
Linux Ubuntu 22.4.5 Manual Pages on command 'nasm.1'

$ man nasm.1

NASM(1) The Netwide Assembler Project NASM(1)

NAME

 nasm - the Netwide Assembler, a portable 80x86 assembler

SYNOPSIS

 nasm [-@ response file] [-f format] [-o outfile] [-l listfile] [options...]

 filename

DESCRIPTION

 The nasm command assembles the file filename and directs output to the file outfile

 if specified. If outfile is not specified, nasm will derive a default output file

 name from the name of its input file, usually by appending ?.o? or ?.obj?, or by

 removing all extensions for a raw binary file. Failing that, the output file name

 will be ?nasm.out?.

OPTIONS

 -@ filename

 Causes nasm to process options from filename as if they were included on the

 command line.

 -a

 Causes nasm to assemble the given input file without first applying the macro

 preprocessor.

 -D|-d macro[=value]

 Pre-defines a single-line macro.

 -E|-e
Page 1/7

 Causes nasm to preprocess the given input file, and write the output to stdout

 (or the specified output file name), and not actually assemble anything.

 -f format

 Specifies the output file format. To see a list of valid output formats, use

 the -hf option.

 -F format

 Specifies the debug information format. To see a list of valid output formats,

 use the -y option (for example -felf -y).

 -g

 Causes nasm to generate debug information.

 -gformat

 Equivalent to -g -F format.

 -h

 Causes nasm to exit immediately, after giving a summary of its invocation

 options.

 -hf

 Same as -h , but also lists all valid output formats.

 -I|-i directory

 Adds a directory to the search path for include files. The directory

 specification must include the trailing slash, as it will be directly prepended

 to the name of the include file.

 -l listfile

 Causes an assembly listing to be directed to the given file, in which the

 original source is displayed on the right hand side (plus the source for

 included files and the expansions of multi-line macros) and the generated code

 is shown in hex on the left.

 -M

 Causes nasm to output Makefile-style dependencies to stdout; normal output is

 suppressed.

 -MG file

 Same as -M but assumes that missing Makefile dependecies are generated and

 added to dependency list without a prefix.

 -MF file Page 2/7

 Output Makefile-style dependencies to the specified file.

 -MD file

 Same as a combination of -M and -MF options.

 -MT file

 Override the default name of the dependency target dependency target name. This

 is normally the same as the output filename, specified by the -o option.

 -MQ file

 The same as -MT except it tries to quote characters that have special meaning

 in Makefile syntax. This is not foolproof, as not all characters with special

 meaning are quotable in Make.

 -MP

 Emit phony target.

 -O number

 Optimize branch offsets.

 ? -O0: No optimization

 ? -O1: Minimal optimization

 ? -Ox: Multipass optimization (default)

 -o outfile

 Specifies a precise name for the output file, overriding nasm's default means

 of determining it.

 -P|-p file

 Specifies a file to be pre-included, before the main source file starts to be

 processed.

 -s

 Causes nasm to send its error messages and/or help text to stdout instead of

 stderr.

 -t

 Causes nasm to assemble in SciTech TASM compatible mode.

 -U|-u macro

 Undefines a single-line macro.

 -v

 Causes nasm to exit immediately, after displaying its version number.

 *-W[no-]foo' Page 3/7

 Causes nasm to enable or disable certain classes of warning messages, in

 gcc-like style, for example -Worphan-labels or -Wno-orphan-labels.

 -w[+-]foo

 Causes nasm to enable or disable certain classes of warning messages, for

 example -w+orphan-labels or -w-macro-params.

 -X format

 Specifies error reporting format (gnu or vc).

 -y

 Causes nasm to list supported debug formats.

 -Z filename

 Causes nasm to redirect error messages to filename. This option exists to

 support operating systems on which stderr is not easily redirected.

 --prefix, --postfix

 Prepend or append (respectively) the given argument to all global or extern

 variables.

SYNTAX

 This man page does not fully describe the syntax of nasm's assembly language, but

 does give a summary of the differences from other assemblers.

 Registers have no leading ?%? sign, unlike gas, and floating-point stack registers

 are referred to as st0, st1, and so on.

 Floating-point instructions may use either the single-operand form or the double. A

 TO keyword is provided; thus, one could either write

 fadd st0,st1

 fadd st1,st0

 or one could use the alternative single-operand forms

 fadd st1

 fadd to st1

 Uninitialised storage is reserved using the RESB, RESW, RESD, RESQ, REST and RESO

 pseudo-opcodes, each taking one parameter which gives the number of bytes, words,

 doublewords, quadwords or ten-byte words to reserve.

 Repetition of data items is not done by the DUP keyword as seen in DOS assemblers,

 but by the use of the TIMES prefix, like this:

 message: times 3 db 'abc' Page 4/7

 times 64-$+message db 0

 which defines the string abcabcabc, followed by the right number of zero bytes to

 make the total length up to 64 bytes.

 Symbol references are always understood to be immediate (i.e. the address of the

 symbol), unless square brackets are used, in which case the contents of the memory

 location are used. Thus:

 mov ax,wordvar

 loads AX with the address of the variable wordvar, whereas

 mov ax,[wordvar]

 mov ax,[wordvar+1]

 mov ax,[es:wordvar+bx]

 all refer to the contents of memory locations. The syntaxes

 mov ax,es:wordvar[bx]

 es mov ax,wordvar[1]

 are not legal at all, although the use of a segment register name as an instruction

 prefix is valid, and can be used with instructions such as LODSB which can?t be

 overridden any other way.

 Constants may be expressed numerically in most formats: a trailing H, Q or B

 denotes hex, octal or binary respectively, and a leading ?0x? or ?$? denotes hex as

 well. Leading zeros are not treated specially at all. Character constants may be

 enclosed in single or double quotes; there is no escape character. The ordering is

 little-endian (reversed), so that the character constant 'abcd' denotes 0x64636261

 and not 0x61626364.

 Local labels begin with a period, and their ?locality? is granted by the assembler

 prepending the name of the previous non-local symbol. Thus declaring a label

 ?.loop? after a label ?label? has actually defined a symbol called ?label.loop?.

DIRECTIVES

 SECTION name or SEGMENT name causes nasm to direct all following code to the named

 section. Section names vary with output file format, although most formats support

 the names .text, .data and .bss. (The exception is the obj format, in which all

 segments are user-definable.)

 ABSOLUTE address causes nasm to position its notional assembly point at an absolute

 address: so no code or data may be generated, but you can use RESB, RESW and RESD Page 5/7

 to move the assembly point further on, and you can define labels. So this directive

 may be used to define data structures. When you have finished doing absolute

 assembly, you must issue another SECTION directive to return to normal assembly.

 BITS 16, BITS 32 or BITS 64 switches the default processor mode for which nasm is

 generating code: it is equivalent to USE16 or USE32 in DOS assemblers.

 EXTERN symbol and GLOBAL symbol import and export symbol definitions, respectively,

 from and to other modules. Note that the GLOBAL directive must appear before the

 definition of the symbol it refers to.

 STRUC strucname and ENDSTRUC, when used to bracket a number of RESB, RESW or

 similar instructions, define a data structure. In addition to defining the offsets

 of the structure members, the construct also defines a symbol for the size of the

 structure, which is simply the structure name with size tacked on to the end.

FORMAT-SPECIFIC DIRECTIVES

 ORG address is used by the bin flat-form binary output format, and specifies the

 address at which the output code will eventually be loaded.

 GROUP grpname seg1 seg2... is used by the obj (Microsoft 16-bit) output format, and

 defines segment groups. This format also uses UPPERCASE, which directs that all

 segment, group and symbol names output to the object file should be in uppercase.

 Note that the actual assembly is still case sensitive.

 LIBRARY libname is used by the rdf output format, and causes a dependency record to

 be written to the output file which indicates that the program requires a certain

 library in order to run.

MACRO PREPROCESSOR

 Single-line macros are defined using the %define or %idefine commands, in a similar

 fashion to the C preprocessor. They can be overloaded with respect to number of

 parameters, although defining a macro with no parameters prevents the definition of

 any macro with the same name taking parameters, and vice versa. %define defines

 macros whose names match case-sensitively, whereas %idefine defines

 case-insensitive macros.

 Multi-line macros are defined using %macro and %imacro (the distinction is the same

 as that between %define and %idefine), whose syntax is as follows

 %macro name minprm[-maxprm][+][.nolist] [defaults]

 <some lines of macro expansion text> Page 6/7

 %endmacro

 Again, these macros may be overloaded. The trailing plus sign indicates that any

 parameters after the last one get subsumed, with their separating commas, into the

 last parameter. The defaults part can be used to specify defaults for unspecified

 macro parameters after minparam. %endm is a valid synonym for %endmacro.

 To refer to the macro parameters within a macro expansion, you use %1, %2 and so

 on. You can also enforce that a macro parameter should contain a condition code by

 using %+1, and you can invert the condition code by using %-1. You can also define

 a label specific to a macro invocation by prefixing it with a double ?%? sign.

 Files can be included using the %include directive, which works like C.

 The preprocessor has a ?context stack?, which may be used by one macro to store

 information that a later one will retrieve. You can push a context on the stack

 using %push, remove one using %pop, and change the name of the top context (without

 disturbing any associated definitions) using %repl. Labels and %define macros

 specific to the top context may be defined by prefixing their names with %$, and

 things specific to the next context down with %$$, and so on.

 Conditional assembly is done by means of %ifdef, %ifndef, %else and %endif as in C.

 (Except that %ifdef can accept several putative macro names, and will evaluate TRUE

 if any of them is defined.) In addition, the directives %ifctx and %ifnctx can be

 used to condition on the name of the top context on the context stack. The obvious

 set of ?else-if? directives, %elifdef, %elifndef, %elifctx and %elifnctx are also

 supported.

BUGS

 Please report bugs through the bug tracker function at http://nasm.us.

SEE ALSO

 as(1), ld(1).

NASM 12/26/2018 NASM(1)

Page 7/7

