
Rocky Enterprise Linux 9.2 Manual Pages on command 'npm-exec.1'

$ man npm-exec.1

NPM-EXEC(1) NPM-EXEC(1)

NAME

 npm-exec - Run a command from a local or remote npm package

 Synopsis

 npm exec -- <pkg>[@<version>] [args...]

 npm exec --package=<pkg>[@<version>] -- <cmd> [args...]

 npm exec -c '<cmd> [args...]'

 npm exec --package=foo -c '<cmd> [args...]'

 npm exec [--ws] [-w <workspace-name] [args...]

 npx <pkg>[@<specifier>] [args...]

 npx -p <pkg>[@<specifier>] <cmd> [args...]

 npx -c '<cmd> [args...]'

 npx -p <pkg>[@<specifier>] -c '<cmd> [args...]'

 Run without --call or positional args to open interactive subshell

 alias: npm x, npx

 common options:

 --package=<pkg> (may be specified multiple times)

 -p is a shorthand for --package only when using npx executable

 -c <cmd> --call=<cmd> (may not be mixed with positional arguments)

 Description

 This command allows you to run an arbitrary command from an npm package (either one in?

 stalled locally, or fetched remotely), in a similar context as running it via npm run.

 Run without positional arguments or --call, this allows you to interactively run commands Page 1/8

 in the same sort of shell environment that package.json scripts are run. Interactive mode

 is not supported in CI environments when standard input is a TTY, to prevent hangs.

 Whatever packages are specified by the --package option will be provided in the PATH of

 the executed command, along with any locally installed package executables. The --package

 option may be specified multiple times, to execute the supplied command in an environment

 where all specified packages are available.

 If any requested packages are not present in the local project dependencies, then they are

 installed to a folder in the npm cache, which is added to the PATH environment variable in

 the executed process. A prompt is printed (which can be suppressed by providing either

 --yes or --no).

 Package names provided without a specifier will be matched with whatever version exists in

 the local project. Package names with a specifier will only be considered a match if they

 have the exact same name and version as the local dependency.

 If no -c or --call option is provided, then the positional arguments are used to generate

 the command string. If no --package options are provided, then npm will attempt to deter?

 mine the executable name from the package specifier provided as the first positional argu?

 ment according to the following heuristic:

 ? If the package has a single entry in its bin field in package.json, or if all entries

 are aliases of the same command, then that command will be used.

 ? If the package has multiple bin entries, and one of them matches the unscoped portion of

 the name field, then that command will be used.

 ? If this does not result in exactly one option (either because there are no bin entries,

 or none of them match the name of the package), then npm exec exits with an error.

 To run a binary other than the named binary, specify one or more --package options, which

 will prevent npm from inferring the package from the first command argument.

 npx vs npm exec

 When run via the npx binary, all flags and options must be set prior to any positional ar?

 guments. When run via npm exec, a double-hyphen -- flag can be used to suppress npm's

 parsing of switches and options that should be sent to the executed command.

 For example:

 $ npx foo@latest bar --package=@npmcli/foo

 In this case, npm will resolve the foo package name, and run the following command:

 $ foo bar --package=@npmcli/foo Page 2/8

 Since the --package option comes after the positional arguments, it is treated as an argu?

 ment to the executed command.

 In contrast, due to npm's argument parsing logic, running this command is different:

 $ npm exec foo@latest bar --package=@npmcli/foo

 In this case, npm will parse the --package option first, resolving the @npmcli/foo pack?

 age. Then, it will execute the following command in that context:

 $ foo@latest bar

 The double-hyphen character is recommended to explicitly tell npm to stop parsing command

 line options and switches. The following command would thus be equivalent to the npx com?

 mand above:

 $ npm exec -- foo@latest bar --package=@npmcli/foo

 Configuration

 <!-- AUTOGENERATED CONFIG DESCRIPTIONS START --> <!-- automatically generated, do not edit

 manually --> <!-- see lib/utils/config/definitions.js -->

 package

 ? Default:

 ? Type: String (can be set multiple times)

 The package to install for npm help exec <!-- automatically generated, do not edit manu?

 ally --> <!-- see lib/utils/config/definitions.js -->

 call

 ? Default: ""

 ? Type: String

 Optional companion option for npm exec, npx that allows for specifying a custom command to

 be run along with the installed packages.

 npm exec --package yo --package generator-node --call "yo node"

 <!-- automatically generated, do not edit manually --> <!-- see lib/utils/config/defini?

 tions.js -->

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of the current

 project while filtering by running only the workspaces defined by this configuration op?

 tion. Page 3/8

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result in selecting all workspaces within

 that folder)

 When set for the npm init command, this may be set to the folder of a workspace which does

 not yet exist, to create the folder and set it up as a brand new workspace within the

 project.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 workspaces

 ? Default: null

 ? Type: null or Boolean

 Set to true to run the command in the context of all configured workspaces.

 Explicitly setting this to false will cause commands like install to ignore workspaces al?

 together. When not set explicitly:

 ? Commands that operate on the node_modules tree (install, update, etc.) will link

 workspaces into the node_modules folder. - Commands that do other things (test, exec,

 publish, etc.) will operate on the root project, unless one or more workspaces are spec?

 ified in the workspace config.

 This value is not exported to the environment for child processes. <!-- automatically

 generated, do not edit manually --> <!-- see lib/utils/config/definitions.js -->

 include-workspace-root

 ? Default: false

 ? Type: Boolean

 Include the workspace root when workspaces are enabled for a command.

 When false, specifying individual workspaces via the workspace config, or all workspaces

 via the workspaces flag, will cause npm to operate only on the specified workspaces, and

 not on the root project. <!-- automatically generated, do not edit manually --> <!-- see

 lib/utils/config/definitions.js -->

 <!-- AUTOGENERATED CONFIG DESCRIPTIONS END -->

 Examples

 Run the version of tap in the local dependencies, with the provided arguments: Page 4/8

 $ npm exec -- tap --bail test/foo.js

 $ npx tap --bail test/foo.js

 Run a command other than the command whose name matches the package name by specifying a

 --package option:

 $ npm exec --package=foo -- bar --bar-argument

 # ~ or ~

 $ npx --package=foo bar --bar-argument

 Run an arbitrary shell script, in the context of the current project:

 $ npm x -c 'eslint && say "hooray, lint passed"'

 $ npx -c 'eslint && say "hooray, lint passed"'

 Workspaces support

 You may use the workspace or workspaces configs in order to run an arbitrary command from

 an npm package (either one installed locally, or fetched remotely) in the context of the

 specified workspaces. If no positional argument or --call option is provided, it will

 open an interactive subshell in the context of each of these configured workspaces one at

 a time.

 Given a project with configured workspaces, e.g:

 .

 +-- package.json

 `-- packages

 +-- a

 | `-- package.json

 +-- b

 | `-- package.json

 `-- c

 `-- package.json

 Assuming the workspace configuration is properly set up at the root level package.json

 file. e.g:

 {

 "workspaces": ["./packages/*"]

 }

 You can execute an arbitrary command from a package in the context of each of the config?

 ured workspaces when using the workspaces configuration options, in this example we're us? Page 5/8

 ing eslint to lint any js file found within each workspace folder:

 npm exec --ws -- eslint ./*.js

 Filtering workspaces

 It's also possible to execute a command in a single workspace using the workspace config

 along with a name or directory path:

 npm exec --workspace=a -- eslint ./*.js

 The workspace config can also be specified multiple times in order to run a specific

 script in the context of multiple workspaces. When defining values for the workspace con?

 fig in the command line, it also possible to use -w as a shorthand, e.g:

 npm exec -w a -w b -- eslint ./*.js

 This last command will run the eslint command in both ./packages/a and ./packages/b fold?

 ers.

 Compatibility with Older npx Versions

 The npx binary was rewritten in npm v7.0.0, and the standalone npx package deprecated at

 that time. npx uses the npm exec command instead of a separate argument parser and in?

 stall process, with some affordances to maintain backwards compatibility with the argu?

 ments it accepted in previous versions.

 This resulted in some shifts in its functionality:

 ? Any npm config value may be provided.

 ? To prevent security and user-experience problems from mistyping package names, npx

 prompts before installing anything. Suppress this prompt with the -y or --yes option.

 ? The --no-install option is deprecated, and will be converted to --no.

 ? Shell fallback functionality is removed, as it is not advisable.

 ? The -p argument is a shorthand for --parseable in npm, but shorthand for --package in

 npx. This is maintained, but only for the npx executable.

 ? The --ignore-existing option is removed. Locally installed bins are always present in

 the executed process PATH.

 ? The --npm option is removed. npx will always use the npm it ships with.

 ? The --node-arg and -n options are removed.

 ? The --always-spawn option is redundant, and thus removed.

 ? The --shell option is replaced with --script-shell, but maintained in the npx executable

 for backwards compatibility.

 A note on caching Page 6/8

 The npm cli utilizes its internal package cache when using the package name specified.

 You can use the following to change how and when the cli uses this cache. See npm help

 cache for more on how the cache works.

 prefer-online

 Forces staleness checks for packages, making the cli look for updates immediately even if

 the package is already in the cache.

 prefer-offline

 Bypasses staleness checks for packages. Missing data will still be requested from the

 server. To force full offline mode, use offline.

 offline

 Forces full offline mode. Any packages not locally cached will result in an error.

 workspace

 ? Default:

 ? Type: String (can be set multiple times)

 Enable running a command in the context of the configured workspaces of the current

 project while filtering by running only the workspaces defined by this configuration op?

 tion.

 Valid values for the workspace config are either:

 ? Workspace names

 ? Path to a workspace directory

 ? Path to a parent workspace directory (will result to selecting all of the nested

 workspaces)

 This value is not exported to the environment for child processes.

 workspaces

 ? Alias: --ws

 ? Type: Boolean

 ? Default: false

 Run scripts in the context of all configured workspaces for the current project.

 See Also

 ? npm help run-script

 ? npm help scripts

 ? npm help test

 ? npm help start Page 7/8

 ? npm help restart

 ? npm help stop

 ? npm help config

 ? npm help workspaces

 ? npm help npx

 undefined NaN NPM-EXEC(1)

Page 8/8

