
Rocky Enterprise Linux 9.2 Manual Pages on command 'mkfs.fat.8'

$ man mkfs.fat.8

MKFS.FAT(8) System Manager's Manual MKFS.FAT(8)

NAME

 mkfs.fat - create an MS-DOS FAT filesystem

SYNOPSIS

 mkfs.fat [OPTIONS] DEVICE [BLOCK-COUNT]

DESCRIPTION

 mkfs.fat is used to create a FAT filesystem on a device or in an image file. DEVICE is

 the special file corresponding to the device (e.g. /dev/sdXX) or the image file (which

 does not need to exist when the option -C is given). BLOCK-COUNT is the number of blocks

 on the device and size of one block is always 1024 bytes, independently of the sector size

 or the cluster size. Therefore BLOCK-COUNT specifies size of filesystem in KiB unit and

 not in the number of sectors (like for all other mkfs.fat options). If omitted, mkfs.fat

 automatically chooses a filesystem size to fill the available space.

 Two different variants of the FAT filesystem are supported. Standard is the FAT12, FAT16

 and FAT32 filesystems as defined by Microsoft and widely used on hard disks and removable

 media like USB sticks and SD cards. The other is the legacy Atari variant used on Atari

 ST.

 In Atari mode, if not directed otherwise by the user, mkfs.fat will always use 2 sectors

 per cluster, since GEMDOS doesn't like other values very much. It will also obey the max?

 imum number of sectors GEMDOS can handle. Larger filesystems are managed by raising the

 logical sector size. An Atari-compatible serial number for the filesystem is generated,

 and a 12 bit FAT is used only for filesystems that have one of the usual floppy sizes

 (720k, 1.2M, 1.44M, 2.88M), a 16 bit FAT otherwise. This can be overridden with the -F Page 1/6

 option. Some PC-specific boot sector fields aren't written, and a boot message (option

 -m) is ignored.

OPTIONS

 -a Normally, for any filesystem except very small ones, mkfs.fat will align all the data

 structures to cluster size, to make sure that as long as the partition is properly

 aligned, so will all the data structures in the filesystem. This option disables

 alignment; this may provide a handful of additional clusters of storage at the expense

 of a significant performance degradation on RAIDs, flash media or large-sector hard

 disks.

 -A Select using the Atari variation of the FAT filesystem if that isn't active already,

 otherwise select standard FAT filesystem. This is selected by default if mkfs.fat is

 run on 68k Atari Linux.

 -b SECTOR-OF-BACKUP

 Selects the location of the backup boot sector for FAT32. Default depends on number

 of reserved sectors, but usually is sector 6. If there is a free space available af?

 ter the backup boot sector then backup of the FAT32 info sector is put after the

 backup boot sector, usually at sector 7. The backup must be within the range of re?

 served sectors. Value 0 completely disables creating of backup boot and info FAT32

 sectors.

 -c Check the device for bad blocks before creating the filesystem.

 -C Create the file given as DEVICE on the command line, and write the to-be-created

 filesystem to it. This can be used to create the new filesystem in a file instead of

 on a real device, and to avoid using dd in advance to create a file of appropriate

 size. With this option, the BLOCK-COUNT must be given, because otherwise the intended

 size of the filesystem wouldn't be known. The file created is a sparse file, which

 actually only contains the meta-data areas (boot sector, FATs, and root directory).

 The data portions won't be stored on the disk, but the file nevertheless will have the

 correct size. The resulting file can be copied later to a floppy disk or other de?

 vice, or mounted through a loop device.

 -D DRIVE-NUMBER

 Specify the BIOS drive number to be stored in the FAT boot sector. For hard disks and

 removable medias it is usually 0x80?0xFF (0x80 is first hard disk C:, 0x81 is second

 hard disk D:, ...), for floppy devices or partitions to be used for floppy emulation Page 2/6

 it is 0x00?0x7F (0x00 is first floppy A:, 0x01 is second floppy B:).

 -f NUMBER-OF-FATS

 Specify the number of file allocation tables in the filesystem. The default is 2.

 -F FAT-SIZE

 Specifies the type of file allocation tables used (12, 16 or 32 bit). If nothing is

 specified, mkfs.fat will automatically select between 12, 16 and 32 bit, whatever fits

 better for the filesystem size.

 -g HEADS/SECTORS-PER-TRACK

 Specify HEADS and SECTORS-PER-TRACK numbers which represents disk geometry of DEVICE.

 Both numbers are stored into the FAT boot sector. Number SECTORS-PER-TRACK is used

 also for aligning the total count of FAT sectors. By default disk geometry is read

 from DEVICE itself. If it is not available then LBA-Assist Translation and transla?

 tion table from the SD Card Part 2 File System Specification based on total number of

 disk sectors is used.

 -h NUMBER-OF-HIDDEN-SECTORS

 Specify the number of so-called hidden sectors, as stored in the FAT boot sector: this

 number represents the beginning sector of the partition containing the file system.

 Normally this is an offset (in sectors) relative to the start of the disk, although

 for MBR logical volumes contained in an extended partition of type 0x05 (a non-LBA ex?

 tended partition), a quirk in the MS-DOS implementation of FAT requires it to be rela?

 tive to the partition's immediate containing Extended Boot Record. Boot code and

 other software handling FAT volumes may also rely on this field being set up cor?

 rectly; most modern FAT implementations will ignore it. By default, if the DEVICE is

 a partition block device, mkfs.fat uses the partition offset relative to disk start.

 Otherwise, mkfs.fat assumes zero. Use this option to override this behaviour.

 -i VOLUME-ID

 Sets the volume ID of the newly created filesystem; VOLUME-ID is a 32-bit hexadecimal

 number (for example, 2e24ec82). The default is a number which depends on the filesys?

 tem creation time.

 -I Ignore and disable safety checks. By default mkfs.fat refuses to create a filesystem

 on a device with partitions or virtual mapping. mkfs.fat will complain and tell you

 that it refuses to work. This is different when using MO disks. One doesn't always

 need partitions on MO disks. The filesystem can go directly to the whole disk. Under Page 3/6

 other OSes this is known as the superfloppy format. This switch will force mkfs.fat

 to work properly.

 -l FILENAME

 Read the bad blocks list from FILENAME.

 -m MESSAGE-FILE

 Sets the message the user receives on attempts to boot this filesystem without having

 properly installed an operating system. The message file must not exceed 418 bytes

 once line feeds have been converted to carriage return-line feed combinations, and

 tabs have been expanded. If the filename is a hyphen (-), the text is taken from

 standard input.

 -M FAT-MEDIA-TYPE

 Specify the media type to be stored in the FAT boot sector. This value is usually

 0xF8 for hard disks and is 0xF0 or a value from 0xF9 to 0xFF for floppies or parti?

 tions to be used for floppy emulation.

 --mbr[=y|yes|n|no|a|auto]

 Fill (fake) MBR table with disk signature one partition which starts at sector 0 (in?

 cludes MBR itself) and spans whole disk device. It is needed only for non-removable

 disks used on Microsoft Windows systems and only when formatting whole unpartitioned

 disk. Location of the disk signature and partition table overlaps with the end of the

 first FAT sector (boot code location), therefore there is no additional space usage.

 Default is auto mode in which mkfs.fat put MBR table only for non-removable disks when

 formatting whole unpartitioned disk.

 -n VOLUME-NAME

 Sets the volume name (label) of the filesystem. The volume name can be up to 11 char?

 acters long. Supplying an empty string, a string consisting only of white space or

 the string "NO NAME" as VOLUME-NAME has the same effect as not giving the -n option.

 The default is no label.

 --codepage=PAGE

 Use DOS codepage PAGE to encode label. By default codepage 850 is used.

 -r ROOT-DIR-ENTRIES

 Select the minimal number of entries available in the root directory. The default is

 112 or 224 for floppies and 512 for hard disks. Note that this is minimal number and

 it may be increased by mkfs.fat due to alignment of structures. See also mkfs.fat op? Page 4/6

 tion -a.

 -R NUMBER-OF-RESERVED-SECTORS

 Select the minimal number of reserved sectors. With FAT32 format at least 2 reserved

 sectors are needed, the default is 32. Otherwise the default is 1 (only the boot sec?

 tor). Note that this is minimal number and it may be increased by mkfs.fat due to

 alignment of structures. See also mkfs.fat option -a.

 -s SECTORS-PER-CLUSTER

 Specify the number of disk sectors per cluster. Must be a power of 2, i.e. 1, 2, 4,

 8, ... 128.

 -S LOGICAL-SECTOR-SIZE

 Specify the number of bytes per logical sector. Must be a power of 2 and greater than

 or equal to 512, i.e. 512, 1024, 2048, 4096, 8192, 16384, or 32768. Values larger

 than 4096 are not conforming to the FAT file system specification and may not work ev?

 erywhere.

 -v Verbose execution.

 --offset SECTOR

 Write the filesystem at a specific sector into the device file. This is useful for

 creating a filesystem in a partitioned disk image without having to set up a loop de?

 vice.

 --variant TYPE

 Create a filesystem of variant TYPE. Acceptable values are standard and atari (in any

 combination of upper/lower case). See above under DESCRIPTION for the differences.

 --help

 Display option summary and exit.

 --invariant

 Use constants for normally randomly generated or time based data such as volume ID and

 creation time. Multiple runs of mkfs.fat on the same device create identical results

 with this option. Its main purpose is testing mkfs.fat.

BUGS

 mkfs.fat can not create boot-able filesystems. This isn't as easy as you might think at

 first glance for various reasons and has been discussed a lot already. mkfs.fat simply

 will not support it ;)

SEE ALSO Page 5/6

 fatlabel(8), fsck.fat(8)

HOMEPAGE

 The home for the dosfstools project is its GitHub project page

 ?https://github.com/dosfstools/dosfstools?.

AUTHORS

 dosfstools were written by Werner Almesberger ?werner.almesberger@lrc.di.epfl.ch?, Roman

 Hodek ?Roman.Hodek@informatik.uni-erlangen.de?, and others. Current maintainers are

 Andreas Bombe ?aeb@debian.org? and Pali Roh?r ?pali.rohar@gmail.com?.

dosfstools 4.2 2021-01-31 MKFS.FAT(8)

Page 6/6

