
Rocky Enterprise Linux 9.2 Manual Pages on command 'membarrier.2'

$ man membarrier.2

MEMBARRIER(2) Linux Programmer's Manual MEMBARRIER(2)

NAME

 membarrier - issue memory barriers on a set of threads

SYNOPSIS

 #include <linux/membarrier.h>

 int membarrier(int cmd, unsigned int flags, int cpu_id);

 Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION

 The membarrier() system call helps reducing the overhead of the memory barrier instruc?

 tions required to order memory accesses on multi-core systems. However, this system call

 is heavier than a memory barrier, so using it effectively is not as simple as replacing

 memory barriers with this system call, but requires understanding of the details below.

 Use of memory barriers needs to be done taking into account that a memory barrier always

 needs to be either matched with its memory barrier counterparts, or that the architec?

 ture's memory model doesn't require the matching barriers.

 There are cases where one side of the matching barriers (which we will refer to as "fast

 side") is executed much more often than the other (which we will refer to as "slow side").

 This is a prime target for the use of membarrier(). The key idea is to replace, for these

 matching barriers, the fast-side memory barriers by simple compiler barriers, for example:

 asm volatile ("" : : : "memory")

 and replace the slow-side memory barriers by calls to membarrier().

 This will add overhead to the slow side, and remove overhead from the fast side, thus re?

 sulting in an overall performance increase as long as the slow side is infrequent enough Page 1/9

 that the overhead of the membarrier() calls does not outweigh the performance gain on the

 fast side.

 The cmd argument is one of the following:

 MEMBARRIER_CMD_QUERY (since Linux 4.3)

 Query the set of supported commands. The return value of the call is a bit mask of

 supported commands. MEMBARRIER_CMD_QUERY, which has the value 0, is not itself in?

 cluded in this bit mask. This command is always supported (on kernels where mem?

 barrier() is provided).

 MEMBARRIER_CMD_GLOBAL (since Linux 4.16)

 Ensure that all threads from all processes on the system pass through a state where

 all memory accesses to user-space addresses match program order between entry to

 and return from the membarrier() system call. All threads on the system are tar?

 geted by this command.

 MEMBARRIER_CMD_GLOBAL_EXPEDITED (since Linux 4.16)

 Execute a memory barrier on all running threads of all processes that previously

 registered with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED.

 Upon return from the system call, the calling thread has a guarantee that all run?

 ning threads have passed through a state where all memory accesses to user-space

 addresses match program order between entry to and return from the system call

 (non-running threads are de facto in such a state). This guarantee is provided

 only for the threads of processes that previously registered with MEMBAR?

 RIER_CMD_REGISTER_GLOBAL_EXPEDITED.

 Given that registration is about the intent to receive the barriers, it is valid to

 invoke MEMBARRIER_CMD_GLOBAL_EXPEDITED from a process that has not employed MEMBAR?

 RIER_CMD_REGISTER_GLOBAL_EXPEDITED.

 The "expedited" commands complete faster than the non-expedited ones; they never

 block, but have the downside of causing extra overhead.

 MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED (since Linux 4.16)

 Register the process's intent to receive MEMBARRIER_CMD_GLOBAL_EXPEDITED memory

 barriers.

 MEMBARRIER_CMD_PRIVATE_EXPEDITED (since Linux 4.14)

 Execute a memory barrier on each running thread belonging to the same process as

 the calling thread. Page 2/9

 Upon return from the system call, the calling thread has a guarantee that all its

 running thread siblings have passed through a state where all memory accesses to

 user-space addresses match program order between entry to and return from the sys?

 tem call (non-running threads are de facto in such a state). This guarantee is

 provided only for threads in the same process as the calling thread.

 The "expedited" commands complete faster than the non-expedited ones; they never

 block, but have the downside of causing extra overhead.

 A process must register its intent to use the private expedited command prior to

 using it.

 MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED (since Linux 4.14)

 Register the process's intent to use MEMBARRIER_CMD_PRIVATE_EXPEDITED.

 MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE (since Linux 4.16)

 In addition to providing the memory ordering guarantees described in MEMBAR?

 RIER_CMD_PRIVATE_EXPEDITED, upon return from system call the calling thread has a

 guarantee that all its running thread siblings have executed a core serializing in?

 struction. This guarantee is provided only for threads in the same process as the

 calling thread.

 The "expedited" commands complete faster than the non-expedited ones, they never

 block, but have the downside of causing extra overhead.

 A process must register its intent to use the private expedited sync core command

 prior to using it.

 MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE (since Linux 4.16)

 Register the process's intent to use MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE.

 MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ (since Linux 5.10)

 Ensure the caller thread, upon return from system call, that all its running thread

 siblings have any currently running rseq critical sections restarted if flags pa?

 rameter is 0; if flags parameter is MEMBARRIER_CMD_FLAG_CPU, then this operation is

 performed only on CPU indicated by cpu_id. This guarantee is provided only for

 threads in the same process as the calling thread.

 RSEQ membarrier is only available in the "private expedited" form.

 A process must register its intent to use the private expedited rseq command prior

 to using it.

 MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ (since Linux 5.10) Page 3/9

 Register the process's intent to use MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ.

 MEMBARRIER_CMD_SHARED (since Linux 4.3)

 This is an alias for MEMBARRIER_CMD_GLOBAL that exists for header backward compati?

 bility.

 The flags argument must be specified as 0 unless the command is MEMBARRIER_CMD_PRIVATE_EX?

 PEDITED_RSEQ, in which case flags can be either 0 or MEMBARRIER_CMD_FLAG_CPU.

 The cpu_id argument is ignored unless flags is MEMBARRIER_CMD_FLAG_CPU, in which case it

 must specify the CPU targeted by this membarrier command.

 All memory accesses performed in program order from each targeted thread are guaranteed to

 be ordered with respect to membarrier().

 If we use the semantic barrier() to represent a compiler barrier forcing memory accesses

 to be performed in program order across the barrier, and smp_mb() to represent explicit

 memory barriers forcing full memory ordering across the barrier, we have the following or?

 dering table for each pairing of barrier(), membarrier(), and smp_mb(). The pair ordering

 is detailed as (O: ordered, X: not ordered):

 barrier() smp_mb() membarrier()

 barrier() X X O

 smp_mb() X O O

 membarrier() O O O

RETURN VALUE

 On success, the MEMBARRIER_CMD_QUERY operation returns a bit mask of supported commands,

 and the MEMBARRIER_CMD_GLOBAL, MEMBARRIER_CMD_GLOBAL_EXPEDITED,

MEMBARRIER_CMD_REGIS?

 TER_GLOBAL_EXPEDITED, MEMBARRIER_CMD_PRIVATE_EXPEDITED,

MEMBARRIER_CMD_REGISTER_PRI?

 VATE_EXPEDITED, MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE, and

MEMBARRIER_CMD_REGIS?

 TER_PRIVATE_EXPEDITED_SYNC_CORE operations return zero. On error, -1 is returned, and er?

 rno is set appropriately.

 For a given command, with flags set to 0, this system call is guaranteed to always return

 the same value until reboot. Further calls with the same arguments will lead to the same

 result. Therefore, with flags set to 0, error handling is required only for the first

 call to membarrier(). Page 4/9

ERRORS

 EINVAL cmd is invalid, or flags is nonzero, or the MEMBARRIER_CMD_GLOBAL command is dis?

 abled because the nohz_full CPU parameter has been set, or the MEMBARRIER_CMD_PRI?

 VATE_EXPEDITED_SYNC_CORE and

MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE

 commands are not implemented by the architecture.

 ENOSYS The membarrier() system call is not implemented by this kernel.

 EPERM The current process was not registered prior to using private expedited commands.

VERSIONS

 The membarrier() system call was added in Linux 4.3.

 Before Linux 5.10, the prototype for membarrier() was:

 int membarrier(int cmd, int flags);

CONFORMING TO

 membarrier() is Linux-specific.

NOTES

 A memory barrier instruction is part of the instruction set of architectures with weakly

 ordered memory models. It orders memory accesses prior to the barrier and after the bar?

 rier with respect to matching barriers on other cores. For instance, a load fence can or?

 der loads prior to and following that fence with respect to stores ordered by store

 fences.

 Program order is the order in which instructions are ordered in the program assembly code.

 Examples where membarrier() can be useful include implementations of Read-Copy-Update li?

 braries and garbage collectors.

 Glibc does not provide a wrapper for this system call; call it using syscall(2).

EXAMPLES

 Assuming a multithreaded application where "fast_path()" is executed very frequently, and

 where "slow_path()" is executed infrequently, the following code (x86) can be transformed

 using membarrier():

 #include <stdlib.h>

 static volatile int a, b;

 static void

 fast_path(int *read_b)

 { Page 5/9

 a = 1;

 asm volatile ("mfence" : : : "memory");

 *read_b = b;

 }

 static void

 slow_path(int *read_a)

 {

 b = 1;

 asm volatile ("mfence" : : : "memory");

 *read_a = a;

 }

 int

 main(int argc, char **argv)

 {

 int read_a, read_b;

 /*

 * Real applications would call fast_path() and slow_path()

 * from different threads. Call those from main() to keep

 * this example short.

 */

 slow_path(&read_a);

 fast_path(&read_b);

 /*

 * read_b == 0 implies read_a == 1 and

 * read_a == 0 implies read_b == 1.

 */

 if (read_b == 0 && read_a == 0)

 abort();

 exit(EXIT_SUCCESS);

 }

 The code above transformed to use membarrier() becomes:

 #define _GNU_SOURCE

 #include <stdlib.h> Page 6/9

 #include <stdio.h>

 #include <unistd.h>

 #include <sys/syscall.h>

 #include <linux/membarrier.h>

 static volatile int a, b;

 static int

 membarrier(int cmd, unsigned int flags, int cpu_id)

 {

 return syscall(__NR_membarrier, cmd, flags, cpu_id);

 }

 static int

 init_membarrier(void)

 {

 int ret;

 /* Check that membarrier() is supported. */

 ret = membarrier(MEMBARRIER_CMD_QUERY, 0, 0);

 if (ret < 0) {

 perror("membarrier");

 return -1;

 }

 if (!(ret & MEMBARRIER_CMD_GLOBAL)) {

 fprintf(stderr,

 "membarrier does not support MEMBARRIER_CMD_GLOBAL\n");

 return -1;

 }

 return 0;

 }

 static void

 fast_path(int *read_b)

 {

 a = 1;

 asm volatile ("" : : : "memory");

 *read_b = b; Page 7/9

 }

 static void

 slow_path(int *read_a)

 {

 b = 1;

 membarrier(MEMBARRIER_CMD_GLOBAL, 0, 0);

 *read_a = a;

 }

 int

 main(int argc, char **argv)

 {

 int read_a, read_b;

 if (init_membarrier())

 exit(EXIT_FAILURE);

 /*

 * Real applications would call fast_path() and slow_path()

 * from different threads. Call those from main() to keep

 * this example short.

 */

 slow_path(&read_a);

 fast_path(&read_b);

 /*

 * read_b == 0 implies read_a == 1 and

 * read_a == 0 implies read_b == 1.

 */

 if (read_b == 0 && read_a == 0)

 abort();

 exit(EXIT_SUCCESS);

 }

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/. Page 8/9

Linux 2020-11-01 MEMBARRIER(2)

Page 9/9

