables.

 Set to false to have it not do this. This can be used to work around the fact that some

 file systems don't support symlinks, even on ostensibly Unix systems. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 fund

 ? Default: true

 ? Type: Boolean

 When "true" displays the message at the end of each npm install acknowledging the number

 of dependencies looking for funding. See npm help npm fund for details. <!-- automati?

 cally generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 dry-run

 ? Default: false

 ? Type: Boolean

 Indicates that you don't want npm to make any changes and that it should only report what

 it would have done. This can be passed into any of the commands that modify your local in?

 stallation, eg, install, update, dedupe, uninstall, as well as pack and publish.

 Note: This is NOT honored by other network related commands, eg dist-tags, owner, etc.

 <!-- automatically generated, do not edit manually --> <!-- see lib/utils/config/defini?

 tions.js -->

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of the current

 project while filtering by running only the workspaces defined by this configuration op?

 tion.

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result in selecting all workspaces within

 that folder)

 When set for the npm init command, this may be set to the folder of a workspace which does

 not yet exist, to create the folder and set it up as a brand new workspace within the Page 6/7

 project.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 workspaces

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured workspaces.

 Explicitly setting this to false will cause commands like install to ignore workspaces al?

 together. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update, etc.) will link

 workspaces into the node_modules folder. - Commands that do other things (test, exec,

 publish, etc.) will operate on the root project, unless one or more workspaces are spec?

 ified in the workspace config.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 include-workspace-root

 ? Default: false

 ? Type: Boolean

 Include the workspace root when workspaces are enabled for a command.

 When false, specifying individual workspaces via the workspace config, or all workspaces

 via the workspaces flag, will cause npm to operate only on the specified workspaces, and

 not on the root project. <!-- automatically generated, do not edit manually --> <!-- see

 lib/utils/config/definitions.js -->

 <!-- AUTOGENERATED CONFIG DESCRIPTIONS END -->

 See Also

 ? npm help developers

 ? npm help package.json

 ? npm help install

 ? npm help folders

 ? npm help config

 ? npm help npmrc

 undefined NaN NPM-LINK(1)

Page 7/7

