
Rocky Enterprise Linux 9.2 Manual Pages on command 'mlock2.2'

$ man mlock2.2

MLOCK(2) Linux Programmer's Manual MLOCK(2)

NAME

 mlock, mlock2, munlock, mlockall, munlockall - lock and unlock memory

SYNOPSIS

 #include <sys/mman.h>

 int mlock(const void *addr, size_t len);

 int mlock2(const void *addr, size_t len, int flags);

 int munlock(const void *addr, size_t len);

 int mlockall(int flags);

 int munlockall(void);

DESCRIPTION

 mlock(), mlock2(), and mlockall() lock part or all of the calling process's virtual ad?

 dress space into RAM, preventing that memory from being paged to the swap area.

 munlock() and munlockall() perform the converse operation, unlocking part or all of the

 calling process's virtual address space, so that pages in the specified virtual address

 range may once more to be swapped out if required by the kernel memory manager.

 Memory locking and unlocking are performed in units of whole pages.

 mlock(), mlock2(), and munlock()

 mlock() locks pages in the address range starting at addr and continuing for len bytes.

 All pages that contain a part of the specified address range are guaranteed to be resident

 in RAM when the call returns successfully; the pages are guaranteed to stay in RAM until

 later unlocked.

 mlock2() also locks pages in the specified range starting at addr and continuing for len Page 1/6

 bytes. However, the state of the pages contained in that range after the call returns

 successfully will depend on the value in the flags argument.

 The flags argument can be either 0 or the following constant:

 MLOCK_ONFAULT

 Lock pages that are currently resident and mark the entire range so that the re?

 maining nonresident pages are locked when they are populated by a page fault.

 If flags is 0, mlock2() behaves exactly the same as mlock().

 munlock() unlocks pages in the address range starting at addr and continuing for len

 bytes. After this call, all pages that contain a part of the specified memory range can

 be moved to external swap space again by the kernel.

 mlockall() and munlockall()

 mlockall() locks all pages mapped into the address space of the calling process. This in?

 cludes the pages of the code, data and stack segment, as well as shared libraries, user

 space kernel data, shared memory, and memory-mapped files. All mapped pages are guaran?

 teed to be resident in RAM when the call returns successfully; the pages are guaranteed to

 stay in RAM until later unlocked.

 The flags argument is constructed as the bitwise OR of one or more of the following con?

 stants:

 MCL_CURRENT

 Lock all pages which are currently mapped into the address space of the process.

 MCL_FUTURE

 Lock all pages which will become mapped into the address space of the process in

 the future. These could be, for instance, new pages required by a growing heap and

 stack as well as new memory-mapped files or shared memory regions.

 MCL_ONFAULT (since Linux 4.4)

 Used together with MCL_CURRENT, MCL_FUTURE, or both. Mark all current (with

 MCL_CURRENT) or future (with MCL_FUTURE) mappings to lock pages when they are

 faulted in. When used with MCL_CURRENT, all present pages are locked, but mlock?

 all() will not fault in non-present pages. When used with MCL_FUTURE, all future

 mappings will be marked to lock pages when they are faulted in, but they will not

 be populated by the lock when the mapping is created. MCL_ONFAULT must be used

 with either MCL_CURRENT or MCL_FUTURE or both.

 If MCL_FUTURE has been specified, then a later system call (e.g., mmap(2), sbrk(2), mal? Page 2/6

 loc(3)), may fail if it would cause the number of locked bytes to exceed the permitted

 maximum (see below). In the same circumstances, stack growth may likewise fail: the ker?

 nel will deny stack expansion and deliver a SIGSEGV signal to the process.

 munlockall() unlocks all pages mapped into the address space of the calling process.

RETURN VALUE

 On success, these system calls return 0. On error, -1 is returned, errno is set appropri?

 ately, and no changes are made to any locks in the address space of the process.

ERRORS

 ENOMEM (Linux 2.6.9 and later) the caller had a nonzero RLIMIT_MEMLOCK soft resource

 limit, but tried to lock more memory than the limit permitted. This limit is not

 enforced if the process is privileged (CAP_IPC_LOCK).

 ENOMEM (Linux 2.4 and earlier) the calling process tried to lock more than half of RAM.

 EPERM The caller is not privileged, but needs privilege (CAP_IPC_LOCK) to perform the re?

 quested operation.

 For mlock(), mlock2(), and munlock():

 EAGAIN Some or all of the specified address range could not be locked.

 EINVAL The result of the addition addr+len was less than addr (e.g., the addition may have

 resulted in an overflow).

 EINVAL (Not on Linux) addr was not a multiple of the page size.

 ENOMEM Some of the specified address range does not correspond to mapped pages in the ad?

 dress space of the process.

 ENOMEM Locking or unlocking a region would result in the total number of mappings with

 distinct attributes (e.g., locked versus unlocked) exceeding the allowed maximum.

 (For example, unlocking a range in the middle of a currently locked mapping would

 result in three mappings: two locked mappings at each end and an unlocked mapping

 in the middle.)

 For mlock2():

 EINVAL Unknown flags were specified.

 For mlockall():

 EINVAL Unknown flags were specified or MCL_ONFAULT was specified without either MCL_FUTURE

 or MCL_CURRENT.

 For munlockall():

 EPERM (Linux 2.6.8 and earlier) The caller was not privileged (CAP_IPC_LOCK). Page 3/6

VERSIONS

 mlock2() is available since Linux 4.4; glibc support was added in version 2.27.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4.

 mlock2() is Linux specific.

 On POSIX systems on which mlock() and munlock() are available, _POSIX_MEMLOCK_RANGE is de?

 fined in <unistd.h> and the number of bytes in a page can be determined from the constant

 PAGESIZE (if defined) in <limits.h> or by calling sysconf(_SC_PAGESIZE).

 On POSIX systems on which mlockall() and munlockall() are available, _POSIX_MEMLOCK is de?

 fined in <unistd.h> to a value greater than 0. (See also sysconf(3).)

NOTES

 Memory locking has two main applications: real-time algorithms and high-security data pro?

 cessing. Real-time applications require deterministic timing, and, like scheduling, pag?

 ing is one major cause of unexpected program execution delays. Real-time applications

 will usually also switch to a real-time scheduler with sched_setscheduler(2). Crypto?

 graphic security software often handles critical bytes like passwords or secret keys as

 data structures. As a result of paging, these secrets could be transferred onto a persis?

 tent swap store medium, where they might be accessible to the enemy long after the secu?

 rity software has erased the secrets in RAM and terminated. (But be aware that the sus?

 pend mode on laptops and some desktop computers will save a copy of the system's RAM to

 disk, regardless of memory locks.)

 Real-time processes that are using mlockall() to prevent delays on page faults should re?

 serve enough locked stack pages before entering the time-critical section, so that no page

 fault can be caused by function calls. This can be achieved by calling a function that

 allocates a sufficiently large automatic variable (an array) and writes to the memory oc?

 cupied by this array in order to touch these stack pages. This way, enough pages will be

 mapped for the stack and can be locked into RAM. The dummy writes ensure that not even

 copy-on-write page faults can occur in the critical section.

 Memory locks are not inherited by a child created via fork(2) and are automatically re?

 moved (unlocked) during an execve(2) or when the process terminates. The mlockall()

 MCL_FUTURE and MCL_FUTURE | MCL_ONFAULT settings are not inherited by a child created via

 fork(2) and are cleared during an execve(2).

 Note that fork(2) will prepare the address space for a copy-on-write operation. The con? Page 4/6

 sequence is that any write access that follows will cause a page fault that in turn may

 cause high latencies for a real-time process. Therefore, it is crucial not to invoke

 fork(2) after an mlockall() or mlock() operation?not even from a thread which runs at a

 low priority within a process which also has a thread running at elevated priority.

 The memory lock on an address range is automatically removed if the address range is un?

 mapped via munmap(2).

 Memory locks do not stack, that is, pages which have been locked several times by calls to

 mlock(), mlock2(), or mlockall() will be unlocked by a single call to munlock() for the

 corresponding range or by munlockall(). Pages which are mapped to several locations or by

 several processes stay locked into RAM as long as they are locked at least at one location

 or by at least one process.

 If a call to mlockall() which uses the MCL_FUTURE flag is followed by another call that

 does not specify this flag, the changes made by the MCL_FUTURE call will be lost.

 The mlock2() MLOCK_ONFAULT flag and the mlockall() MCL_ONFAULT flag allow efficient memory

 locking for applications that deal with large mappings where only a (small) portion of

 pages in the mapping are touched. In such cases, locking all of the pages in a mapping

 would incur a significant penalty for memory locking.

 Linux notes

 Under Linux, mlock(), mlock2(), and munlock() automatically round addr down to the nearest

 page boundary. However, the POSIX.1 specification of mlock() and munlock() allows an im?

 plementation to require that addr is page aligned, so portable applications should ensure

 this.

 The VmLck field of the Linux-specific /proc/[pid]/status file shows how many kilobytes of

 memory the process with ID PID has locked using mlock(), mlock2(), mlockall(), and mmap(2)

 MAP_LOCKED.

 Limits and permissions

 In Linux 2.6.8 and earlier, a process must be privileged (CAP_IPC_LOCK) in order to lock

 memory and the RLIMIT_MEMLOCK soft resource limit defines a limit on how much memory the

 process may lock.

 Since Linux 2.6.9, no limits are placed on the amount of memory that a privileged process

 can lock and the RLIMIT_MEMLOCK soft resource limit instead defines a limit on how much

 memory an unprivileged process may lock.

BUGS Page 5/6

 In Linux 4.8 and earlier, a bug in the kernel's accounting of locked memory for unprivi?

 leged processes (i.e., without CAP_IPC_LOCK) meant that if the region specified by addr

 and len overlapped an existing lock, then the already locked bytes in the overlapping re?

 gion were counted twice when checking against the limit. Such double accounting could in?

 correctly calculate a "total locked memory" value for the process that exceeded the

 RLIMIT_MEMLOCK limit, with the result that mlock() and mlock2() would fail on requests

 that should have succeeded. This bug was fixed in Linux 4.9.

 In the 2.4 series Linux kernels up to and including 2.4.17, a bug caused the mlockall()

 MCL_FUTURE flag to be inherited across a fork(2). This was rectified in kernel 2.4.18.

 Since kernel 2.6.9, if a privileged process calls mlockall(MCL_FUTURE) and later drops

 privileges (loses the CAP_IPC_LOCK capability by, for example, setting its effective UID

 to a nonzero value), then subsequent memory allocations (e.g., mmap(2), brk(2)) will fail

 if the RLIMIT_MEMLOCK resource limit is encountered.

SEE ALSO

 mincore(2), mmap(2), setrlimit(2), shmctl(2), sysconf(3), proc(5), capabilities(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-04-11 MLOCK(2)

Page 6/6

