
Rocky Enterprise Linux 9.2 Manual Pages on command 'mdadm.8'

$ man mdadm.8

MDADM(8) System Manager's Manual MDADM(8)

NAME

 mdadm - manage MD devices aka Linux Software RAID

SYNOPSIS

 mdadm [mode] <raiddevice> [options] <component-devices>

DESCRIPTION

 RAID devices are virtual devices created from two or more real block devices. This allows

 multiple devices (typically disk drives or partitions thereof) to be combined into a sin?

 gle device to hold (for example) a single filesystem. Some RAID levels include redundancy

 and so can survive some degree of device failure.

 Linux Software RAID devices are implemented through the md (Multiple Devices) device

 driver.

 Currently, Linux supports LINEAR md devices, RAID0 (striping), RAID1 (mirroring), RAID4,

 RAID5, RAID6, RAID10, MULTIPATH, FAULTY, and CONTAINER.

 MULTIPATH is not a Software RAID mechanism, but does involve multiple devices: each device

 is a path to one common physical storage device. New installations should not use md/mul?

 tipath as it is not well supported and has no ongoing development. Use the Device Mapper

 based multipath-tools instead.

 FAULTY is also not true RAID, and it only involves one device. It provides a layer over a

 true device that can be used to inject faults.

 CONTAINER is different again. A CONTAINER is a collection of devices that are managed as

 a set. This is similar to the set of devices connected to a hardware RAID controller.

 The set of devices may contain a number of different RAID arrays each utilising some (or Page 1/47

 all) of the blocks from a number of the devices in the set. For example, two devices in a

 5-device set might form a RAID1 using the whole devices. The remaining three might have a

 RAID5 over the first half of each device, and a RAID0 over the second half.

 With a CONTAINER, there is one set of metadata that describes all of the arrays in the

 container. So when mdadm creates a CONTAINER device, the device just represents the meta?

 data. Other normal arrays (RAID1 etc) can be created inside the container.

MODES

 mdadm has several major modes of operation:

 Assemble

 Assemble the components of a previously created array into an active array. Compo?

 nents can be explicitly given or can be searched for. mdadm checks that the compo?

 nents do form a bona fide array, and can, on request, fiddle superblock information

 so as to assemble a faulty array.

 Build Build an array that doesn't have per-device metadata (superblocks). For these

 sorts of arrays, mdadm cannot differentiate between initial creation and subsequent

 assembly of an array. It also cannot perform any checks that appropriate compo?

 nents have been requested. Because of this, the Build mode should only be used to?

 gether with a complete understanding of what you are doing.

 Create Create a new array with per-device metadata (superblocks). Appropriate metadata is

 written to each device, and then the array comprising those devices is activated.

 A 'resync' process is started to make sure that the array is consistent (e.g. both

 sides of a mirror contain the same data) but the content of the device is left oth?

 erwise untouched. The array can be used as soon as it has been created. There is

 no need to wait for the initial resync to finish.

 Follow or Monitor

 Monitor one or more md devices and act on any state changes. This is only meaning?

 ful for RAID1, 4, 5, 6, 10 or multipath arrays, as only these have interesting

 state. RAID0 or Linear never have missing, spare, or failed drives, so there is

 nothing to monitor.

 Grow Grow (or shrink) an array, or otherwise reshape it in some way. Currently sup?

 ported growth options including changing the active size of component devices and

 changing the number of active devices in Linear and RAID levels 0/1/4/5/6, changing

 the RAID level between 0, 1, 5, and 6, and between 0 and 10, changing the chunk Page 2/47

 size and layout for RAID 0,4,5,6,10 as well as adding or removing a write-intent

 bitmap and changing the array's consistency policy.

 Incremental Assembly

 Add a single device to an appropriate array. If the addition of the device makes

 the array runnable, the array will be started. This provides a convenient inter?

 face to a hot-plug system. As each device is detected, mdadm has a chance to in?

 clude it in some array as appropriate. Optionally, when the --fail flag is passed

 in we will remove the device from any active array instead of adding it.

 If a CONTAINER is passed to mdadm in this mode, then any arrays within that con?

 tainer will be assembled and started.

 Manage This is for doing things to specific components of an array such as adding new

 spares and removing faulty devices.

 Misc This is an 'everything else' mode that supports operations on active arrays, opera?

 tions on component devices such as erasing old superblocks, and information gather?

 ing operations.

 Auto-detect

 This mode does not act on a specific device or array, but rather it requests the

 Linux Kernel to activate any auto-detected arrays.

OPTIONS

Options for selecting a mode are:

 -A, --assemble

 Assemble a pre-existing array.

 -B, --build

 Build a legacy array without superblocks.

 -C, --create

 Create a new array.

 -F, --follow, --monitor

 Select Monitor mode.

 -G, --grow

 Change the size or shape of an active array.

 -I, --incremental

 Add/remove a single device to/from an appropriate array, and possibly start the ar?

 ray. Page 3/47

 --auto-detect

 Request that the kernel starts any auto-detected arrays. This can only work if md

 is compiled into the kernel ? not if it is a module. Arrays can be auto-detected

 by the kernel if all the components are in primary MS-DOS partitions with partition

 type FD, and all use v0.90 metadata. In-kernel autodetect is not recommended for

 new installations. Using mdadm to detect and assemble arrays ? possibly in an ini?

 trd ? is substantially more flexible and should be preferred.

 If a device is given before any options, or if the first option is one of --add, --re-add,

 --add-spare, --fail, --remove, or --replace, then the MANAGE mode is assumed. Anything

 other than these will cause the Misc mode to be assumed.

Options that are not mode-specific are:

 -h, --help

 Display general help message or, after one of the above options, a mode-specific

 help message.

 --help-options

 Display more detailed help about command line parsing and some commonly used op?

 tions.

 -V, --version

 Print version information for mdadm.

 -v, --verbose

 Be more verbose about what is happening. This can be used twice to be extra-ver?

 bose. The extra verbosity currently only affects --detail --scan and --examine

 --scan.

 -q, --quiet

 Avoid printing purely informative messages. With this, mdadm will be silent unless

 there is something really important to report.

 -f, --force

 Be more forceful about certain operations. See the various modes for the exact

 meaning of this option in different contexts.

 -c, --config=

 Specify the config file or directory. Default is to use /etc/mdadm/mdadm.conf and

 /etc/mdadm/mdadm.conf.d, or if those are missing then /etc/mdadm.conf and

 /etc/mdadm.conf.d. If the config file given is partitions then nothing will be Page 4/47

 read, but mdadm will act as though the config file contained exactly

 DEVICE partitions containers

 and will read /proc/partitions to find a list of devices to scan, and /proc/mdstat

 to find a list of containers to examine. If the word none is given for the config

 file, then mdadm will act as though the config file were empty.

 If the name given is of a directory, then mdadm will collect all the files con?

 tained in the directory with a name ending in .conf, sort them lexically, and

 process all of those files as config files.

 -s, --scan

 Scan config file or /proc/mdstat for missing information. In general, this option

 gives mdadm permission to get any missing information (like component devices, ar?

 ray devices, array identities, and alert destination) from the configuration file

 (see previous option); one exception is MISC mode when using --detail or --stop, in

 which case --scan says to get a list of array devices from /proc/mdstat.

 -e, --metadata=

 Declare the style of RAID metadata (superblock) to be used. The default is 1.2 for

 --create, and to guess for other operations. The default can be overridden by set?

 ting the metadata value for the CREATE keyword in mdadm.conf.

 Options are:

 0, 0.90

 Use the original 0.90 format superblock. This format limits arrays to 28

 component devices and limits component devices of levels 1 and greater to 2

 terabytes. It is also possible for there to be confusion about whether the

 superblock applies to a whole device or just the last partition, if that

 partition starts on a 64K boundary.

 1, 1.0, 1.1, 1.2 default

 Use the new version-1 format superblock. This has fewer restrictions. It

 can easily be moved between hosts with different endian-ness, and a recovery

 operation can be checkpointed and restarted. The different sub-versions

 store the superblock at different locations on the device, either at the end

 (for 1.0), at the start (for 1.1) or 4K from the start (for 1.2). "1" is

 equivalent to "1.2" (the commonly preferred 1.x format). "default" is

 equivalent to "1.2". Page 5/47

 ddf Use the "Industry Standard" DDF (Disk Data Format) format defined by SNIA.

 When creating a DDF array a CONTAINER will be created, and normal arrays can

 be created in that container.

 imsm Use the Intel(R) Matrix Storage Manager metadata format. This creates a

 CONTAINER which is managed in a similar manner to DDF, and is supported by

 an option-rom on some platforms:

 https://www.intel.com/content/www/us/en/support/products/122484/memory-and-

 storage/ssd-software/intel-virtual-raid-on-cpu-intel-vroc.html

 --homehost=

 This will override any HOMEHOST setting in the config file and provides the iden?

 tity of the host which should be considered the home for any arrays.

 When creating an array, the homehost will be recorded in the metadata. For ver?

 sion-1 superblocks, it will be prefixed to the array name. For version-0.90 su?

 perblocks, part of the SHA1 hash of the hostname will be stored in the later half

 of the UUID.

 When reporting information about an array, any array which is tagged for the given

 homehost will be reported as such.

 When using Auto-Assemble, only arrays tagged for the given homehost will be allowed

 to use 'local' names (i.e. not ending in '_' followed by a digit string). See be?

 low under Auto Assembly.

 The special name "any" can be used as a wild card. If an array is created with

 --homehost=any then the name "any" will be stored in the array and it can be assem?

 bled in the same way on any host. If an array is assembled with this option, then

 the homehost recorded on the array will be ignored.

 --prefer=

 When mdadm needs to print the name for a device it normally finds the name in /dev

 which refers to the device and is shortest. When a path component is given with

 --prefer mdadm will prefer a longer name if it contains that component. For exam?

 ple --prefer=by-uuid will prefer a name in a subdirectory of /dev called by-uuid.

 This functionality is currently only provided by --detail and --monitor.

 --home-cluster=

 specifies the cluster name for the md device. The md device can be assembled only

 on the cluster which matches the name specified. If this option is not provided, Page 6/47

 mdadm tries to detect the cluster name automatically.

For create, build, or grow:

 -n, --raid-devices=

 Specify the number of active devices in the array. This, plus the number of spare

 devices (see below) must equal the number of component-devices (including "missing"

 devices) that are listed on the command line for --create. Setting a value of 1 is

 probably a mistake and so requires that --force be specified first. A value of 1

 will then be allowed for linear, multipath, RAID0 and RAID1. It is never allowed

 for RAID4, RAID5 or RAID6.

 This number can only be changed using --grow for RAID1, RAID4, RAID5 and RAID6 ar?

 rays, and only on kernels which provide the necessary support.

 -x, --spare-devices=

 Specify the number of spare (eXtra) devices in the initial array. Spares can also

 be added and removed later. The number of component devices listed on the command

 line must equal the number of RAID devices plus the number of spare devices.

 -z, --size=

 Amount (in Kilobytes) of space to use from each drive in RAID levels 1/4/5/6. This

 must be a multiple of the chunk size, and must leave about 128Kb of space at the

 end of the drive for the RAID superblock. When specified as ?max? (as it often is)

 the smallest drive (or partition) sets the size. In that case, a warning will fol?

 low if the drives, as a group, have sizes that differ by more than one percent.

 A suffix of 'K', 'M', 'G' or 'T' can be given to indicate Kilobytes, Megabytes, Gi?

 gabytes or Terabytes respectively.

 Sometimes a replacement drive can be a little smaller than the original drives

 though this should be minimised by IDEMA standards. Such a replacement drive will

 be rejected by md. To guard against this it can be useful to set the initial size

 slightly smaller than the smaller device with the aim that it will still be larger

 than any replacement.

 This value can be set with --grow for RAID level 1/4/5/6 though DDF arrays may not

 be able to support this. If the array was created with a size smaller than the

 currently active drives, the extra space can be accessed using --grow. The size

 can be given as max which means to choose the largest size that fits on all current

 drives. Page 7/47

 Before reducing the size of the array (with --grow --size=) you should make sure

 that space isn't needed. If the device holds a filesystem, you would need to re?

 size the filesystem to use less space.

 After reducing the array size you should check that the data stored in the device

 is still available. If the device holds a filesystem, then an 'fsck' of the

 filesystem is a minimum requirement. If there are problems the array can be made

 bigger again with no loss with another --grow --size= command.

 This value cannot be used when creating a CONTAINER such as with DDF and IMSM meta?

 data, though it perfectly valid when creating an array inside a container.

 -Z, --array-size=

 This is only meaningful with --grow and its effect is not persistent: when the ar?

 ray is stopped and restarted the default array size will be restored.

 Setting the array-size causes the array to appear smaller to programs that access

 the data. This is particularly needed before reshaping an array so that it will be

 smaller. As the reshape is not reversible, but setting the size with --array-size

 is, it is required that the array size is reduced as appropriate before the number

 of devices in the array is reduced.

 Before reducing the size of the array you should make sure that space isn't needed.

 If the device holds a filesystem, you would need to resize the filesystem to use

 less space.

 After reducing the array size you should check that the data stored in the device

 is still available. If the device holds a filesystem, then an 'fsck' of the

 filesystem is a minimum requirement. If there are problems the array can be made

 bigger again with no loss with another --grow --array-size= command.

 A suffix of 'K', 'M', 'G' or 'T' can be given to indicate Kilobytes, Megabytes, Gi?

 gabytes or Terabytes respectively. A value of max restores the apparent size of

 the array to be whatever the real amount of available space is.

 Clustered arrays do not support this parameter yet.

 -c, --chunk=

 Specify chunk size of kilobytes. The default when creating an array is 512KB. To

 ensure compatibility with earlier versions, the default when building an array with

 no persistent metadata is 64KB. This is only meaningful for RAID0, RAID4, RAID5,

 RAID6, and RAID10. Page 8/47

 RAID4, RAID5, RAID6, and RAID10 require the chunk size to be a power of 2. In any

 case it must be a multiple of 4KB.

 A suffix of 'K', 'M', 'G' or 'T' can be given to indicate Kilobytes, Megabytes, Gi?

 gabytes or Terabytes respectively.

 --rounding=

 Specify rounding factor for a Linear array. The size of each component will be

 rounded down to a multiple of this size. This is a synonym for --chunk but high?

 lights the different meaning for Linear as compared to other RAID levels. The de?

 fault is 64K if a kernel earlier than 2.6.16 is in use, and is 0K (i.e. no round?

 ing) in later kernels.

 -l, --level=

 Set RAID level. When used with --create, options are: linear, raid0, 0, stripe,

 raid1, 1, mirror, raid4, 4, raid5, 5, raid6, 6, raid10, 10, multipath, mp, faulty,

 container. Obviously some of these are synonymous.

 When a CONTAINER metadata type is requested, only the container level is permitted,

 and it does not need to be explicitly given.

 When used with --build, only linear, stripe, raid0, 0, raid1, multipath, mp, and

 faulty are valid.

 Can be used with --grow to change the RAID level in some cases. See LEVEL CHANGES

 below.

 -p, --layout=

 This option configures the fine details of data layout for RAID5, RAID6, and RAID10

 arrays, and controls the failure modes for faulty. It can also be used for working

 around a kernel bug with RAID0, but generally doesn't need to be used explicitly.

 The layout of the RAID5 parity block can be one of left-asymmetric, left-symmetric,

 right-asymmetric, right-symmetric, la, ra, ls, rs. The default is left-symmetric.

 It is also possible to cause RAID5 to use a RAID4-like layout by choosing par?

 ity-first, or parity-last.

 Finally for RAID5 there are DDF-compatible layouts, ddf-zero-restart,

 ddf-N-restart, and ddf-N-continue.

 These same layouts are available for RAID6. There are also 4 layouts that will

 provide an intermediate stage for converting between RAID5 and RAID6. These pro?

 vide a layout which is identical to the corresponding RAID5 layout on the first N-1 Page 9/47

 devices, and has the 'Q' syndrome (the second 'parity' block used by RAID6) on the

 last device. These layouts are: left-symmetric-6, right-symmetric-6, left-asymmet?

 ric-6, right-asymmetric-6, and parity-first-6.

 When setting the failure mode for level faulty, the options are: write-transient,

 wt, read-transient, rt, write-persistent, wp, read-persistent, rp, write-all,

 read-fixable, rf, clear, flush, none.

 Each failure mode can be followed by a number, which is used as a period between

 fault generation. Without a number, the fault is generated once on the first rele?

 vant request. With a number, the fault will be generated after that many requests,

 and will continue to be generated every time the period elapses.

 Multiple failure modes can be current simultaneously by using the --grow option to

 set subsequent failure modes.

 "clear" or "none" will remove any pending or periodic failure modes, and "flush"

 will clear any persistent faults.

 The layout options for RAID10 are one of 'n', 'o' or 'f' followed by a small num?

 ber. The default is 'n2'. The supported options are:

 'n' signals 'near' copies. Multiple copies of one data block are at similar off?

 sets in different devices.

 'o' signals 'offset' copies. Rather than the chunks being duplicated within a

 stripe, whole stripes are duplicated but are rotated by one device so duplicate

 blocks are on different devices. Thus subsequent copies of a block are in the next

 drive, and are one chunk further down.

 'f' signals 'far' copies (multiple copies have very different offsets). See md(4)

 for more detail about 'near', 'offset', and 'far'.

 The number is the number of copies of each datablock. 2 is normal, 3 can be use?

 ful. This number can be at most equal to the number of devices in the array. It

 does not need to divide evenly into that number (e.g. it is perfectly legal to have

 an 'n2' layout for an array with an odd number of devices).

 A bug introduced in Linux 3.14 means that RAID0 arrays with devices of differing

 sizes started using a different layout. This could lead to data corruption. Since

 Linux 5.4 (and various stable releases that received backports), the kernel will

 not accept such an array unless a layout is explicitly set. It can be set to

 'original' or 'alternate'. When creating a new array, mdadm will select 'original' Page 10/47

 by default, so the layout does not normally need to be set. An array created for

 either 'original' or 'alternate' will not be recognized by an (unpatched) kernel

 prior to 5.4. To create a RAID0 array with devices of differing sizes that can be

 used on an older kernel, you can set the layout to 'dangerous'. This will use

 whichever layout the running kernel supports, so the data on the array may become

 corrupt when changing kernel from pre-3.14 to a later kernel.

 When an array is converted between RAID5 and RAID6 an intermediate RAID6 layout is

 used in which the second parity block (Q) is always on the last device. To convert

 a RAID5 to RAID6 and leave it in this new layout (which does not require re-strip?

 ing) use --layout=preserve. This will try to avoid any restriping.

 The converse of this is --layout=normalise which will change a non-standard RAID6

 layout into a more standard arrangement.

 --parity=

 same as --layout (thus explaining the p of -p).

 -b, --bitmap=

 Specify a file to store a write-intent bitmap in. The file should not exist unless

 --force is also given. The same file should be provided when assembling the array.

 If the word internal is given, then the bitmap is stored with the metadata on the

 array, and so is replicated on all devices. If the word none is given with --grow

 mode, then any bitmap that is present is removed. If the word clustered is given,

 the array is created for a clustered environment. One bitmap is created for each

 node as defined by the --nodes parameter and are stored internally.

 To help catch typing errors, the filename must contain at least one slash ('/') if

 it is a real file (not 'internal' or 'none').

 Note: external bitmaps are only known to work on ext2 and ext3. Storing bitmap

 files on other filesystems may result in serious problems.

 When creating an array on devices which are 100G or larger, mdadm automatically

 adds an internal bitmap as it will usually be beneficial. This can be suppressed

 with --bitmap=none or by selecting a different consistency policy with --consis?

 tency-policy.

 --bitmap-chunk=

 Set the chunksize of the bitmap. Each bit corresponds to that many Kilobytes of

 storage. When using a file based bitmap, the default is to use the smallest size Page 11/47

 that is at-least 4 and requires no more than 2^21 chunks. When using an internal

 bitmap, the chunksize defaults to 64Meg, or larger if necessary to fit the bitmap

 into the available space.

 A suffix of 'K', 'M', 'G' or 'T' can be given to indicate Kilobytes, Megabytes, Gi?

 gabytes or Terabytes respectively.

 -W, --write-mostly

 subsequent devices listed in a --build, --create, or --add command will be flagged

 as 'write-mostly'. This is valid for RAID1 only and means that the 'md' driver

 will avoid reading from these devices if at all possible. This can be useful if

 mirroring over a slow link.

 --write-behind=

 Specify that write-behind mode should be enabled (valid for RAID1 only). If an ar?

 gument is specified, it will set the maximum number of outstanding writes allowed.

 The default value is 256. A write-intent bitmap is required in order to use write-

 behind mode, and write-behind is only attempted on drives marked as write-mostly.

 --failfast

 subsequent devices listed in a --create or --add command will be flagged as 'fail?

 fast'. This is valid for RAID1 and RAID10 only. IO requests to these devices will

 be encouraged to fail quickly rather than cause long delays due to error handling.

 Also no attempt is made to repair a read error on these devices.

 If an array becomes degraded so that the 'failfast' device is the only usable de?

 vice, the 'failfast' flag will then be ignored and extended delays will be pre?

 ferred to complete failure.

 The 'failfast' flag is appropriate for storage arrays which have a low probability

 of true failure, but which may sometimes cause unacceptable delays due to internal

 maintenance functions.

 --assume-clean

 Tell mdadm that the array pre-existed and is known to be clean. It can be useful

 when trying to recover from a major failure as you can be sure that no data will be

 affected unless you actually write to the array. It can also be used when creating

 a RAID1 or RAID10 if you want to avoid the initial resync, however this practice ?

 while normally safe ? is not recommended. Use this only if you really know what

 you are doing. Page 12/47

 When the devices that will be part of a new array were filled with zeros before

 creation the operator knows the array is actually clean. If that is the case, such

 as after running badblocks, this argument can be used to tell mdadm the facts the

 operator knows.

 When an array is resized to a larger size with --grow --size= the new space is nor?

 mally resynced in that same way that the whole array is resynced at creation. From

 Linux version 3.0, --assume-clean can be used with that command to avoid the auto?

 matic resync.

 --backup-file=

 This is needed when --grow is used to increase the number of raid-devices in a

 RAID5 or RAID6 if there are no spare devices available, or to shrink, change RAID

 level or layout. See the GROW MODE section below on RAID-DEVICES CHANGES. The

 file must be stored on a separate device, not on the RAID array being reshaped.

 --data-offset=

 Arrays with 1.x metadata can leave a gap between the start of the device and the

 start of array data. This gap can be used for various metadata. The start of data

 is known as the data-offset. Normally an appropriate data offset is computed auto?

 matically. However it can be useful to set it explicitly such as when re-creating

 an array which was originally created using a different version of mdadm which com?

 puted a different offset.

 Setting the offset explicitly over-rides the default. The value given is in Kilo?

 bytes unless a suffix of 'K', 'M', 'G' or 'T' is used to explicitly indicate Kilo?

 bytes, Megabytes, Gigabytes or Terabytes respectively.

 Since Linux 3.4, --data-offset can also be used with --grow for some RAID levels

 (initially on RAID10). This allows the data-offset to be changed as part of the

 reshape process. When the data offset is changed, no backup file is required as

 the difference in offsets is used to provide the same functionality.

 When the new offset is earlier than the old offset, the number of devices in the

 array cannot shrink. When it is after the old offset, the number of devices in the

 array cannot increase.

 When creating an array, --data-offset can be specified as variable. In the case

 each member device is expected to have a offset appended to the name, separated by

 a colon. This makes it possible to recreate exactly an array which has varying Page 13/47

 data offsets (as can happen when different versions of mdadm are used to add dif?

 ferent devices).

 --continue

 This option is complementary to the --freeze-reshape option for assembly. It is

 needed when --grow operation is interrupted and it is not restarted automatically

 due to --freeze-reshape usage during array assembly. This option is used together

 with -G , (--grow) command and device for a pending reshape to be continued. All

 parameters required for reshape continuation will be read from array metadata. If

 initial --grow command had required --backup-file= option to be set, continuation

 option will require to have exactly the same backup file given as well.

 Any other parameter passed together with --continue option will be ignored.

 -N, --name=

 Set a name for the array. This is currently only effective when creating an array

 with a version-1 superblock, or an array in a DDF container. The name is a simple

 textual string that can be used to identify array components when assembling. If

 name is needed but not specified, it is taken from the basename of the device that

 is being created. e.g. when creating /dev/md/home the name will default to home.

 (Does not work in Grow mode.)

 -R, --run

 Insist that mdadm run the array, even if some of the components appear to be active

 in another array or filesystem. Normally mdadm will ask for confirmation before

 including such components in an array. This option causes that question to be sup?

 pressed.

 -f, --force

 Insist that mdadm accept the geometry and layout specified without question. Nor?

 mally mdadm will not allow creation of an array with only one device, and will try

 to create a RAID5 array with one missing drive (as this makes the initial resync

 work faster). With --force, mdadm will not try to be so clever.

 -o, --readonly

 Start the array read only rather than read-write as normal. No writes will be al?

 lowed to the array, and no resync, recovery, or reshape will be started. It works

 with Create, Assemble, Manage and Misc mode.

 -a, --auto{=yes,md,mdp,part,p}{NN} Page 14/47

 Instruct mdadm how to create the device file if needed, possibly allocating an un?

 used minor number. "md" causes a non-partitionable array to be used (though since

 Linux 2.6.28, these array devices are in fact partitionable). "mdp", "part" or "p"

 causes a partitionable array (2.6 and later) to be used. "yes" requires the named

 md device to have a 'standard' format, and the type and minor number will be deter?

 mined from this. With mdadm 3.0, device creation is normally left up to udev so

 this option is unlikely to be needed. See DEVICE NAMES below.

 The argument can also come immediately after "-a". e.g. "-ap".

 If --auto is not given on the command line or in the config file, then the default

 will be --auto=yes.

 If --scan is also given, then any auto= entries in the config file will override

 the --auto instruction given on the command line.

 For partitionable arrays, mdadm will create the device file for the whole array and

 for the first 4 partitions. A different number of partitions can be specified at

 the end of this option (e.g. --auto=p7). If the device name ends with a digit,

 the partition names add a 'p', and a number, e.g. /dev/md/home1p3. If there is no

 trailing digit, then the partition names just have a number added, e.g.

 /dev/md/scratch3.

 If the md device name is in a 'standard' format as described in DEVICE NAMES, then

 it will be created, if necessary, with the appropriate device number based on that

 name. If the device name is not in one of these formats, then a unused device num?

 ber will be allocated. The device number will be considered unused if there is no

 active array for that number, and there is no entry in /dev for that number and

 with a non-standard name. Names that are not in 'standard' format are only allowed

 in "/dev/md/".

 This is meaningful with --create or --build.

 -a, --add

 This option can be used in Grow mode in two cases.

 If the target array is a Linear array, then --add can be used to add one or more

 devices to the array. They are simply catenated on to the end of the array. Once

 added, the devices cannot be removed.

 If the --raid-disks option is being used to increase the number of devices in an

 array, then --add can be used to add some extra devices to be included in the ar? Page 15/47

 ray. In most cases this is not needed as the extra devices can be added as spares

 first, and then the number of raid-disks can be changed. However for RAID0, it is

 not possible to add spares. So to increase the number of devices in a RAID0, it is

 necessary to set the new number of devices, and to add the new devices, in the same

 command.

 --nodes

 Only works when the array is for clustered environment. It specifies the maximum

 number of nodes in the cluster that will use this device simultaneously. If not

 specified, this defaults to 4.

 --write-journal

 Specify journal device for the RAID-4/5/6 array. The journal device should be a SSD

 with reasonable lifetime.

 --symlinks

 Auto creation of symlinks in /dev to /dev/md, option --symlinks must be 'no' or

 'yes' and work with --create and --build.

 -k, --consistency-policy=

 Specify how the array maintains consistency in case of unexpected shutdown. Only

 relevant for RAID levels with redundancy. Currently supported options are:

 resync Full resync is performed and all redundancy is regenerated when the array is

 started after unclean shutdown.

 bitmap Resync assisted by a write-intent bitmap. Implicitly selected when using

 --bitmap.

 journal

 For RAID levels 4/5/6, journal device is used to log transactions and replay

 after unclean shutdown. Implicitly selected when using --write-journal.

 ppl For RAID5 only, Partial Parity Log is used to close the write hole and elim?

 inate resync. PPL is stored in the metadata region of RAID member drives, no

 additional journal drive is needed.

 Can be used with --grow to change the consistency policy of an active array in some

 cases. See CONSISTENCY POLICY CHANGES below.

For assemble:

 -u, --uuid=

 uuid of array to assemble. Devices which don't have this uuid are excluded Page 16/47

 -m, --super-minor=

 Minor number of device that array was created for. Devices which don't have this

 minor number are excluded. If you create an array as /dev/md1, then all su?

 perblocks will contain the minor number 1, even if the array is later assembled as

 /dev/md2.

 Giving the literal word "dev" for --super-minor will cause mdadm to use the minor

 number of the md device that is being assembled. e.g. when assembling /dev/md0,

 --super-minor=dev will look for super blocks with a minor number of 0.

 --super-minor is only relevant for v0.90 metadata, and should not normally be used.

 Using --uuid is much safer.

 -N, --name=

 Specify the name of the array to assemble. This must be the name that was speci?

 fied when creating the array. It must either match the name stored in the su?

 perblock exactly, or it must match with the current homehost prefixed to the start

 of the given name.

 -f, --force

 Assemble the array even if the metadata on some devices appears to be out-of-date.

 If mdadm cannot find enough working devices to start the array, but can find some

 devices that are recorded as having failed, then it will mark those devices as

 working so that the array can be started. This works only for native. For external

 metadata it allows to start dirty degraded RAID 4, 5, 6. An array which requires

 --force to be started may contain data corruption. Use it carefully.

 -R, --run

 Attempt to start the array even if fewer drives were given than were present last

 time the array was active. Normally if not all the expected drives are found and

 --scan is not used, then the array will be assembled but not started. With --run

 an attempt will be made to start it anyway.

 --no-degraded

 This is the reverse of --run in that it inhibits the startup of array unless all

 expected drives are present. This is only needed with --scan, and can be used if

 the physical connections to devices are not as reliable as you would like.

 -a, --auto{=no,yes,md,mdp,part}

 See this option under Create and Build options. Page 17/47

 -b, --bitmap=

 Specify the bitmap file that was given when the array was created. If an array has

 an internal bitmap, there is no need to specify this when assembling the array.

 --backup-file=

 If --backup-file was used while reshaping an array (e.g. changing number of devices

 or chunk size) and the system crashed during the critical section, then the same

 --backup-file must be presented to --assemble to allow possibly corrupted data to

 be restored, and the reshape to be completed.

 --invalid-backup

 If the file needed for the above option is not available for any reason an empty

 file can be given together with this option to indicate that the backup file is in?

 valid. In this case the data that was being rearranged at the time of the crash

 could be irrecoverably lost, but the rest of the array may still be recoverable.

 This option should only be used as a last resort if there is no way to recover the

 backup file.

 -U, --update=

 Update the superblock on each device while assembling the array. The argument

 given to this flag can be one of sparc2.2, summaries, uuid, name, nodes, homehost,

 home-cluster, resync, byteorder, devicesize, no-bitmap, bbl, no-bbl, ppl, no-ppl,

 layout-original, layout-alternate, layout-unspecified, metadata, or super-minor.

 The sparc2.2 option will adjust the superblock of an array what was created on a

 Sparc machine running a patched 2.2 Linux kernel. This kernel got the alignment of

 part of the superblock wrong. You can use the --examine --sparc2.2 option to mdadm

 to see what effect this would have.

 The super-minor option will update the preferred minor field on each superblock to

 match the minor number of the array being assembled. This can be useful if --exam?

 ine reports a different "Preferred Minor" to --detail. In some cases this update

 will be performed automatically by the kernel driver. In particular the update

 happens automatically at the first write to an array with redundancy (RAID level 1

 or greater) on a 2.6 (or later) kernel.

 The uuid option will change the uuid of the array. If a UUID is given with the

 --uuid option that UUID will be used as a new UUID and will NOT be used to help

 identify the devices in the array. If no --uuid is given, a random UUID is chosen. Page 18/47

 The name option will change the name of the array as stored in the superblock.

 This is only supported for version-1 superblocks.

 The nodes option will change the nodes of the array as stored in the bitmap su?

 perblock. This option only works for a clustered environment.

 The homehost option will change the homehost as recorded in the superblock. For

 version-0 superblocks, this is the same as updating the UUID. For version-1 su?

 perblocks, this involves updating the name.

 The home-cluster option will change the cluster name as recorded in the superblock

 and bitmap. This option only works for clustered environment.

 The resync option will cause the array to be marked dirty meaning that any redun?

 dancy in the array (e.g. parity for RAID5, copies for RAID1) may be incorrect.

 This will cause the RAID system to perform a "resync" pass to make sure that all

 redundant information is correct.

 The byteorder option allows arrays to be moved between machines with different

 byte-order, such as from a big-endian machine like a Sparc or some MIPS machines,

 to a little-endian x86_64 machine. When assembling such an array for the first

 time after a move, giving --update=byteorder will cause mdadm to expect superblocks

 to have their byteorder reversed, and will correct that order before assembling the

 array. This is only valid with original (Version 0.90) superblocks.

 The summaries option will correct the summaries in the superblock. That is the

 counts of total, working, active, failed, and spare devices.

 The devicesize option will rarely be of use. It applies to version 1.1 and 1.2

 metadata only (where the metadata is at the start of the device) and is only useful

 when the component device has changed size (typically become larger). The version

 1 metadata records the amount of the device that can be used to store data, so if a

 device in a version 1.1 or 1.2 array becomes larger, the metadata will still be

 visible, but the extra space will not. In this case it might be useful to assemble

 the array with --update=devicesize. This will cause mdadm to determine the maximum

 usable amount of space on each device and update the relevant field in the meta?

 data.

 The metadata option only works on v0.90 metadata arrays and will convert them to

 v1.0 metadata. The array must not be dirty (i.e. it must not need a sync) and it

 must not have a write-intent bitmap. Page 19/47

 The old metadata will remain on the devices, but will appear older than the new

 metadata and so will usually be ignored. The old metadata (or indeed the new meta?

 data) can be removed by giving the appropriate --metadata= option to --zero-su?

 perblock.

 The no-bitmap option can be used when an array has an internal bitmap which is cor?

 rupt in some way so that assembling the array normally fails. It will cause any

 internal bitmap to be ignored.

 The bbl option will reserve space in each device for a bad block list. This will

 be 4K in size and positioned near the end of any free space between the superblock

 and the data.

 The no-bbl option will cause any reservation of space for a bad block list to be

 removed. If the bad block list contains entries, this will fail, as removing the

 list could cause data corruption.

 The ppl option will enable PPL for a RAID5 array and reserve space for PPL on each

 device. There must be enough free space between the data and superblock and a

 write-intent bitmap or journal must not be used.

 The no-ppl option will disable PPL in the superblock.

 The layout-original and layout-alternate options are for RAID0 arrays with non-uni?

 form devices size that were in use before Linux 5.4. If the array was being used

 with Linux 3.13 or earlier, then to assemble the array on a new kernel, --up?

 date=layout-original must be given. If the array was created and used with a ker?

 nel from Linux 3.14 to Linux 5.3, then --update=layout-alternate must be given.

 This only needs to be given once. Subsequent assembly of the array will happen

 normally. For more information, see md(4).

 The layout-unspecified option reverts the effect of layout-orignal or layout-alter?

 nate and allows the array to be again used on a kernel prior to Linux 5.3. This

 option should be used with great caution.

 --freeze-reshape

 Option is intended to be used in start-up scripts during initrd boot phase. When

 array under reshape is assembled during initrd phase, this option stops reshape af?

 ter reshape critical section is being restored. This happens before file system

 pivot operation and avoids loss of file system context. Losing file system context

 would cause reshape to be broken. Page 20/47

 Reshape can be continued later using the --continue option for the grow command.

 --symlinks

 See this option under Create and Build options.

For Manage mode:

 -t, --test

 Unless a more serious error occurred, mdadm will exit with a status of 2 if no

 changes were made to the array and 0 if at least one change was made. This can be

 useful when an indirect specifier such as missing, detached or faulty is used in

 requesting an operation on the array. --test will report failure if these speci?

 fiers didn't find any match.

 -a, --add

 hot-add listed devices. If a device appears to have recently been part of the ar?

 ray (possibly it failed or was removed) the device is re-added as described in the

 next point. If that fails or the device was never part of the array, the device is

 added as a hot-spare. If the array is degraded, it will immediately start to re?

 build data onto that spare.

 Note that this and the following options are only meaningful on array with redun?

 dancy. They don't apply to RAID0 or Linear.

 --re-add

 re-add a device that was previously removed from an array. If the metadata on the

 device reports that it is a member of the array, and the slot that it used is still

 vacant, then the device will be added back to the array in the same position. This

 will normally cause the data for that device to be recovered. However based on the

 event count on the device, the recovery may only require sections that are flagged

 by a write-intent bitmap to be recovered or may not require any recovery at all.

 When used on an array that has no metadata (i.e. it was built with --build) it will

 be assumed that bitmap-based recovery is enough to make the device fully consistent

 with the array.

 When used with v1.x metadata, --re-add can be accompanied by --update=devicesize,

 --update=bbl, or --update=no-bbl. See the description of these option when used in

 Assemble mode for an explanation of their use.

 If the device name given is missing then mdadm will try to find any device that

 looks like it should be part of the array but isn't and will try to re-add all such Page 21/47

 devices.

 If the device name given is faulty then mdadm will find all devices in the array

 that are marked faulty, remove them and attempt to immediately re-add them. This

 can be useful if you are certain that the reason for failure has been resolved.

 --add-spare

 Add a device as a spare. This is similar to --add except that it does not attempt

 --re-add first. The device will be added as a spare even if it looks like it could

 be an recent member of the array.

 -r, --remove

 remove listed devices. They must not be active. i.e. they should be failed or

 spare devices.

 As well as the name of a device file (e.g. /dev/sda1) the words failed, detached

 and names like set-A can be given to --remove. The first causes all failed device

 to be removed. The second causes any device which is no longer connected to the

 system (i.e an 'open' returns ENXIO) to be removed. The third will remove a set as

 describe below under --fail.

 -f, --fail

 Mark listed devices as faulty. As well as the name of a device file, the word de?

 tached or a set name like set-A can be given. The former will cause any device

 that has been detached from the system to be marked as failed. It can then be re?

 moved.

 For RAID10 arrays where the number of copies evenly divides the number of devices,

 the devices can be conceptually divided into sets where each set contains a single

 complete copy of the data on the array. Sometimes a RAID10 array will be config?

 ured so that these sets are on separate controllers. In this case all the devices

 in one set can be failed by giving a name like set-A or set-B to --fail. The ap?

 propriate set names are reported by --detail.

 --set-faulty

 same as --fail.

 --replace

 Mark listed devices as requiring replacement. As soon as a spare is available, it

 will be rebuilt and will replace the marked device. This is similar to marking a

 device as faulty, but the device remains in service during the recovery process to Page 22/47

 increase resilience against multiple failures. When the replacement process fin?

 ishes, the replaced device will be marked as faulty.

 --with This can follow a list of --replace devices. The devices listed after --with will

 be preferentially used to replace the devices listed after --replace. These device

 must already be spare devices in the array.

 --write-mostly

 Subsequent devices that are added or re-added will have the 'write-mostly' flag

 set. This is only valid for RAID1 and means that the 'md' driver will avoid read?

 ing from these devices if possible.

 --readwrite

 Subsequent devices that are added or re-added will have the 'write-mostly' flag

 cleared.

 --cluster-confirm

 Confirm the existence of the device. This is issued in response to an --add request

 by a node in a cluster. When a node adds a device it sends a message to all nodes

 in the cluster to look for a device with a UUID. This translates to a udev notifi?

 cation with the UUID of the device to be added and the slot number. The receiving

 node must acknowledge this message with --cluster-confirm. Valid arguments are

 <slot>:<devicename> in case the device is found or <slot>:missing in case the de?

 vice is not found.

 --add-journal

 Add journal to an existing array, or recreate journal for RAID-4/5/6 array that

 lost a journal device. To avoid interrupting on-going write opertions, --add-jour?

 nal only works for array in Read-Only state.

 --failfast

 Subsequent devices that are added or re-added will have the 'failfast' flag set.

 This is only valid for RAID1 and RAID10 and means that the 'md' driver will avoid

 long timeouts on error handling where possible.

 --nofailfast

 Subsequent devices that are re-added will be re-added without the 'failfast' flag

 set.

 Each of these options requires that the first device listed is the array to be acted upon,

 and the remainder are component devices to be added, removed, marked as faulty, etc. Sev? Page 23/47

 eral different operations can be specified for different devices, e.g.

 mdadm /dev/md0 --add /dev/sda1 --fail /dev/sdb1 --remove /dev/sdb1

 Each operation applies to all devices listed until the next operation.

 If an array is using a write-intent bitmap, then devices which have been removed can be

 re-added in a way that avoids a full reconstruction but instead just updates the blocks

 that have changed since the device was removed. For arrays with persistent metadata (su?

 perblocks) this is done automatically. For arrays created with --build mdadm needs to be

 told that this device we removed recently with --re-add.

 Devices can only be removed from an array if they are not in active use, i.e. that must be

 spares or failed devices. To remove an active device, it must first be marked as faulty.

For Misc mode:

 -Q, --query

 Examine a device to see (1) if it is an md device and (2) if it is a component of

 an md array. Information about what is discovered is presented.

 -D, --detail

 Print details of one or more md devices.

 --detail-platform

 Print details of the platform's RAID capabilities (firmware / hardware topology)

 for a given metadata format. If used without argument, mdadm will scan all con?

 trollers looking for their capabilities. Otherwise, mdadm will only look at the

 controller specified by the argument in form of an absolute filepath or a link,

 e.g. /sys/devices/pci0000:00/0000:00:1f.2.

 -Y, --export

 When used with --detail, --detail-platform, --examine, or --incremental output will

 be formatted as key=value pairs for easy import into the environment.

 With --incremental The value MD_STARTED indicates whether an array was started

 (yes) or not, which may include a reason (unsafe, nothing, no). Also the value

 MD_FOREIGN indicates if the array is expected on this host (no), or seems to be

 from elsewhere (yes).

 -E, --examine

 Print contents of the metadata stored on the named device(s). Note the contrast

 between --examine and --detail. --examine applies to devices which are components

 of an array, while --detail applies to a whole array which is currently active. Page 24/47

 --sparc2.2

 If an array was created on a SPARC machine with a 2.2 Linux kernel patched with

 RAID support, the superblock will have been created incorrectly, or at least incom?

 patibly with 2.4 and later kernels. Using the --sparc2.2 flag with --examine will

 fix the superblock before displaying it. If this appears to do the right thing,

 then the array can be successfully assembled using --assemble --update=sparc2.2.

 -X, --examine-bitmap

 Report information about a bitmap file. The argument is either an external bitmap

 file or an array component in case of an internal bitmap. Note that running this

 on an array device (e.g. /dev/md0) does not report the bitmap for that array.

 --examine-badblocks

 List the bad-blocks recorded for the device, if a bad-blocks list has been config?

 ured. Currently only 1.x and IMSM metadata support bad-blocks lists.

 --dump=directory

 --restore=directory

 Save metadata from lists devices, or restore metadata to listed devices.

 -R, --run

 start a partially assembled array. If --assemble did not find enough devices to

 fully start the array, it might leaving it partially assembled. If you wish, you

 can then use --run to start the array in degraded mode.

 -S, --stop

 deactivate array, releasing all resources.

 -o, --readonly

 mark array as readonly.

 -w, --readwrite

 mark array as readwrite.

 --zero-superblock

 If the device contains a valid md superblock, the block is overwritten with zeros.

 With --force the block where the superblock would be is overwritten even if it

 doesn't appear to be valid.

 Note: Be careful to call --zero-superblock with clustered raid, make sure array

 isn't used or assembled in other cluster node before execute it.

 --kill-subarray= Page 25/47

 If the device is a container and the argument to --kill-subarray specifies an inac?

 tive subarray in the container, then the subarray is deleted. Deleting all subar?

 rays will leave an 'empty-container' or spare superblock on the drives. See

 --zero-superblock for completely removing a superblock. Note that some formats de?

 pend on the subarray index for generating a UUID, this command will fail if it

 would change the UUID of an active subarray.

 --update-subarray=

 If the device is a container and the argument to --update-subarray specifies a sub?

 array in the container, then attempt to update the given superblock field in the

 subarray. See below in MISC MODE for details.

 -t, --test

 When used with --detail, the exit status of mdadm is set to reflect the status of

 the device. See below in MISC MODE for details.

 -W, --wait

 For each md device given, wait for any resync, recovery, or reshape activity to

 finish before returning. mdadm will return with success if it actually waited for

 every device listed, otherwise it will return failure.

 --wait-clean

 For each md device given, or each device in /proc/mdstat if --scan is given, ar?

 range for the array to be marked clean as soon as possible. mdadm will return with

 success if the array uses external metadata and we successfully waited. For native

 arrays this returns immediately as the kernel handles dirty-clean transitions at

 shutdown. No action is taken if safe-mode handling is disabled.

 --action=

 Set the "sync_action" for all md devices given to one of idle, frozen, check, re?

 pair. Setting to idle will abort any currently running action though some actions

 will automatically restart. Setting to frozen will abort any current action and

 ensure no other action starts automatically.

 Details of check and repair can be found it md(4) under SCRUBBING AND MISMATCHES.

For Incremental Assembly mode:

 --rebuild-map, -r

 Rebuild the map file (/run/mdadm/map) that mdadm uses to help track which arrays

 are currently being assembled. Page 26/47

 --run, -R

 Run any array assembled as soon as a minimal number of devices are available,

 rather than waiting until all expected devices are present.

 --scan, -s

 Only meaningful with -R this will scan the map file for arrays that are being in?

 crementally assembled and will try to start any that are not already started. If

 any such array is listed in mdadm.conf as requiring an external bitmap, that bitmap

 will be attached first.

 --fail, -f

 This allows the hot-plug system to remove devices that have fully disappeared from

 the kernel. It will first fail and then remove the device from any array it be?

 longs to. The device name given should be a kernel device name such as "sda", not

 a name in /dev.

 --path=

 Only used with --fail. The 'path' given will be recorded so that if a new device

 appears at the same location it can be automatically added to the same array. This

 allows the failed device to be automatically replaced by a new device without meta?

 data if it appears at specified path. This option is normally only set by a udev

 script.

For Monitor mode:

 -m, --mail

 Give a mail address to send alerts to.

 -p, --program, --alert

 Give a program to be run whenever an event is detected.

 -y, --syslog

 Cause all events to be reported through 'syslog'. The messages have facility of

 'daemon' and varying priorities.

 -d, --delay

 Give a delay in seconds. mdadm polls the md arrays and then waits this many sec?

 onds before polling again. The default is 60 seconds. Since 2.6.16, there is no

 need to reduce this as the kernel alerts mdadm immediately when there is any

 change.

 -r, --increment Page 27/47

 Give a percentage increment. mdadm will generate RebuildNN events with the given

 percentage increment.

 -f, --daemonise

 Tell mdadm to run as a background daemon if it decides to monitor anything. This

 causes it to fork and run in the child, and to disconnect from the terminal. The

 process id of the child is written to stdout. This is useful with --scan which

 will only continue monitoring if a mail address or alert program is found in the

 config file.

 -i, --pid-file

 When mdadm is running in daemon mode, write the pid of the daemon process to the

 specified file, instead of printing it on standard output.

 -1, --oneshot

 Check arrays only once. This will generate NewArray events and more significantly

 DegradedArray and SparesMissing events. Running

 mdadm --monitor --scan -1

 from a cron script will ensure regular notification of any degraded arrays.

 -t, --test

 Generate a TestMessage alert for every array found at startup. This alert gets

 mailed and passed to the alert program. This can be used for testing that alert

 message do get through successfully.

 --no-sharing

 This inhibits the functionality for moving spares between arrays. Only one moni?

 toring process started with --scan but without this flag is allowed, otherwise the

 two could interfere with each other.

ASSEMBLE MODE

 Usage: mdadm --assemble md-device options-and-component-devices...

 Usage: mdadm --assemble --scan md-devices-and-options...

 Usage: mdadm --assemble --scan options...

 This usage assembles one or more RAID arrays from pre-existing components. For each ar?

 ray, mdadm needs to know the md device, the identity of the array, and a number of compo?

 nent-devices. These can be found in a number of ways.

 In the first usage example (without the --scan) the first device given is the md device.

 In the second usage example, all devices listed are treated as md devices and assembly is Page 28/47

 attempted. In the third (where no devices are listed) all md devices that are listed in

 the configuration file are assembled. If no arrays are described by the configuration

 file, then any arrays that can be found on unused devices will be assembled.

 If precisely one device is listed, but --scan is not given, then mdadm acts as though

 --scan was given and identity information is extracted from the configuration file.

 The identity can be given with the --uuid option, the --name option, or the --super-minor

 option, will be taken from the md-device record in the config file, or will be taken from

 the super block of the first component-device listed on the command line.

 Devices can be given on the --assemble command line or in the config file. Only devices

 which have an md superblock which contains the right identity will be considered for any

 array.

 The config file is only used if explicitly named with --config or requested with (a possi?

 bly implicit) --scan. In the later case, /etc/mdadm/mdadm.conf or /etc/mdadm.conf is

 used.

 If --scan is not given, then the config file will only be used to find the identity of md

 arrays.

 Normally the array will be started after it is assembled. However if --scan is not given

 and not all expected drives were listed, then the array is not started (to guard against

 usage errors). To insist that the array be started in this case (as may work for RAID1,

 4, 5, 6, or 10), give the --run flag.

 If udev is active, mdadm does not create any entries in /dev but leaves that to udev. It

 does record information in /run/mdadm/map which will allow udev to choose the correct

 name.

 If mdadm detects that udev is not configured, it will create the devices in /dev itself.

 In Linux kernels prior to version 2.6.28 there were two distinctly different types of md

 devices that could be created: one that could be partitioned using standard partitioning

 tools and one that could not. Since 2.6.28 that distinction is no longer relevant as both

 type of devices can be partitioned. mdadm will normally create the type that originally

 could not be partitioned as it has a well defined major number (9).

 Prior to 2.6.28, it is important that mdadm chooses the correct type of array device to

 use. This can be controlled with the --auto option. In particular, a value of "mdp" or

 "part" or "p" tells mdadm to use a partitionable device rather than the default.

 In the no-udev case, the value given to --auto can be suffixed by a number. This tells Page 29/47

 mdadm to create that number of partition devices rather than the default of 4.

 The value given to --auto can also be given in the configuration file as a word starting

 auto= on the ARRAY line for the relevant array.

 Auto Assembly

 When --assemble is used with --scan and no devices are listed, mdadm will first attempt to

 assemble all the arrays listed in the config file.

 If no arrays are listed in the config (other than those marked <ignore>) it will look

 through the available devices for possible arrays and will try to assemble anything that

 it finds. Arrays which are tagged as belonging to the given homehost will be assembled

 and started normally. Arrays which do not obviously belong to this host are given names

 that are expected not to conflict with anything local, and are started "read-auto" so that

 nothing is written to any device until the array is written to. i.e. automatic resync etc

 is delayed.

 If mdadm finds a consistent set of devices that look like they should comprise an array,

 and if the superblock is tagged as belonging to the given home host, it will automatically

 choose a device name and try to assemble the array. If the array uses version-0.90 meta?

 data, then the minor number as recorded in the superblock is used to create a name in

 /dev/md/ so for example /dev/md/3. If the array uses version-1 metadata, then the name

 from the superblock is used to similarly create a name in /dev/md/ (the name will have any

 'host' prefix stripped first).

 This behaviour can be modified by the AUTO line in the mdadm.conf configuration file.

 This line can indicate that specific metadata type should, or should not, be automatically

 assembled. If an array is found which is not listed in mdadm.conf and has a metadata for?

 mat that is denied by the AUTO line, then it will not be assembled. The AUTO line can

 also request that all arrays identified as being for this homehost should be assembled re?

 gardless of their metadata type. See mdadm.conf(5) for further details.

 Note: Auto assembly cannot be used for assembling and activating some arrays which are un?

 dergoing reshape. In particular as the backup-file cannot be given, any reshape which re?

 quires a backup-file to continue cannot be started by auto assembly. An array which is

 growing to more devices and has passed the critical section can be assembled using auto-

 assembly.

BUILD MODE

 Usage: mdadm --build md-device --chunk=X --level=Y --raid-devices=Z devices Page 30/47

 This usage is similar to --create. The difference is that it creates an array without a

 superblock. With these arrays there is no difference between initially creating the array

 and subsequently assembling the array, except that hopefully there is useful data there in

 the second case.

 The level may raid0, linear, raid1, raid10, multipath, or faulty, or one of their syn?

 onyms. All devices must be listed and the array will be started once complete. It will

 often be appropriate to use --assume-clean with levels raid1 or raid10.

CREATE MODE

 Usage: mdadm --create md-device --chunk=X --level=Y

 --raid-devices=Z devices

 This usage will initialise a new md array, associate some devices with it, and activate

 the array.

 The named device will normally not exist when mdadm --create is run, but will be created

 by udev once the array becomes active.

 The max length md-device name is limited to 32 characters. Different metadata types have

 more strict limitation (like IMSM where only 16 characters are allowed). For that reason,

 long name could be truncated or rejected, it depends on metadata policy.

 As devices are added, they are checked to see if they contain RAID superblocks or filesys?

 tems. They are also checked to see if the variance in device size exceeds 1%.

 If any discrepancy is found, the array will not automatically be run, though the presence

 of a --run can override this caution.

 To create a "degraded" array in which some devices are missing, simply give the word

 "missing" in place of a device name. This will cause mdadm to leave the corresponding

 slot in the array empty. For a RAID4 or RAID5 array at most one slot can be "missing";

 for a RAID6 array at most two slots. For a RAID1 array, only one real device needs to be

 given. All of the others can be "missing".

 When creating a RAID5 array, mdadm will automatically create a degraded array with an ex?

 tra spare drive. This is because building the spare into a degraded array is in general

 faster than resyncing the parity on a non-degraded, but not clean, array. This feature

 can be overridden with the --force option.

 When creating an array with version-1 metadata a name for the array is required. If this

 is not given with the --name option, mdadm will choose a name based on the last component

 of the name of the device being created. So if /dev/md3 is being created, then the name 3 Page 31/47

 will be chosen. If /dev/md/home is being created, then the name home will be used.

 When creating a partition based array, using mdadm with version-1.x metadata, the parti?

 tion type should be set to 0xDA (non fs-data). This type selection allows for greater

 precision since using any other [RAID auto-detect (0xFD) or a GNU/Linux partition (0x83)],

 might create problems in the event of array recovery through a live cdrom.

 A new array will normally get a randomly assigned 128bit UUID which is very likely to be

 unique. If you have a specific need, you can choose a UUID for the array by giving the

 --uuid= option. Be warned that creating two arrays with the same UUID is a recipe for

 disaster. Also, using --uuid= when creating a v0.90 array will silently override any

 --homehost= setting.

 If the array type supports a write-intent bitmap, and if the devices in the array exceed

 100G is size, an internal write-intent bitmap will automatically be added unless some

 other option is explicitly requested with the --bitmap option or a different consistency

 policy is selected with the --consistency-policy option. In any case space for a bitmap

 will be reserved so that one can be added later with --grow --bitmap=internal.

 If the metadata type supports it (currently only 1.x and IMSM metadata), space will be al?

 located to store a bad block list. This allows a modest number of bad blocks to be

 recorded, allowing the drive to remain in service while only partially functional.

 When creating an array within a CONTAINER mdadm can be given either the list of devices to

 use, or simply the name of the container. The former case gives control over which de?

 vices in the container will be used for the array. The latter case allows mdadm to auto?

 matically choose which devices to use based on how much spare space is available.

 The General Management options that are valid with --create are:

 --run insist on running the array even if some devices look like they might be in use.

 --readonly

 start the array in readonly mode.

MANAGE MODE

 Usage: mdadm device options... devices...

 This usage will allow individual devices in an array to be failed, removed or added. It

 is possible to perform multiple operations with on command. For example:

 mdadm /dev/md0 -f /dev/hda1 -r /dev/hda1 -a /dev/hda1

 will firstly mark /dev/hda1 as faulty in /dev/md0 and will then remove it from the array

 and finally add it back in as a spare. However only one md array can be affected by a Page 32/47

 single command.

 When a device is added to an active array, mdadm checks to see if it has metadata on it

 which suggests that it was recently a member of the array. If it does, it tries to

 "re-add" the device. If there have been no changes since the device was removed, or if

 the array has a write-intent bitmap which has recorded whatever changes there were, then

 the device will immediately become a full member of the array and those differences

 recorded in the bitmap will be resolved.

MISC MODE

 Usage: mdadm options ... devices ...

 MISC mode includes a number of distinct operations that operate on distinct devices. The

 operations are:

 --query

 The device is examined to see if it is (1) an active md array, or (2) a component

 of an md array. The information discovered is reported.

 --detail

 The device should be an active md device. mdadm will display a detailed descrip?

 tion of the array. --brief or --scan will cause the output to be less detailed and

 the format to be suitable for inclusion in mdadm.conf. The exit status of mdadm

 will normally be 0 unless mdadm failed to get useful information about the de?

 vice(s); however, if the --test option is given, then the exit status will be:

 0 The array is functioning normally.

 1 The array has at least one failed device.

 2 The array has multiple failed devices such that it is unusable.

 4 There was an error while trying to get information about the device.

 --detail-platform

 Print detail of the platform's RAID capabilities (firmware / hardware topology).

 If the metadata is specified with -e or --metadata= then the return status will be:

 0 metadata successfully enumerated its platform components on this system

 1 metadata is platform independent

 2 metadata failed to find its platform components on this system

 --update-subarray=

 If the device is a container and the argument to --update-subarray specifies a sub?

 array in the container, then attempt to update the given superblock field in the Page 33/47

 subarray. Similar to updating an array in "assemble" mode, the field to update is

 selected by -U or --update= option. The supported options are name, ppl, no-ppl,

 bitmap and no-bitmap.

 The name option updates the subarray name in the metadata, it may not affect the

 device node name or the device node symlink until the subarray is re-assembled. If

 updating name would change the UUID of an active subarray this operation is

 blocked, and the command will end in an error.

 The ppl and no-ppl options enable and disable PPL in the metadata. Currently sup?

 ported only for IMSM subarrays.

 The bitmap and no-bitmap options enable and disable write-intent bitmap in the

 metadata. Currently supported only for IMSM subarrays.

 --examine

 The device should be a component of an md array. mdadm will read the md superblock

 of the device and display the contents. If --brief or --scan is given, then multi?

 ple devices that are components of the one array are grouped together and reported

 in a single entry suitable for inclusion in mdadm.conf.

 Having --scan without listing any devices will cause all devices listed in the con?

 fig file to be examined.

 --dump=directory

 If the device contains RAID metadata, a file will be created in the directory and

 the metadata will be written to it. The file will be the same size as the device

 and have the metadata written in the file at the same locate that it exists in the

 device. However the file will be "sparse" so that only those blocks containing

 metadata will be allocated. The total space used will be small.

 The file name used in the directory will be the base name of the device. Further

 if any links appear in /dev/disk/by-id which point to the device, then hard links

 to the file will be created in directory based on these by-id names.

 Multiple devices can be listed and their metadata will all be stored in the one di?

 rectory.

 --restore=directory

 This is the reverse of --dump. mdadm will locate a file in the directory that has

 a name appropriate for the given device and will restore metadata from it. Names

 that match /dev/disk/by-id names are preferred, however if two of those refer to Page 34/47

 different files, mdadm will not choose between them but will abort the operation.

 If a file name is given instead of a directory then mdadm will restore from that

 file to a single device, always provided the size of the file matches that of the

 device, and the file contains valid metadata.

 --stop The devices should be active md arrays which will be deactivated, as long as they

 are not currently in use.

 --run This will fully activate a partially assembled md array.

 --readonly

 This will mark an active array as read-only, providing that it is not currently be?

 ing used.

 --readwrite

 This will change a readonly array back to being read/write.

 --scan For all operations except --examine, --scan will cause the operation to be applied

 to all arrays listed in /proc/mdstat. For --examine, --scan causes all devices

 listed in the config file to be examined.

 -b, --brief

 Be less verbose. This is used with --detail and --examine. Using --brief with

 --verbose gives an intermediate level of verbosity.

MONITOR MODE

 Usage: mdadm --monitor options... devices...

 This usage causes mdadm to periodically poll a number of md arrays and to report on any

 events noticed. mdadm will never exit once it decides that there are arrays to be

 checked, so it should normally be run in the background.

 As well as reporting events, mdadm may move a spare drive from one array to another if

 they are in the same spare-group or domain and if the destination array has a failed drive

 but no spares.

 If any devices are listed on the command line, mdadm will only monitor those devices.

 Otherwise all arrays listed in the configuration file will be monitored. Further, if

 --scan is given, then any other md devices that appear in /proc/mdstat will also be moni?

 tored.

 The result of monitoring the arrays is the generation of events. These events are passed

 to a separate program (if specified) and may be mailed to a given E-mail address.

 When passing events to a program, the program is run once for each event, and is given 2 Page 35/47

 or 3 command-line arguments: the first is the name of the event (see below), the second is

 the name of the md device which is affected, and the third is the name of a related device

 if relevant (such as a component device that has failed).

 If --scan is given, then a program or an E-mail address must be specified on the command

 line or in the config file. If neither are available, then mdadm will not monitor any?

 thing. Without --scan, mdadm will continue monitoring as long as something was found to

 monitor. If no program or email is given, then each event is reported to stdout.

 The different events are:

 DeviceDisappeared

 An md array which previously was configured appears to no longer be configured.

 (syslog priority: Critical)

 If mdadm was told to monitor an array which is RAID0 or Linear, then it will

 report DeviceDisappeared with the extra information Wrong-Level. This is be?

 cause RAID0 and Linear do not support the device-failed, hot-spare and resync

 operations which are monitored.

 RebuildStarted

 An md array started reconstruction (e.g. recovery, resync, reshape, check, re?

 pair). (syslog priority: Warning)

 RebuildNN

 Where NN is a two-digit number (ie. 05, 48). This indicates that rebuild has

 passed that many percent of the total. The events are generated with fixed in?

 crement since 0. Increment size may be specified with a commandline option (de?

 fault is 20). (syslog priority: Warning)

 RebuildFinished

 An md array that was rebuilding, isn't any more, either because it finished

 normally or was aborted. (syslog priority: Warning)

 Fail An active component device of an array has been marked as faulty. (syslog pri?

 ority: Critical)

 FailSpare

 A spare component device which was being rebuilt to replace a faulty device has

 failed. (syslog priority: Critical)

 SpareActive

 A spare component device which was being rebuilt to replace a faulty device has Page 36/47

 been successfully rebuilt and has been made active. (syslog priority: Info)

 NewArray

 A new md array has been detected in the /proc/mdstat file. (syslog priority:

 Info)

 DegradedArray

 A newly noticed array appears to be degraded. This message is not generated

 when mdadm notices a drive failure which causes degradation, but only when

 mdadm notices that an array is degraded when it first sees the array. (syslog

 priority: Critical)

 MoveSpare

 A spare drive has been moved from one array in a spare-group or domain to an?

 other to allow a failed drive to be replaced. (syslog priority: Info)

 SparesMissing

 If mdadm has been told, via the config file, that an array should have a cer?

 tain number of spare devices, and mdadm detects that it has fewer than this

 number when it first sees the array, it will report a SparesMissing message.

 (syslog priority: Warning)

 TestMessage

 An array was found at startup, and the --test flag was given. (syslog prior?

 ity: Info)

 Only Fail, FailSpare, DegradedArray, SparesMissing and TestMessage cause Email to be sent.

 All events cause the program to be run. The program is run with two or three arguments:

 the event name, the array device and possibly a second device.

 Each event has an associated array device (e.g. /dev/md1) and possibly a second device.

 For Fail, FailSpare, and SpareActive the second device is the relevant component device.

 For MoveSpare the second device is the array that the spare was moved from.

 For mdadm to move spares from one array to another, the different arrays need to be la?

 beled with the same spare-group or the spares must be allowed to migrate through matching

 POLICY domains in the configuration file. The spare-group name can be any string; it is

 only necessary that different spare groups use different names.

 When mdadm detects that an array in a spare group has fewer active devices than necessary

 for the complete array, and has no spare devices, it will look for another array in the

 same spare group that has a full complement of working drive and a spare. It will then Page 37/47

 attempt to remove the spare from the second drive and add it to the first. If the removal

 succeeds but the adding fails, then it is added back to the original array.

 If the spare group for a degraded array is not defined, mdadm will look at the rules of

 spare migration specified by POLICY lines in mdadm.conf and then follow similar steps as

 above if a matching spare is found.

GROW MODE

 The GROW mode is used for changing the size or shape of an active array. For this to

 work, the kernel must support the necessary change. Various types of growth are being

 added during 2.6 development.

 Currently the supported changes include

 ? change the "size" attribute for RAID1, RAID4, RAID5 and RAID6.

 ? increase or decrease the "raid-devices" attribute of RAID0, RAID1, RAID4, RAID5, and

 RAID6.

 ? change the chunk-size and layout of RAID0, RAID4, RAID5, RAID6 and RAID10.

 ? convert between RAID1 and RAID5, between RAID5 and RAID6, between RAID0, RAID4, and

 RAID5, and between RAID0 and RAID10 (in the near-2 mode).

 ? add a write-intent bitmap to any array which supports these bitmaps, or remove a

 write-intent bitmap from such an array.

 ? change the array's consistency policy.

 Using GROW on containers is currently supported only for Intel's IMSM container format.

 The number of devices in a container can be increased - which affects all arrays in the

 container - or an array in a container can be converted between levels where those levels

 are supported by the container, and the conversion is on of those listed above.

 Notes:

 ? Intel's native checkpointing doesn't use --backup-file option and it is transparent

 for assembly feature.

 ? Roaming between Windows(R) and Linux systems for IMSM metadata is not supported during

 grow process.

 ? When growing a raid0 device, the new component disk size (or external backup size)

 should be larger than LCM(old, new) * chunk-size * 2, where LCM() is the least common

 multiple of the old and new count of component disks, and "* 2" comes from the fact

 that mdadm refuses to use more than half of a spare device for backup space.

 SIZE CHANGES Page 38/47

 Normally when an array is built the "size" is taken from the smallest of the drives. If

 all the small drives in an arrays are, one at a time, removed and replaced with larger

 drives, then you could have an array of large drives with only a small amount used. In

 this situation, changing the "size" with "GROW" mode will allow the extra space to start

 being used. If the size is increased in this way, a "resync" process will start to make

 sure the new parts of the array are synchronised.

 Note that when an array changes size, any filesystem that may be stored in the array will

 not automatically grow or shrink to use or vacate the space. The filesystem will need to

 be explicitly told to use the extra space after growing, or to reduce its size prior to

 shrinking the array.

 Also the size of an array cannot be changed while it has an active bitmap. If an array

 has a bitmap, it must be removed before the size can be changed. Once the change is com?

 plete a new bitmap can be created.

 Note: --grow --size is not yet supported for external file bitmap.

 RAID-DEVICES CHANGES

 A RAID1 array can work with any number of devices from 1 upwards (though 1 is not very

 useful). There may be times which you want to increase or decrease the number of active

 devices. Note that this is different to hot-add or hot-remove which changes the number of

 inactive devices.

 When reducing the number of devices in a RAID1 array, the slots which are to be removed

 from the array must already be vacant. That is, the devices which were in those slots

 must be failed and removed.

 When the number of devices is increased, any hot spares that are present will be activated

 immediately.

 Changing the number of active devices in a RAID5 or RAID6 is much more effort. Every

 block in the array will need to be read and written back to a new location. From 2.6.17,

 the Linux Kernel is able to increase the number of devices in a RAID5 safely, including

 restarting an interrupted "reshape". From 2.6.31, the Linux Kernel is able to increase or

 decrease the number of devices in a RAID5 or RAID6.

 From 2.6.35, the Linux Kernel is able to convert a RAID0 in to a RAID4 or RAID5. mdadm

 uses this functionality and the ability to add devices to a RAID4 to allow devices to be

 added to a RAID0. When requested to do this, mdadm will convert the RAID0 to a RAID4, add

 the necessary disks and make the reshape happen, and then convert the RAID4 back to RAID0. Page 39/47

 When decreasing the number of devices, the size of the array will also decrease. If there

 was data in the array, it could get destroyed and this is not reversible, so you should

 firstly shrink the filesystem on the array to fit within the new size. To help prevent

 accidents, mdadm requires that the size of the array be decreased first with mdadm --grow

 --array-size. This is a reversible change which simply makes the end of the array inac?

 cessible. The integrity of any data can then be checked before the non-reversible reduc?

 tion in the number of devices is request.

 When relocating the first few stripes on a RAID5 or RAID6, it is not possible to keep the

 data on disk completely consistent and crash-proof. To provide the required safety, mdadm

 disables writes to the array while this "critical section" is reshaped, and takes a backup

 of the data that is in that section. For grows, this backup may be stored in any spare

 devices that the array has, however it can also be stored in a separate file specified

 with the --backup-file option, and is required to be specified for shrinks, RAID level

 changes and layout changes. If this option is used, and the system does crash during the

 critical period, the same file must be passed to --assemble to restore the backup and re?

 assemble the array. When shrinking rather than growing the array, the reshape is done

 from the end towards the beginning, so the "critical section" is at the end of the re?

 shape.

 LEVEL CHANGES

 Changing the RAID level of any array happens instantaneously. However in the RAID5 to

 RAID6 case this requires a non-standard layout of the RAID6 data, and in the RAID6 to

 RAID5 case that non-standard layout is required before the change can be accomplished. So

 while the level change is instant, the accompanying layout change can take quite a long

 time. A --backup-file is required. If the array is not simultaneously being grown or

 shrunk, so that the array size will remain the same - for example, reshaping a 3-drive

 RAID5 into a 4-drive RAID6 - the backup file will be used not just for a "critical sec?

 tion" but throughout the reshape operation, as described below under LAYOUT CHANGES.

 CHUNK-SIZE AND LAYOUT CHANGES

 Changing the chunk-size or layout without also changing the number of devices as the same

 time will involve re-writing all blocks in-place. To ensure against data loss in the case

 of a crash, a --backup-file must be provided for these changes. Small sections of the ar?

 ray will be copied to the backup file while they are being rearranged. This means that

 all the data is copied twice, once to the backup and once to the new layout on the array, Page 40/47

 so this type of reshape will go very slowly.

 If the reshape is interrupted for any reason, this backup file must be made available to

 mdadm --assemble so the array can be reassembled. Consequently the file cannot be stored

 on the device being reshaped.

 BITMAP CHANGES

 A write-intent bitmap can be added to, or removed from, an active array. Either internal

 bitmaps, or bitmaps stored in a separate file, can be added. Note that if you add a bit?

 map stored in a file which is in a filesystem that is on the RAID array being affected,

 the system will deadlock. The bitmap must be on a separate filesystem.

 CONSISTENCY POLICY CHANGES

 The consistency policy of an active array can be changed by using the --consistency-policy

 option in Grow mode. Currently this works only for the ppl and resync policies and allows

 one to enable or disable the RAID5 Partial Parity Log (PPL).

INCREMENTAL MODE

 Usage: mdadm --incremental [--run] [--quiet] component-device [optional-aliases-for-de?

 vice]

 Usage: mdadm --incremental --fail component-device

 Usage: mdadm --incremental --rebuild-map

 Usage: mdadm --incremental --run --scan

 This mode is designed to be used in conjunction with a device discovery system. As de?

 vices are found in a system, they can be passed to mdadm --incremental to be conditionally

 added to an appropriate array.

 Conversely, it can also be used with the --fail flag to do just the opposite and find

 whatever array a particular device is part of and remove the device from that array.

 If the device passed is a CONTAINER device created by a previous call to mdadm, then

 rather than trying to add that device to an array, all the arrays described by the meta?

 data of the container will be started.

 mdadm performs a number of tests to determine if the device is part of an array, and which

 array it should be part of. If an appropriate array is found, or can be created, mdadm

 adds the device to the array and conditionally starts the array.

 Note that mdadm will normally only add devices to an array which were previously working

 (active or spare) parts of that array. The support for automatic inclusion of a new drive

 as a spare in some array requires a configuration through POLICY in config file. Page 41/47

 The tests that mdadm makes are as follow:

 + Is the device permitted by mdadm.conf? That is, is it listed in a DEVICES line in

 that file. If DEVICES is absent then the default it to allow any device. Simi?

 larly if DEVICES contains the special word partitions then any device is allowed.

 Otherwise the device name given to mdadm, or one of the aliases given, or an alias

 found in the filesystem, must match one of the names or patterns in a DEVICES line.

 This is the only context where the aliases are used. They are usually provided by

 a udev rules mentioning $env{DEVLINKS}.

 + Does the device have a valid md superblock? If a specific metadata version is re?

 quested with --metadata or -e then only that style of metadata is accepted, other?

 wise mdadm finds any known version of metadata. If no md metadata is found, the

 device may be still added to an array as a spare if POLICY allows.

 mdadm keeps a list of arrays that it has partially assembled in /run/mdadm/map. If no ar?

 ray exists which matches the metadata on the new device, mdadm must choose a device name

 and unit number. It does this based on any name given in mdadm.conf or any name informa?

 tion stored in the metadata. If this name suggests a unit number, that number will be

 used, otherwise a free unit number will be chosen. Normally mdadm will prefer to create a

 partitionable array, however if the CREATE line in mdadm.conf suggests that a non-parti?

 tionable array is preferred, that will be honoured.

 If the array is not found in the config file and its metadata does not identify it as be?

 longing to the "homehost", then mdadm will choose a name for the array which is certain

 not to conflict with any array which does belong to this host. It does this be adding an

 underscore and a small number to the name preferred by the metadata.

 Once an appropriate array is found or created and the device is added, mdadm must decide

 if the array is ready to be started. It will normally compare the number of available

 (non-spare) devices to the number of devices that the metadata suggests need to be active.

 If there are at least that many, the array will be started. This means that if any de?

 vices are missing the array will not be restarted.

 As an alternative, --run may be passed to mdadm in which case the array will be run as

 soon as there are enough devices present for the data to be accessible. For a RAID1, that

 means one device will start the array. For a clean RAID5, the array will be started as

 soon as all but one drive is present.

 Note that neither of these approaches is really ideal. If it can be known that all device Page 42/47

 discovery has completed, then

 mdadm -IRs

 can be run which will try to start all arrays that are being incrementally assembled.

 They are started in "read-auto" mode in which they are read-only until the first write re?

 quest. This means that no metadata updates are made and no attempt at resync or recovery

 happens. Further devices that are found before the first write can still be added safely.

ENVIRONMENT

 This section describes environment variables that affect how mdadm operates.

 MDADM_NO_MDMON

 Setting this value to 1 will prevent mdadm from automatically launching mdmon.

 This variable is intended primarily for debugging mdadm/mdmon.

 MDADM_NO_UDEV

 Normally, mdadm does not create any device nodes in /dev, but leaves that task to

 udev. If udev appears not to be configured, or if this environment variable is set

 to '1', the mdadm will create and devices that are needed.

 MDADM_NO_SYSTEMCTL

 If mdadm detects that systemd is in use it will normally request systemd to start

 various background tasks (particularly mdmon) rather than forking and running them

 in the background. This can be suppressed by setting MDADM_NO_SYSTEMCTL=1.

 IMSM_NO_PLATFORM

 A key value of IMSM metadata is that it allows interoperability with boot ROMs on

 Intel platforms, and with other major operating systems. Consequently, mdadm will

 only allow an IMSM array to be created or modified if detects that it is running on

 an Intel platform which supports IMSM, and supports the particular configuration of

 IMSM that is being requested (some functionality requires newer OROM support).

 These checks can be suppressed by setting IMSM_NO_PLATFORM=1 in the environment.

 This can be useful for testing or for disaster recovery. You should be aware that

 interoperability may be compromised by setting this value.

 MDADM_GROW_ALLOW_OLD

 If an array is stopped while it is performing a reshape and that reshape was making

 use of a backup file, then when the array is re-assembled mdadm will sometimes com?

 plain that the backup file is too old. If this happens and you are certain it is

 the right backup file, you can over-ride this check by setting MDADM_GROW_AL? Page 43/47

 LOW_OLD=1 in the environment.

 MDADM_CONF_AUTO

 Any string given in this variable is added to the start of the AUTO line in the

 config file, or treated as the whole AUTO line if none is given. It can be used to

 disable certain metadata types when mdadm is called from a boot script. For exam?

 ple

 export MDADM_CONF_AUTO='-ddf -imsm'

 will make sure that mdadm does not automatically assemble any DDF or IMSM arrays

 that are found. This can be useful on systems configured to manage such arrays

 with dmraid.

EXAMPLES

 mdadm --query /dev/name-of-device

 This will find out if a given device is a RAID array, or is part of one, and will provide

 brief information about the device.

 mdadm --assemble --scan

 This will assemble and start all arrays listed in the standard config file. This command

 will typically go in a system startup file.

 mdadm --stop --scan

 This will shut down all arrays that can be shut down (i.e. are not currently in use).

 This will typically go in a system shutdown script.

 mdadm --follow --scan --delay=120

 If (and only if) there is an Email address or program given in the standard config file,

 then monitor the status of all arrays listed in that file by polling them ever 2 minutes.

 mdadm --create /dev/md0 --level=1 --raid-devices=2 /dev/hd[ac]1

 Create /dev/md0 as a RAID1 array consisting of /dev/hda1 and /dev/hdc1.

 echo 'DEVICE /dev/hd*[0-9] /dev/sd*[0-9]' > mdadm.conf

 mdadm --detail --scan >> mdadm.conf

 This will create a prototype config file that describes currently active arrays that are

 known to be made from partitions of IDE or SCSI drives. This file should be reviewed be?

 fore being used as it may contain unwanted detail.

 echo 'DEVICE /dev/hd[a-z] /dev/sd*[a-z]' > mdadm.conf

 mdadm --examine --scan --config=mdadm.conf >> mdadm.conf

 This will find arrays which could be assembled from existing IDE and SCSI whole drives Page 44/47

 (not partitions), and store the information in the format of a config file. This file is

 very likely to contain unwanted detail, particularly the devices= entries. It should be

 reviewed and edited before being used as an actual config file.

 mdadm --examine --brief --scan --config=partitions

 mdadm -Ebsc partitions

 Create a list of devices by reading /proc/partitions, scan these for RAID superblocks, and

 printout a brief listing of all that were found.

 mdadm -Ac partitions -m 0 /dev/md0

 Scan all partitions and devices listed in /proc/partitions and assemble /dev/md0 out of

 all such devices with a RAID superblock with a minor number of 0.

 mdadm --monitor --scan --daemonise > /run/mdadm/mon.pid

 If config file contains a mail address or alert program, run mdadm in the background in

 monitor mode monitoring all md devices. Also write pid of mdadm daemon to

 /run/mdadm/mon.pid.

 mdadm -Iq /dev/somedevice

 Try to incorporate newly discovered device into some array as appropriate.

 mdadm --incremental --rebuild-map --run --scan

 Rebuild the array map from any current arrays, and then start any that can be started.

 mdadm /dev/md4 --fail detached --remove detached

 Any devices which are components of /dev/md4 will be marked as faulty and then remove from

 the array.

 mdadm --grow /dev/md4 --level=6 --backup-file=/root/backup-md4

 The array /dev/md4 which is currently a RAID5 array will be converted to RAID6. There

 should normally already be a spare drive attached to the array as a RAID6 needs one more

 drive than a matching RAID5.

 mdadm --create /dev/md/ddf --metadata=ddf --raid-disks 6 /dev/sd[a-f]

 Create a DDF array over 6 devices.

 mdadm --create /dev/md/home -n3 -l5 -z 30000000 /dev/md/ddf

 Create a RAID5 array over any 3 devices in the given DDF set. Use only 30 gigabytes of

 each device.

 mdadm -A /dev/md/ddf1 /dev/sd[a-f]

 Assemble a pre-exist ddf array.

 mdadm -I /dev/md/ddf1 Page 45/47

 Assemble all arrays contained in the ddf array, assigning names as appropriate.

 mdadm --create --help

 Provide help about the Create mode.

 mdadm --config --help

 Provide help about the format of the config file.

 mdadm --help

 Provide general help.

FILES

 /proc/mdstat

 If you're using the /proc filesystem, /proc/mdstat lists all active md devices with infor?

 mation about them. mdadm uses this to find arrays when --scan is given in Misc mode, and

 to monitor array reconstruction on Monitor mode.

 /etc/mdadm/mdadm.conf (or /etc/mdadm.conf)

 The config file lists which devices may be scanned to see if they contain MD super block,

 and gives identifying information (e.g. UUID) about known MD arrays. See mdadm.conf(5)

 for more details.

 /etc/mdadm/mdadm.conf.d (or /etc/mdadm.conf.d)

 A directory containing configuration files which are read in lexical order.

 /run/mdadm/map

 When --incremental mode is used, this file gets a list of arrays currently being created.

DEVICE NAMES

 mdadm understand two sorts of names for array devices.

 The first is the so-called 'standard' format name, which matches the names used by the

 kernel and which appear in /proc/mdstat.

 The second sort can be freely chosen, but must reside in /dev/md/. When giving a device

 name to mdadm to create or assemble an array, either full path name such as /dev/md0 or

 /dev/md/home can be given, or just the suffix of the second sort of name, such as home can

 be given.

 When mdadm chooses device names during auto-assembly or incremental assembly, it will

 sometimes add a small sequence number to the end of the name to avoid conflicted between

 multiple arrays that have the same name. If mdadm can reasonably determine that the array

 really is meant for this host, either by a hostname in the metadata, or by the presence of

 the array in mdadm.conf, then it will leave off the suffix if possible. Also if the home? Page 46/47

 host is specified as <ignore> mdadm will only use a suffix if a different array of the

 same name already exists or is listed in the config file.

 The standard names for non-partitioned arrays (the only sort of md array available in 2.4

 and earlier) are of the form

 /dev/mdNN

 where NN is a number. The standard names for partitionable arrays (as available from 2.6

 onwards) are of the form:

 /dev/md_dNN

 Partition numbers should be indicated by adding "pMM" to these, thus "/dev/md/d1p2".

 From kernel version 2.6.28 the "non-partitioned array" can actually be partitioned. So

 the "md_dNN" names are no longer needed, and partitions such as "/dev/mdNNpXX" are possi?

 ble.

 From kernel version 2.6.29 standard names can be non-numeric following the form:

 /dev/md_XXX

 where XXX is any string. These names are supported by mdadm since version 3.3 provided

 they are enabled in mdadm.conf.

NOTE

 mdadm was previously known as mdctl.

SEE ALSO

 For further information on mdadm usage, MD and the various levels of RAID, see:

 https://raid.wiki.kernel.org/

 (based upon Jakob ?stergaard's Software-RAID.HOWTO)

 The latest version of mdadm should always be available from

 https://www.kernel.org/pub/linux/utils/raid/mdadm/

 Related man pages:

 mdmon(8), mdadm.conf(5), md(4).

v4.2 MDADM(8)

Page 47/47

