
Rocky Enterprise Linux 9.2 Manual Pages on command 'memfd_create.2'

$ man memfd_create.2

MEMFD_CREATE(2) Linux Programmer's Manual MEMFD_CREATE(2)

NAME

 memfd_create - create an anonymous file

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <sys/mman.h>

 int memfd_create(const char *name, unsigned int flags);

DESCRIPTION

 memfd_create() creates an anonymous file and returns a file descriptor that refers to it.

 The file behaves like a regular file, and so can be modified, truncated, memory-mapped,

 and so on. However, unlike a regular file, it lives in RAM and has a volatile backing

 storage. Once all references to the file are dropped, it is automatically released.

 Anonymous memory is used for all backing pages of the file. Therefore, files created by

 memfd_create() have the same semantics as other anonymous memory allocations such as those

 allocated using mmap(2) with the MAP_ANONYMOUS flag.

 The initial size of the file is set to 0. Following the call, the file size should be set

 using ftruncate(2). (Alternatively, the file may be populated by calls to write(2) or

 similar.)

 The name supplied in name is used as a filename and will be displayed as the target of the

 corresponding symbolic link in the directory /proc/self/fd/. The displayed name is always

 prefixed with memfd: and serves only for debugging purposes. Names do not affect the be?

 havior of the file descriptor, and as such multiple files can have the same name without

 any side effects. Page 1/9

 The following values may be bitwise ORed in flags to change the behavior of memfd_cre?

 ate():

 MFD_CLOEXEC

 Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the de?

 scription of the O_CLOEXEC flag in open(2) for reasons why this may be useful.

 MFD_ALLOW_SEALING

 Allow sealing operations on this file. See the discussion of the F_ADD_SEALS and

 F_GET_SEALS operations in fcntl(2), and also NOTES, below. The initial set of

 seals is empty. If this flag is not set, the initial set of seals will be

 F_SEAL_SEAL, meaning that no other seals can be set on the file.

 MFD_HUGETLB (since Linux 4.14)

 The anonymous file will be created in the hugetlbfs filesystem using huge pages.

 See the Linux kernel source file Documentation/admin-guide/mm/hugetlbpage.rst for

 more information about hugetlbfs. Specifying both MFD_HUGETLB and MFD_ALLOW_SEAL?

 ING in flags is supported since Linux 4.16.

 MFD_HUGE_2MB, MFD_HUGE_1GB, ...

 Used in conjunction with MFD_HUGETLB to select alternative hugetlb page sizes (re?

 spectively, 2 MB, 1 GB, ...) on systems that support multiple hugetlb page sizes.

 Definitions for known huge page sizes are included in the header file

 <linux/memfd.h>.

 For details on encoding huge page sizes not included in the header file, see the

 discussion of the similarly named constants in mmap(2).

 Unused bits in flags must be 0.

 As its return value, memfd_create() returns a new file descriptor that can be used to re?

 fer to the file. This file descriptor is opened for both reading and writing (O_RDWR) and

 O_LARGEFILE is set for the file descriptor.

 With respect to fork(2) and execve(2), the usual semantics apply for the file descriptor

 created by memfd_create(). A copy of the file descriptor is inherited by the child pro?

 duced by fork(2) and refers to the same file. The file descriptor is preserved across ex?

 ecve(2), unless the close-on-exec flag has been set.

RETURN VALUE

 On success, memfd_create() returns a new file descriptor. On error, -1 is returned and

 errno is set to indicate the error. Page 2/9

ERRORS

 EFAULT The address in name points to invalid memory.

 EINVAL flags included unknown bits.

 EINVAL name was too long. (The limit is 249 bytes, excluding the terminating null byte.)

 EINVAL Both MFD_HUGETLB and MFD_ALLOW_SEALING were specified in flags.

 EMFILE The per-process limit on the number of open file descriptors has been reached.

 ENFILE The system-wide limit on the total number of open files has been reached.

 ENOMEM There was insufficient memory to create a new anonymous file.

VERSIONS

 The memfd_create() system call first appeared in Linux 3.17; glibc support was added in

 version 2.27.

CONFORMING TO

 The memfd_create() system call is Linux-specific.

NOTES

 The memfd_create() system call provides a simple alternative to manually mounting a

 tmpfs(5) filesystem and creating and opening a file in that filesystem. The primary pur?

 pose of memfd_create() is to create files and associated file descriptors that are used

 with the file-sealing APIs provided by fcntl(2).

 The memfd_create() system call also has uses without file sealing (which is why file-seal?

 ing is disabled, unless explicitly requested with the MFD_ALLOW_SEALING flag). In partic?

 ular, it can be used as an alternative to creating files in tmp or as an alternative to

 using the open(2) O_TMPFILE in cases where there is no intention to actually link the re?

 sulting file into the filesystem.

 File sealing

 In the absence of file sealing, processes that communicate via shared memory must either

 trust each other, or take measures to deal with the possibility that an untrusted peer may

 manipulate the shared memory region in problematic ways. For example, an untrusted peer

 might modify the contents of the shared memory at any time, or shrink the shared memory

 region. The former possibility leaves the local process vulnerable to time-of-check-to-

 time-of-use race conditions (typically dealt with by copying data from the shared memory

 region before checking and using it). The latter possibility leaves the local process

 vulnerable to SIGBUS signals when an attempt is made to access a now-nonexistent location

 in the shared memory region. (Dealing with this possibility necessitates the use of a Page 3/9

 handler for the SIGBUS signal.)

 Dealing with untrusted peers imposes extra complexity on code that employs shared memory.

 Memory sealing enables that extra complexity to be eliminated, by allowing a process to

 operate secure in the knowledge that its peer can't modify the shared memory in an unde?

 sired fashion.

 An example of the usage of the sealing mechanism is as follows:

 1. The first process creates a tmpfs(5) file using memfd_create(). The call yields a file

 descriptor used in subsequent steps.

 2. The first process sizes the file created in the previous step using ftruncate(2), maps

 it using mmap(2), and populates the shared memory with the desired data.

 3. The first process uses the fcntl(2) F_ADD_SEALS operation to place one or more seals on

 the file, in order to restrict further modifications on the file. (If placing the seal

 F_SEAL_WRITE, then it will be necessary to first unmap the shared writable mapping cre?

 ated in the previous step. Otherwise, behavior similar to F_SEAL_WRITE can be achieved

 by using F_SEAL_FUTURE_WRITE, which will prevent future writes via mmap(2) and write(2)

 from succeeding while keeping existing shared writable mappings).

 4. A second process obtains a file descriptor for the tmpfs(5) file and maps it. Among

 the possible ways in which this could happen are the following:

 * The process that called memfd_create() could transfer the resulting file descriptor

 to the second process via a UNIX domain socket (see unix(7) and cmsg(3)). The sec?

 ond process then maps the file using mmap(2).

 * The second process is created via fork(2) and thus automatically inherits the file

 descriptor and mapping. (Note that in this case and the next, there is a natural

 trust relationship between the two processes, since they are running under the same

 user ID. Therefore, file sealing would not normally be necessary.)

 * The second process opens the file /proc/<pid>/fd/<fd>, where <pid> is the PID of the

 first process (the one that called memfd_create()), and <fd> is the number of the

 file descriptor returned by the call to memfd_create() in that process. The second

 process then maps the file using mmap(2).

 5. The second process uses the fcntl(2) F_GET_SEALS operation to retrieve the bit mask of

 seals that has been applied to the file. This bit mask can be inspected in order to

 determine what kinds of restrictions have been placed on file modifications. If de?

 sired, the second process can apply further seals to impose additional restrictions (so Page 4/9

 long as the F_SEAL_SEAL seal has not yet been applied).

EXAMPLES

 Below are shown two example programs that demonstrate the use of memfd_create() and the

 file sealing API.

 The first program, t_memfd_create.c, creates a tmpfs(5) file using memfd_create(), sets a

 size for the file, maps it into memory, and optionally places some seals on the file. The

 program accepts up to three command-line arguments, of which the first two are required.

 The first argument is the name to associate with the file, the second argument is the size

 to be set for the file, and the optional third argument is a string of characters that

 specify seals to be set on file.

 The second program, t_get_seals.c, can be used to open an existing file that was created

 via memfd_create() and inspect the set of seals that have been applied to that file.

 The following shell session demonstrates the use of these programs. First we create a

 tmpfs(5) file and set some seals on it:

 $./t_memfd_create my_memfd_file 4096 sw &

 [1] 11775

 PID: 11775; fd: 3; /proc/11775/fd/3

 At this point, the t_memfd_create program continues to run in the background. From an?

 other program, we can obtain a file descriptor for the file created by memfd_create() by

 opening the /proc/[pid]/fd file that corresponds to the file descriptor opened by

 memfd_create(). Using that pathname, we inspect the content of the /proc/[pid]/fd sym?

 bolic link, and use our t_get_seals program to view the seals that have been placed on the

 file:

 $ readlink /proc/11775/fd/3

 /memfd:my_memfd_file (deleted)

 $./t_get_seals /proc/11775/fd/3

 Existing seals: WRITE SHRINK

 Program source: t_memfd_create.c

 #define _GNU_SOURCE

 #include <stdint.h>

 #include <sys/mman.h>

 #include <fcntl.h>

 #include <stdlib.h> Page 5/9

 #include <unistd.h>

 #include <string.h>

 #include <stdio.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 int

 main(int argc, char *argv[])

 {

 int fd;

 unsigned int seals;

 char *addr;

 char *name, *seals_arg;

 ssize_t len;

 if (argc < 3) {

 fprintf(stderr, "%s name size [seals]\n", argv[0]);

 fprintf(stderr, "\t'seals' can contain any of the "

 "following characters:\n");

 fprintf(stderr, "\t\tg - F_SEAL_GROW\n");

 fprintf(stderr, "\t\ts - F_SEAL_SHRINK\n");

 fprintf(stderr, "\t\tw - F_SEAL_WRITE\n");

 fprintf(stderr, "\t\tW - F_SEAL_FUTURE_WRITE\n");

 fprintf(stderr, "\t\tS - F_SEAL_SEAL\n");

 exit(EXIT_FAILURE);

 }

 name = argv[1];

 len = atoi(argv[2]);

 seals_arg = argv[3];

 /* Create an anonymous file in tmpfs; allow seals to be

 placed on the file */

 fd = memfd_create(name, MFD_ALLOW_SEALING);

 if (fd == -1)

 errExit("memfd_create");

 /* Size the file as specified on the command line */ Page 6/9

 if (ftruncate(fd, len) == -1)

 errExit("truncate");

 printf("PID: %jd; fd: %d; /proc/%jd/fd/%d\n",

 (intmax_t) getpid(), fd, (intmax_t) getpid(), fd);

 /* Code to map the file and populate the mapping with data

 omitted */

 /* If a 'seals' command-line argument was supplied, set some

 seals on the file */

 if (seals_arg != NULL) {

 seals = 0;

 if (strchr(seals_arg, 'g') != NULL)

 seals |= F_SEAL_GROW;

 if (strchr(seals_arg, 's') != NULL)

 seals |= F_SEAL_SHRINK;

 if (strchr(seals_arg, 'w') != NULL)

 seals |= F_SEAL_WRITE;

 if (strchr(seals_arg, 'W') != NULL)

 seals |= F_SEAL_FUTURE_WRITE;

 if (strchr(seals_arg, 'S') != NULL)

 seals |= F_SEAL_SEAL;

 if (fcntl(fd, F_ADD_SEALS, seals) == -1)

 errExit("fcntl");

 }

 /* Keep running, so that the file created by memfd_create()

 continues to exist */

 pause();

 exit(EXIT_SUCCESS);

 }

 Program source: t_get_seals.c

 #define _GNU_SOURCE

 #include <sys/mman.h>

 #include <fcntl.h>

 #include <unistd.h> Page 7/9

 #include <stdlib.h>

 #include <string.h>

 #include <stdio.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 int

 main(int argc, char *argv[])

 {

 int fd;

 unsigned int seals;

 if (argc != 2) {

 fprintf(stderr, "%s /proc/PID/fd/FD\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 fd = open(argv[1], O_RDWR);

 if (fd == -1)

 errExit("open");

 seals = fcntl(fd, F_GET_SEALS);

 if (seals == -1)

 errExit("fcntl");

 printf("Existing seals:");

 if (seals & F_SEAL_SEAL)

 printf(" SEAL");

 if (seals & F_SEAL_GROW)

 printf(" GROW");

 if (seals & F_SEAL_WRITE)

 printf(" WRITE");

 if (seals & F_SEAL_FUTURE_WRITE)

 printf(" FUTURE_WRITE");

 if (seals & F_SEAL_SHRINK)

 printf(" SHRINK");

 printf("\n");

 /* Code to map the file and access the contents of the Page 8/9

 resulting mapping omitted */

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 fcntl(2), ftruncate(2), mmap(2), shmget(2), shm_open(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 MEMFD_CREATE(2)

Page 9/9

