
Rocky Enterprise Linux 9.2 Manual Pages on command 'mdmon.8'

$ man mdmon.8

MDMON(8)                             System Manager's Manual                             MDMON(8)

NAME

       mdmon - monitor MD external metadata arrays

SYNOPSIS

       mdmon [--all] [--takeover] [--foreground] CONTAINER

OVERVIEW

       The  2.6.27 kernel brings the ability to support external metadata arrays.  External meta?

       data implies that user space handles all updates to the metadata.  The kernel's  responsi?

       bility  is  to  notify  user  space when a "metadata event" occurs, like disk failures and

       clean-to-dirty transitions.  The kernel, in important cases, waits for user space to  take

       action on these notifications.

DESCRIPTION

   Metadata updates:

       To  service metadata update requests a daemon, mdmon, is introduced.  Mdmon is tasked with

       polling the sysfs namespace looking for changes in array_state, sync_action, and per  disk

       state  attributes.  When a change is detected it calls a per metadata type handler to make

       modifications to the metadata.  The following actions are taken:

              array_state - inactive

                     Clear the dirty bit for the volume and let the array be stopped

              array_state - write pending

                     Set the dirty bit for the array and then set array_state to active.   Writes

                     are blocked until userspace writes active.

              array_state - active-idle Page 1/5



                     The  safe mode timer has expired so set array state to clean to block writes

                     to the array

              array_state - clean

                     Clear the dirty bit for the volume

              array_state - read-only

                     This is the initial state that all arrays start at.  mdmon takes one of  the

                     three actions:

                     1/     Transition  the array to read-auto keeping the dirty bit clear if the

                            metadata handler determines that the array does not need resyncing or

                            other modification

                     2/     Transition  the  array to active if the metadata handler determines a

                            resync or some other manipulation is necessary

                     3/     Leave the array read-only if the volume is marked  to  not  be  moni?

                            tored;  for  example,  the  metadata  version has been set to "exter?

                            nal:-dev/md127" instead of "external:/dev/md127"

              sync_action - resync-to-idle

                     Notify the metadata handler that a resync may have completed.  If  a  resync

                     process  is idled before it completes this event allows the metadata handler

                     to checkpoint resync.

              sync_action - recover-to-idle

                     A spare may have completed rebuilding so tell the metadata handler about the

                     state of each disk.  This is the metadata handler's opportunity to clear any

                     "out-of-sync" bits and clear the volume's degraded status.   If  a  recovery

                     process  is idled before it completes this event allows the metadata handler

                     to checkpoint recovery.

              <disk>/state - faulty

                     A disk failure kicks off a series of events.   First,  notify  the  metadata

                     handler  that  a disk has failed, and then notify the kernel that it can un?

                     block writes that were dependent on this disk.  After unblocking the  kernel

                     this  disk is set to be removed+ from the member array.  Finally the disk is

                     marked failed in all other member arrays in the container.

                     + Note This behavior differs slightly from native MD arrays where removal is

                     reserved for a mdadm --remove event.  In the external metadata case the con? Page 2/5



                     tainer holds the final reference on a block  device  and  a  mdadm  --remove

                     <container> <victim> call is still required.

   Containers:

       External  metadata  formats,  like DDF, differ from the native MD metadata formats in that

       they define a set of disks and a series of sub-arrays within those disks.  MD metadata  in

       comparison  defines  a  1:1  relationship between a set of block devices and a RAID array.

       For example to create 2 arrays at different RAID levels on a single set of disks, MD meta?

       data requires the disks be partitioned and then each array can be created with a subset of

       those partitions.  The supported external formats perform this disk carving internally.

       Container devices simply hold references to all member disks and allow tools like mdmon to

       determine  which  active arrays belong to which container.  Some array management commands

       like disk removal and disk add are now only valid at the  container  level.   Attempts  to

       perform these actions on member arrays are blocked with error messages like:

              "mdadm:  Cannot  remove  disks from a 'member' array, perform this operation on the

              parent container"

       Containers are identified in /proc/mdstat with a metadata version string  "external:<meta?

       data  name>".  Member  devices are identified by "external:/<container device>/<member in?

       dex>", or "external:-<container device>/<member index>" if the array is  to  remain  read?

       only.

OPTIONS

       CONTAINER

              The  container device to monitor.  It can be a full path like /dev/md/container, or

              a simple md device name like md127.

       --foreground

              Normally, mdmon will fork and continue in the background.  Adding this option  will

              skip that step and run mdmon in the foreground.

       --takeover

              This  instructs mdmon to replace any active mdmon which is currently monitoring the

              array.  This is primarily used late in the boot process to replace any mdmon  which

              was  started from an initramfs before the root filesystem was mounted.  This avoids

              holding a reference on that initramfs indefinitely and ensures  that  the  pid  and

              sock files used to communicate with mdmon are in a standard place.

       --all  This tells mdmon to find any active containers and start monitoring each of them if Page 3/5



              appropriate.  This is normally used with --takeover late in the boot  sequence.   A

              separate mdmon process is started for each container as the --all argument is over-

              written with the name of the container.  To allow for containers with names  longer

              than 5 characters, this argument can be arbitrarily extended, e.g. to --all-active-

              arrays.

              Note that

              mdmon is automatically started by mdadm when needed and so does not need to be con?

              sidered  when  working  with  RAID  arrays.  The only times it is run other than by

              mdadm is when the boot scripts need to restart  it  after  mounting  the  new  root

              filesystem.

START UP AND SHUTDOWN

       As  mdmon  needs  to be running whenever any filesystem on the monitored device is mounted

       there are special considerations when the root filesystem is mounted from an  mdmon  moni?

       tored  device.   Note  that  in  general mdmon is needed even if the filesystem is mounted

       read-only as some filesystems can still write to the device in  those  circumstances,  for

       example to replay a journal after an unclean shutdown.

       When the array is assembled by the initramfs code, mdadm will automatically start mdmon as

       required.  This means that mdmon must be installed on the initramfs and there  must  be  a

       writable  filesystem  (typically  tmpfs)  in which mdmon can create a .pid and .sock file.

       The particular filesystem to use is given  to  mdmon  at  compile  time  and  defaults  to

       /run/mdadm.

       This filesystem must persist through to shutdown time.

       After the final root filesystem has be instantiated (usually with pivot_root) mdmon should

       be run with --all --takeover so that the mdmon running from the initramfs can be  replaced

       with  one  running  in  the  main root, and so the memory used by the initramfs can be re?

       leased.

       At shutdown time, mdmon should not be killed along with other processes.  Also as it holds

       a file (socket actually) open in /dev (by default) it will not be possible to unmount /dev

       if it is a separate filesystem.

EXAMPLES

         mdmon --all-active-arrays --takeover

       Any mdmon which is currently running is killed and a new instance is started.  This should

       be  run  during  in  the boot sequence if an initramfs was used, so that any mdmon running Page 4/5



       from the initramfs will not hold the initramfs active.

SEE ALSO

       mdadm(8), md(4).

v4.2                                                                                     MDMON(8)

Page 5/5


