
Rocky Enterprise Linux 9.2 Manual Pages on command 'modify_ldt.2'

$ man modify_ldt.2

MODIFY_LDT(2) Linux Programmer's Manual MODIFY_LDT(2)

NAME

 modify_ldt - get or set a per-process LDT entry

SYNOPSIS

 #include <sys/types.h>

 int modify_ldt(int func, void *ptr, unsigned long bytecount);

 Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

 modify_ldt() reads or writes the local descriptor table (LDT) for a process. The LDT is

 an array of segment descriptors that can be referenced by user code. Linux allows pro?

 cesses to configure a per-process (actually per-mm) LDT. For more information about the

 LDT, see the Intel Software Developer's Manual or the AMD Architecture Programming Manual.

 When func is 0, modify_ldt() reads the LDT into the memory pointed to by ptr. The number

 of bytes read is the smaller of bytecount and the actual size of the LDT, although the

 kernel may act as though the LDT is padded with additional trailing zero bytes. On suc?

 cess, modify_ldt() will return the number of bytes read.

 When func is 1 or 0x11, modify_ldt() modifies the LDT entry indicated by ptr->entry_num?

 ber. ptr points to a user_desc structure and bytecount must equal the size of this struc?

 ture.

 The user_desc structure is defined in <asm/ldt.h> as:

 struct user_desc {

 unsigned int entry_number;

 unsigned int base_addr; Page 1/3

 unsigned int limit;

 unsigned int seg_32bit:1;

 unsigned int contents:2;

 unsigned int read_exec_only:1;

 unsigned int limit_in_pages:1;

 unsigned int seg_not_present:1;

 unsigned int useable:1;

 };

 In Linux 2.4 and earlier, this structure was named modify_ldt_ldt_s.

 The contents field is the segment type (data, expand-down data, non-conforming code, or

 conforming code). The other fields match their descriptions in the CPU manual, although

 modify_ldt() cannot set the hardware-defined "accessed" bit described in the CPU manual.

 A user_desc is considered "empty" if read_exec_only and seg_not_present are set to 1 and

 all of the other fields are 0. An LDT entry can be cleared by setting it to an "empty"

 user_desc or, if func is 1, by setting both base and limit to 0.

 A conforming code segment (i.e., one with contents==3) will be rejected if func is 1 or if

 seg_not_present is 0.

 When func is 2, modify_ldt() will read zeros. This appears to be a leftover from Linux

 2.4.

RETURN VALUE

 On success, modify_ldt() returns either the actual number of bytes read (for reading) or 0

 (for writing). On failure, modify_ldt() returns -1 and sets errno to indicate the error.

ERRORS

 EFAULT ptr points outside the address space.

 EINVAL ptr is 0, or func is 1 and bytecount is not equal to the size of the structure

 user_desc, or func is 1 or 0x11 and the new LDT entry has invalid values.

 ENOSYS func is neither 0, 1, 2, nor 0x11.

CONFORMING TO

 This call is Linux-specific and should not be used in programs intended to be portable.

NOTES

 Glibc does not provide a wrapper for this system call; call it using syscall(2).

 modify_ldt() should not be used for thread-local storage, as it slows down context

 switches and only supports a limited number of threads. Threading libraries should use Page 2/3

 set_thread_area(2) or arch_prctl(2) instead, except on extremely old kernels that do not

 support those system calls.

 The normal use for modify_ldt() is to run legacy 16-bit or segmented 32-bit code. Not all

 kernels allow 16-bit segments to be installed, however.

 Even on 64-bit kernels, modify_ldt() cannot be used to create a long mode (i.e., 64-bit)

 code segment. The undocumented field "lm" in user_desc is not useful, and, despite its

 name, does not result in a long mode segment.

BUGS

 On 64-bit kernels before Linux 3.19, setting the "lm" bit in user_desc prevents the de?

 scriptor from being considered empty. Keep in mind that the "lm" bit does not exist in

 the 32-bit headers, but these buggy kernels will still notice the bit even when set in a

 32-bit process.

SEE ALSO

 arch_prctl(2), set_thread_area(2), vm86(2)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-02-09 MODIFY_LDT(2)

Page 3/3

